TY - CONF A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Emmerling, Franziska ED - Rogge, Andreas ED - Meng, Birgit T1 - Exploring new materials for Green Intelligent Building - How can our BAMline help? N2 - In the scope of exploring and characterizing new materials related to Green Intelligent Building (GIB), we will provide an overview of the X-ray spectroscopy and diffraction analytical methods available at the BAMline /1/. and Myspot beamlines. These are two universal beamlines at the Berlin Synchrotron BESSY-II, where BAM has access and supervision role. Overarching electronic and structural properties at different time and length scales, such measurements enable a real-time characterization of materials properties. We will show-case in situ and ex situ deterioration and hydration studies on cement-based constructure materials. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - BAMline KW - Scope of exploring KW - Green intelligent building PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612882 SN - 978-3-9818564-7-7 SP - 30 EP - 36 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - Kabelitz, Anke A1 - Gorelik, T. E. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Kolb, U. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - The crystallisation of copper(II) phenylphosphonates N2 - The crystal structures and syntheses of four different copper(II) phenylphosphonates, the monophenylphosphonates α-, β-, and γ-Cu(O3PC6H5)·H2O (α-CuPhPmH (1) β-CuPhPmH (2) and γ-CuPhPmH (3)), and the diphosphonate Cu(HO3PC6H5)2·H2O (CuPhP2mH (4)), are presented. The compounds were synthesized from solution at room temperature, at elevated temperature, under hydrothermal conditions, and mechanochemical conditions. The structures of α-CuPhPmH (1) and CuPhP2mH (4) were solved from powder X-ray diffraction data. The structure of β-CuPhPmH (2) was solved by single crystal X-ray analysis. The structures were validated by extended X-ray absorption fine structure (EXAFS) and DTA analyses. Disorder of the crystal structure was elucidated by electron diffraction. The relationship between the compounds and their reaction pathways were investigated by in situ synchrotron measurements. KW - Mechanochemistry KW - Metal phosphonate KW - In situ PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-384217 DO - https://doi.org/10.1039/C6DT02904C SN - 1477-9226 SN - 1477-9234 VL - 45 IS - 43 SP - 17453 EP - 17463 PB - The Royal Society of Chemistry AN - OPUS4-38421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Menzel, M. A1 - Scharf, O. A1 - Novak, S. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Hischenhuber, P. A1 - Buzanich, Günter A1 - Meyer, A. A1 - Lopez, V. A1 - McIntosh, K. A1 - Streli, C. A1 - Havrilla, G. A1 - Fittschen, U. T1 - Shading in TXRF: calculations and experimental validation using a color X-ray camera N2 - Absorption effects in total reflection X-ray fluorescence (TXRF) analysis are important to consider, especially if external calibration is to be applied. With a color X-ray camera (CXC), that enables spatially and energy resolved XRF analysis, the absorption of the primary beam was directly visualized for mL-droplets and an array of pL-droplets printed on a Si-wafer with drop-on-demand technology. As expected, deposits that are hit by the primary beam first shade subsequent droplets, leading to a diminished XRF signal. This shading effect was quantified with enhanced precision making use of sub-pixel analysis that improves the spatial resolution of the camera. The measured absorption was compared to simulated results using three different model calculations. It was found they match very well (average deviation < 10%). Thus errors in quantification due to absorption effects can be accounted for in a more accurate manner. KW - absorption KW - X-ray Fluorescence analysis PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-359000 DO - https://doi.org/10.1039/C5JA00127G IS - 10 SP - 2184 EP - 2193 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-35900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hahn, Oliver A1 - Denker, A. A1 - Merchel, S. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Wolff, T. ED - Armbruster, B. ED - Eilbracht, H. ED - Hahn, Oliver ED - Heinrich-Tamaska, O. T1 - Zerstörungsfreie Analyse von Metallartefakten - Eine Fallstudie N2 - Die naturwissenschaftliche Analyse historischer Materialen ermöglicht die Beantwortung kulturhistorischer Fragestellungen, die mit kunsthistorischen oder archäologischen Ansätzen allein nicht zu leisten sind. In dieser Studie wurden sechs römische Münzen mit unterschiedlich stark ausgeprägten Korrosionsschichten an unbehandelten und polierten Stellen mit vier zerstörungsfreien analytischen Methoden untersucht: Hoch- und Niederenergie Protonen Induzierter Röntgenemission (HE-/PIXE), Synchrotronstrahlungsinduzierte-Röntgenfluoreszenzanalyse (SY-RFA) und Mikro-Röntgenfluoreszenzanalyse (Mikro-RFA) mit einem mobilen Gerät. Aufgrund von Unterschieden in den Messbedingungen und dem Einfluss der Patina-Schichten auf diese ergaben sich nur für wenige Elemente Übereinstimmungen in den quantitativen Daten. Zur Validierung zukünftiger Messkampagnen mit verschiedenen Methoden sind daher Vergleichstudien unerlässlich. N2 - Investigations of physical properties and chemical composition of ancient materials generate important data for answering culture-historical questions that cannot be solved by art historical and archaeological methods alone. This contribution reports on the analysis of six Roman coins, with different degrees of corrosion layers in parts that were not handled or polished, using four non-destructive methods: low-energy particle-induced X-ray emission (PIXE, 2 MeV), high-energy PIXE (68 MeV), μ-X-ray fluorescence (XRF) spectrometry with a portable device and synchrotron-radiation induced XRF. Because of differences in the conditions needed for measurement and the influence of the layers of patina on these measurements, there were few elements where the quantitative data were in agreement. Thus comparative analyses are essential to validate future measurement projects using different methods. KW - Zerstörungsfreie Prüfung KW - Protoneninduzierte Röntgenemission KW - Röntgenfluoreszenzanalyse KW - Non-destructive testing KW - Particle-induced X-ray emission KW - X-ray fluorescence analysis PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-385702 SN - 978-3-9816751-5-3 VL - Berlin studies of the ancient world, Band 35 SP - 117 EP - 137 PB - Edition Topoi CY - Berlin AN - OPUS4-38570 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kabelitz, Anke A1 - de Oliveira Guilherme Buzanich, Ana A1 - Joester, Maike A1 - Reinholz, Uwe A1 - Radtke, Martin A1 - Bienert, Ralf A1 - Schulz, K. A1 - Schmack, R. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Time-resolved in situ studies on the formation mechanism of iron oxide nanoparticles using combined fast-XANES and SAXS N2 - The reaction of iron chlorides with an alkaline reagent is one of the most prominent methods for the synthesis of iron oxide nanoparticles. We studied the particle formation mechanism using triethanolamine as reactant and stabilizing agent. In situ fast-X-ray absorption near edge spectroscopy and small-angle X-ray scattering provide information on the oxidation state and the structural information at the same time. In situ data were complemented by ex situ transmission electron microscopy, wide-angle X-ray scattering and Raman analysis of the formed nanoparticles. The formation of maghemite nanoparticles (γ-Fe2O3) from ferric and ferrous chloride was investigated. Prior to the formation of these nanoparticles, the formation and conversion of intermediate phases (akaganeite, iron(II, III) hydroxides) was observed which undergoes a morphological and structural collapse. The thus formed small magnetite nanoparticles (Fe3O4) grow further and convert to maghemite with increasing reaction time. KW - oxidation state KW - structural information KW - maghemite PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351376 DO - https://doi.org/10.1039/C5CE01585E SN - 1466-8033 VL - 17 IS - 44 SP - 8463 EP - 8470 CY - London, UK AN - OPUS4-35137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - The structure and in situ synthesis investigation of isomorphic mononuclear molecular metal phenylphosphonates N2 - We describe a fast and effective synthesis for molecular metal phosphonates. Isomorphic compounds [M(II)(HO₃PPh)₂(H₂O₃PPh)₂(H₂O)₂] (M = Mn (1), Co (2), Ni (3); Ph = C₆H₅) were obtained by grinding. The complexes are mononuclear compounds containing neutral and monodeprotonated phenylphosphonic acid and water as ligands. The crystal structures were determined using powder X-ray diffraction (PXRD) data and validated by extended X-ray absorption fine structure (EXAFS) data. Combined synchrotron XRD measurements and Raman spectroscopy were conducted for investigating the reactions in situ. Based on these data, the intermediates were characterized and the formation mechanism was derived. KW - Mechanochemistry KW - Metal phosphonate KW - In situ KW - XRD PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-363944 DO - https://doi.org/10.1039/c6dt00787b SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 45 IS - 23 SP - 9460 EP - 9467 AN - OPUS4-36394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nowak, S.H. A1 - Bjeoumikhov, A. A1 - Von Borany, J. A1 - Buchriegler, J. A1 - Munnik, F. A1 - Petric, M. A1 - Radtke, Martin A1 - Renno, A.D. A1 - Reinholz, Uwe A1 - Scharf, O. A1 - Wedell, R. T1 - Sub-pixel resolution with a color X-ray camera N2 - The color X-ray camera SLcam® is a full-field, single photon detector providing scanning-free, energy and spatially resolved X-ray imaging. Spatial resolution is achieved with the use of polycapillary optics guiding X-ray photons from small regions on a sample to distinct energy dispersive pixels on a charged-coupled device detector. Applying sub-pixel resolution, signals from individual capillary channels can be distinguished. Therefore, the SLcam® spatial resolution, which is normally limited to the pixel size of the charge-coupled device, can be improved to the size of individual polycapillary channels. In this work a new approach to a sub-pixel resolution algorithm comprising photon events also from the pixel centers is proposed. The details of the employed numerical method and several sub-pixel resolution examples are presented and discussed. KW - Color X-ray camera KW - Sub pixel analysis PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-334948 DO - https://doi.org/10.1039/c5ja00028a SN - 0267-9477 SN - 1364-5544 SP - 1890 EP - 1897 PB - Royal Society of Chemistry CY - London AN - OPUS4-33494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska T1 - Time- & spatial-resolved X-ray absorption fine structure (XAFS) spectroscopy in a single-shot – new analytical possibilities for in situ material characterization N2 - A new concept that comprises both time- and lateral-resolved X-ray absorption fine-structure information simultaneously in a single shot is presented. This uncomplicated set-up was tested at the BAMline at BESSY-II (Berlin, Germany). The primary broadband beam was generated by a double multilayer monochromator. The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by either an energy-sensitive area detector, the so-called color X-ray camera, or by an area-sensitive detector based on a CCD camera, in θ-2θ geometry. The first tests were performed with thin metal foils and some iron oxide mixtures. A time resolution of lower than 1 s together with a spatial resolution in one dimension of at least 50 µm is achieved. KW - Time resolution KW - Single-shot XAFS PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370892 DO - https://doi.org/10.1107/S1600577516003969 SN - 1600-5775 IS - 23 SP - 769 EP - 776 PB - International Union of Crystallography CY - Chester, UK AN - OPUS4-37089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachmöller, O. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Aichler, M. A1 - Radtke, Martin A1 - Dietrich, D. A1 - Schwamborn, K. A1 - Lutz, L. A1 - Werner, M. A1 - Sperling, M. A1 - Walch, A. A1 - Karst, U. T1 - Elemental bioimaging and speciation analysis for the investigation of Wilsons disease using μXRF and XANES N2 - A liver biopsy specimen from a Wilson’s disease (WD) patient was analyzed by means of micro-X-ray fluorescence (mXRF) spectroscopy to determine the elemental distribution. First, bench-top mXRF was utilized for a coarse scan of the sample under laboratory conditions. The resulting distribution maps of copper and iron enabled the determination of a region of interest (ROI) for further analysis. In order to obtain more detailed elemental information, this ROI was analyzed by synchrotron radiation (SR)-based mXRF with a beam size of 4 mm offering a resolution at the cellular level. Distribution maps of additional elements to copper and iron like zinc and manganese were obtained due to a higher sensitivity of SR-mXRF. In addition to this, X-ray absorption near edge structure spectroscopy (XANES) was performed to identify the oxidation states of copper in WD. This speciation analysis indicated a mixture of copper(I) and copper(II) within the WD liver tissue. KW - progressive hepatolenticular degeneration KW - mXRF Micro-X-ray fluorescence spectroscopy KW - XANES X-ray absorption near edge structure spectroscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-360811 DO - https://doi.org/10.1039/C6MT00001K SN - 1756-5901 SN - 1756-591X PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-36081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mundra, S. A1 - Bernal, S. A. A1 - Criado, M. A1 - Hlaváček, Petr A1 - Ebell, Gino A1 - Reinemann, Steffi A1 - Gluth, Gregor A1 - Provis, J. L. T1 - Steel corrosion in reinforced alkali‐activated materials N2 - The development of alkali‐activated materials (AAMs) as an alternative to Portland cement (PC) has seen significant progress in the past decades. However, there still remains significant uncertainty regarding their long term performance when used in steel‐reinforced structures. The durability of AAMs in such applications depends strongly on the corrosion behaviour of the embedded steel reinforcement, and the experimental data in the literature are limited and in some cases inconsistent. This letter elucidates the role of the chemistry of AAMs on the mechanisms governing passivation and chloride‐induced corrosion of the steel reinforcement, to bring a better understanding of the durability of AAM structures exposed to chloride. The corrosion of the steel reinforcement in AAMs differs significantly from observations in PC; the onset of pitting (or the chloride ‘threshold’ value) depends strongly on the alkalinity, and the redox environment, of these binders. Classifications or standards used to assess the severity of steel corrosion in PC appear not to be directly applicable to AAMs due to important differences in pore solution chemistry and phase assemblage. KW - Corrosion KW - Alkali-activated PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435162 DO - https://doi.org/10.21809/rilemtechlett.2017.39 SN - 2518-0231 VL - 2 SP - 33 EP - 39 PB - RILEM Publications SARL CY - Paris, France AN - OPUS4-43516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guerra, M. F. A1 - Fischer, M. A1 - Radtke, Martin A1 - Reinholz, Uwe T1 - Inca figurines from the Ethnologisches Museum in Berlin: an analytical study of some typical and atypical productions N2 - Fourteen hollow and one cast anthropomorphic and zoomorphic figurines produced in Incan times for ritual offerings from the Ethnologisches Museum in Berlin were selected to investigate the technologies and alloys used for their fabrication with portable optical microscopy and non-destructive XRF elemental analysis. This group of gold and silver figurines includes typical specimens of the Inca production, such as the four silver figurines from the Island Coati in Lake Titicaca and the two gold figurines from Pachacamac, as well as specimens that are seldom present in collections, which makes them atypical. In addition to the tall figurines with atypical hair or standing pose, one bicolour figurine half silver, half gold) and another with coloured inlays were included in this study for comparison. The large majority of the silver specimens are made from very high quality alloys and the gold figurines are made from alloys containing low copper contents and silver ranging from 30wt% to 52wt%. KW - Gold KW - pXRF KW - Inca PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-436015 DO - https://doi.org/10.4000/bifea.8232 SN - 0303-7495 VL - 46 IS - 1 SP - 221 EP - 251 PB - Institut Français d'Études Andines AN - OPUS4-43601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Greiser, Sebastian A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Jäger, Christian T1 - 29Si{27Al}, 27Al{29Si} and 27Al{1H} double-resonance NMR spectroscopy study of cementitious sodium aluminosilicate gels (geopolymers) and gel-zeolite composites N2 - The influence of starting materials and synthesis route on the properties and the structure of cementitious sodium aluminosilicate gels is not fully understood, partly due their amorphous nature and the fact that they often contain residual reactants, which can make the results of single-pulse NMR spectroscopy applied to these materials difficult to interpret or ambiguous. To overcome some of these limitations, 29Si{27Al} TRAPDOR NMR as well as 27Al{29Si} and 27Al{1H} REDOR NMR spectroscopy were applied to materials synthesized by the one-part alkali-activation route from three different amorphous silica starting materials, including rice husk ash. The latter led to formation of a fully amorphous sodium aluminosilicate gel (geopolymer), while the materials produced from the other silicas contained amorphous phase and crystalline zeolites. Application of the double-resonance NMR methods allowed to identify hydrous alumina gel domains in the rice husk ash-based material as well as significantly differing amounts of residual silica in the three cured materials. Four-coordinated Al existed not only in the aluminosilicate gel framework but also in a water-rich chemical environment with only a small amount of Si in proximity, likely in the alumina gel or possibly present as extra-framework Al in the aluminosilicate gel. The results demonstrate how the employment of different silica starting materials determines the phase assemblage of one-part alkali-activated materials, which in turn influences their engineering properties such as the resistance against chemically/biologically aggressive media. KW - Alkali-activated materials KW - Solid-state NMR KW - Aluminium hydroxide KW - Rice husk ash PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469353 DO - https://doi.org/10.1039/C8RA09246J SN - 2046-2069 VL - 8 IS - 70 SP - 40164 EP - 40171 PB - Royal Society of Chemistry (RSC) CY - London AN - OPUS4-46935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Hlavacek, Petr A1 - Reinemann, Steffi A1 - Ebell, Gino A1 - Mietz, Jürgen ED - Alexander, M.G. ED - Beushausen, H. ED - Dehn, F. ED - Moyo, P. T1 - Leaching, carbonation and chloride ingress in reinforced alkali-activated fly ash mortars N2 - Alkali-activated fly ash mortars were studied with regard to durability-relevant transport coefficients and the electrochemical behaviour of embedded carbon steel bars on exposure of the mortars to leaching, carbonation and chloride penetration environments. The transport coefficients differed considerably between different formulations, being lowest for a mortar with BFS addition, but still acceptable for one of the purely fly ash-based mortars. Leaching over a period of ~300 days in de-ionized water did not lead to observable corrosion of the embedded steel, as shown by the electrochemical data and visual inspection of the steel. Exposure to 100 % CO2 atmosphere caused steel depassivation within approx. two weeks; in addition, indications of a deterioration of the mortar were observed. The results are discussed in the context of the different reaction products expected in high- and low-Ca alkali-activated binders, and the alterations caused by leaching and carbonation. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) CY - Cape Town, South Africa DA - 19.11.2018 KW - Alkali-activated materials KW - Steel corrosion KW - Leaching KW - Carbonation PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464381 DO - https://doi.org/10.1051/matecconf/201819902025 VL - 199 SP - Article Number 02025 PB - EDP Sciences AN - OPUS4-46438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rauwolf, M. A1 - Turyanskaya, A. A1 - Roschger, A. A1 - Prost, J. A1 - Simon, R. A1 - Scharf, O. A1 - Radtke, Martin A1 - Schoonjans, Tom A1 - de Oliveira Guilherme Buzanich, Ana A1 - Klaushofer, K. A1 - Wobrauschek, P. A1 - Hofstaetter, J. G. A1 - Roschger, P. A1 - Streli, C. T1 - Synchrotron radiation micro X-ray fluorescence spectroscopy of thin structures in bone samples: comparison of confocal and color X-ray camera setups N2 - In the quest for finding the ideal synchrotron-radiation-induced imaging method for the investigation of trace element distributions in human bone samples, experiments were performed using both a scanning confocal synchrotron radiation micro X-ray fluorescence (SR-mXRF) (FLUO beamline at ANKA) setup and a full-field color X-ray camera (BAMline at BESSY-II) setup. As zinc is a trace element of special interest in bone, the setups were optimized for its detection. The setups were compared with respect to count rate, required measurement time and spatial resolution. It was demonstrated that the ideal method depends on the element of interest. Although for Ca (a major constituent of the bone with a low energy of 3.69 keV for its K alpha XRF line) the color X-ray camera provided a higher resolution in the plane, for Zn (a trace element in bone) only the confocal SR-µXRF setup was able to sufficiently image the distribution. KW - Synchrotron KW - BAMline KW - BESSY KW - XRF KW - X-ray Color Camera PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-391944 DO - https://doi.org/10.1107/S1600577516017057 SN - 1600-5775 VL - 24 SP - 307 EP - 311 PB - International Union of Crystallography AN - OPUS4-39194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Grengg, C. A1 - Ukrainczyk, N. A1 - Mittermayr, F. A1 - Dietzel, M. T1 - Acid resistance of alkali-activated materials: Recent advances and research needs N2 - Cementitious materials are frequently applied in environments in which they are exposed to acid attack, e.g., in sewer systems, biogas plants, and agricultural/food-related industries. Alkali-activated materials (AAMs) have repeatedly been shown to exhibit a remarkably high resistance against attack by organic and inorganic acids and, thus, are promising candidates for the construction and the repair of acid-exposed structures. However, the reaction mechanisms and processes affecting the acid resistance of AAMs have just recently begun to be understood in more detail. The present contribution synthesises these advances and outlines potentially fruitful avenues of research. The interaction between AAMs and acids proceeds in a multistep process wherein different aspects of deterioration extend to different depths, complicating the overall determination of acid resistance. Partly due to this indistinct definition of the ‘depth of corrosion’, the effects of the composition of AAMs on their acid resistance cannot be unambiguously identified to date. Important parallels exist between the deterioration of low-Ca AAMs and the weathering/corrosion of minerals and glasses (dissolution-reprecipitation mechanism). Additional research requirements relate to the deterioration mechanism of high-Ca AAMs; how the character of the corroded layer influences the rate of deterioration; the effects of shrinkage and the bond between AAMs and substrates. KW - Alkali-activated materials KW - Acid attack KW - Acid resistance KW - Concrete repair KW - MIC PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557376 DO - https://doi.org/10.21809/rilemtechlett.2022.157 SN - 2518-0231 VL - 7 SP - 58 EP - 67 PB - RILEM Publications SARL CY - Paris AN - OPUS4-55737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Henning, Ricky A1 - Sturm, Patrick A1 - Geddes, D.A. A1 - Keßler, S. A1 - Walkley, B. A1 - Gluth, Gregor T1 - The influence of curing temperature on the strength and phase assemblage of hybrid cements based on GGBFS/FA blends N2 - Hybrid cements are composites made of Portland cement or Portland clinker and one or more supplementary cementitious materials like slag, fly ash or metakaolin, activated with an alkali salt. To date, their hydration mechanism and the phase formation at various temperatures is insufficiently understood, partly due to the large variability of the raw materials used. In the present study, three hybrid cements based on ground granulated blast furnace slag, fly ash, Portland clinker and sodium sulfate, and an alkali-activated slag/fly ash blend were cured at 10 and 21.5°C, and subsequently analyzed by XRD, 27Al MAS NMR, and TGA. The compressive strength of the hybrid cements was higher by up to 27% after 91-day curing at 10°C, compared to curing at 21.5°C. The experimental results as well as thermodynamic modeling indicate that the differences in compressive strength were related to a different phase assemblage, mainly differing amounts of strätlingite and C-N-A-S-H, and the associated differences of the volume of hydration products. While the strätlingite was amorphous to X-rays, it could be identified by 27Al MAS NMR spectroscopy, TGA and thermodynamic modeling. The microstructural properties of the hybrid cements and the alkali-activated slag/fly ash blend as well as the compatibility between thermodynamic modeling results and experimental data as a function of curing temperature and time are discussed. KW - Hybrid cements KW - Strätlingite KW - Thermodynamic modelling KW - Hydration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557767 DO - https://doi.org/10.3389/fmats.2022.982568 SN - 2296-8016 VL - 9 SP - 1 EP - 16 PB - Frontiers AN - OPUS4-55776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de O. Primo, J. A1 - Horsth, D.F. A1 - de S. Correa, J. A1 - Das, A. A1 - Bittencourt, C. A1 - Umek, P. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Zanetta, C. A1 - Anaissi, F.J. T1 - Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water N2 - n this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial dis- infection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in “Standard Methods for the Examination of Water and Wastewater” were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis,and disinfection efficiency. KW - Synchrotron KW - BAMline PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562440 DO - https://doi.org/10.3390/nano12101764 SN - 2079-4991 VL - 12 IS - 10 SP - 1 EP - 18 PB - MDPI CY - Basel AN - OPUS4-56244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gluth, Gregor A1 - Ke, X. A1 - Vollpracht, A. A1 - Weiler, L. A1 - Bernal, S. A. A1 - Cyr, M. A1 - Dombrowski-Daube, K. A1 - Geddes, D. A. A1 - Grengg, C. A1 - Le Galliard, C. A1 - Nedeljkovic, M. A1 - Provis, J. L. A1 - Valentini, L. A1 - Walkley, B. T1 - Carbonation rate of alkali-activated concretes and high-volume SCM concretes: a literature data analysis by RILEM TC 281-CCC N2 - The current understanding of the carbonation and the prediction of the carbonation rate of alkali-activated concretes is complicated inter alia by the wide range of binder chemistries used and testing conditions adopted. To overcome some of the limitations of individual studies and to identify general correlations between mix design parameters and carbonation resistance, the RILEM TC 281-CCC ‘Carbonation of Concrete with Supplementary Cementitious Materials’ Working Group 6 compiled and analysed carbonation data for alkali-activated concretes and mortars from the literature. For comparison purposes, data for blended Portland cement-based concretes with a high percentage of SCMs (≥ 66% of the binder) were also included in the database. The analysis indicates that water/CaO ratio and water/binder ratio exert an influence on the carbonation resistance of alkali-activated concretes; however, these parameters are not good indicators of the carbonation resistance when considered individually. A better indicator of the carbonation resistance of alkali-activated concretes under conditions approximating natural carbonation appears to be their water/(CaO + MgOeq + Na2Oeq + K2Oeq) ratio, where the subscript ‘eq’ indicates an equivalent amount based on molar masses. Nevertheless, this ratio can serve as approximate indicator at best, as other parameters also affect the carbonation resistance of alkali-activated concretes. In addition, the analysis of the database points to peculiarities of accelerated tests using elevated CO2 concentrations for low-Ca alkali-activated concretes, indicating that even at the relatively modest concentration of 1% CO2, accelerated testing may lead to inaccurate predictions of the carbonation resistance under natural exposure conditions. KW - Alkali-activated materials KW - Durability KW - Carbonation KW - Accelerated testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560037 DO - https://doi.org/10.1617/s11527-022-02041-4 VL - 55 IS - 8 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-56003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dubey, A. A1 - Hon Keat, C. A1 - Shvartsman, V. A1 - Yusenko, Kirill A1 - Escobar, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Hagemann, U. A1 - Kovalenko, S. A1 - Stächler, J. A1 - Lupascu, D. T1 - Mono-, Di-, and Tri-valent Cation Doped BiFe0.95Mn0.05O3 Nanoparticles: Ferroelectric Photocatalysts N2 - The ferroelectricity of multivalent co-doped Bismuth ferrite (BiFeO3; BFO) nanoparticles (NPs) is revealed and utilized for light photocatalysis exploiting their narrow electronic band gap. The photocatalytic activity of ferroelectric photocatalysts BiFe0.95Mn0.05O3 (BFM) NPs and mono-, di-, or tri-valent cations (Ag+, Ca2+, Dy3+; MDT) co-incorporated BFM NPs are studied under ultrasonication and in acidic conditions. We find that such doping enhances the photocatalytic activity of the ferroelectric NPs approximately three times. The correlation of the photocatalytic activity with structural, optical, and electrical properties of the doped NPs is established. The increase of spontaneous polarization by the mono- and tri-valent doping is one of the major factors in enhancing the photocatalytic performance along with other factors such as stronger light absorption in the visible range, low recombination rate of charge carriers and larger surface area of NPs. A-site doping of BFO NPs by divalent elements suppresses the polarization, whereas trivalent (Dy3+) and monovalent (Ag+) cations provide an increase of polarization. The depolarization field in these single domain NPs acts as a driving force to mitigate recombination of the photoinduced charge carriers. KW - Piezoresponse KW - Bismuth Ferrite KW - Nanoparticles KW - Photocatalysis KW - Ferroelectric KW - Polarization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557230 DO - https://doi.org/10.1002/adfm.202207105 SN - 1616-301X SP - 1 EP - 16 PB - Wiley AN - OPUS4-55723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Sebastian A1 - Bertmer, M. A1 - Gluth, Gregor T1 - Sol–gel synthesis and characterization of lithium aluminate (L–A–H) and lithium aluminosilicate (L–A–S–H) gels N2 - Hydrous lithium aluminosilicate (L–A–S–H) and lithium aluminate (L–A–H) gels are candidate precursors for glass-ceramics and ceramics with potential advantages over conventional processing routes. However, their structure before calcination remained largely unknown, despite the importance of precursor structure on the properties of the resulting materials. In the present study, it is demonstrated that L–A–S–H and L–A–H gels with Li/Al ≤ 1 can be produced via an organic steric entrapment route, while higher Li/Al ratios lead to crystallization of gibbsite or nordstrandite. The composition and the structure of the gels was studied by thermogravimetric analysis, X-ray diffraction, 27Al and 29Si magic-angle spinning nuclear magnetic resonance, and Raman spectroscopy. Aluminium was found to be almost exclusively in six-fold coordination in both the L–A–H and the L–A–S–H gels. Silicon in the L–A–S–H gels was mainly in Q4 sites and to a lesser extent in Q3 sites (four-fold coordination with no Si–O–Al bonds). The results thus indicate that silica-rich and aluminium-rich domains formed in these gels. KW - Lithium aluminosilicates KW - Raman spectroscopy KW - Sol-gel PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558756 DO - https://doi.org/10.1111/ijac.14187 SN - 1546-542X VL - 19 IS - 6 SP - 3179 EP - 3190 PB - Wiley AN - OPUS4-55875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -