TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Broicher, Cornelia A1 - Zeng, F. A1 - Pfänder, N. A1 - Frisch, M. A1 - Bisswanger, T. A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Palkovits, S. A1 - Beine, A. K. A1 - Palkovits, R. T1 - Iron and Manganese Containing Multi-Walled Carbon Nanotubes as Electrocatalysts for the Oxygen Evolution Reaction - Unravelling Influences on Activity and Stability N2 - Hydrogen economy is a central aspect of future energy supply, as hydrogen can be used as energy storage and fuel. In order tomake water electrolysis efficient, the limiting oxygen evolution reaction (OER) needs to be optimized. Therefore, C-based composite materials containing earth-abundant Fe and Mn were synthesized, characterized and tested in the OER. For pyrolysis temperatures above 700°C N-rich multi-walled carbon nanotubes (MWCNT) are obtained. Inside the tubes Fe3C particles are formed, Fe and Mn oxides are incorporated in the carbon matrix and metal spinel nanoparticles cover the outer surface. The best catalyst prepared at 800°C achieves a low overpotential of 389 mV (at 10 mA/cm2) and high stability (22.6 h). From electrochemical measurements and characterization it can be concluded that the high activity is mainly provided by MWCNT, Fe3C and the metal oxides in the conductive carbon matrix. The metal spinel nanoparticles in contrast protect the MWCNT from oxidation and thereby contribute to the high stability. KW - Oxygen Evolution Reaction KW - Carbon Nanotubes KW - Stability PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513955 DO - https://doi.org/10.1002/cctc.202000944 VL - 12 IS - 21 SP - 1 EP - 8 PB - Wiley Online Libary AN - OPUS4-51395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Silbernagl, Dorothee A1 - Rautenberg, Max A1 - Schmid, Thomas A1 - Feiler, Torvid A1 - Reimann, K. A1 - Ghalgaoui, A. A1 - Sturm, Heinz A1 - Paulus, B. A1 - Emmerling, Franziska T1 - A Mechanistic Perspective on Plastically Flexible Coordination Polymers N2 - Mechanical flexibility in single crystals of covalently bound materials is a fascinating and poorly understood phenomenon. We present here the first example of a plastically flexible one-dimensional (1D) coordination polymer. The compound [Zn(m-Cl)2(3,5-dichloropyridine)2]n is flexible over two crystallographic faces. Remarkably, the single crystal remains intact when bent to 1808. A combination of microscopy, diffraction, and spectroscopic studies have been used to probe the structural response of the crystal lattice to mechanical bending. Deformation of the covalent polymer chains does not appear to be responsible for the observed macroscopic bending. Instead, our results suggest that mechanical bending occurs by displacement of the coordination polymer chains. Based on experimental and theoretical evidence, we propose a new model for mechanical flexibility in 1D coordination polymers. Moreover, our calculations propose a cause of the different mechanical properties of this compound and a structurally similar elastic material KW - Coordination polymer KW - Flexible crystals KW - Mechanical properties KW - Plastic deformation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504755 DO - https://doi.org/10.1002/anie.201914798 VL - 59 IS - 14 SP - 5557 EP - 5561 PB - Wiley-VCH AN - OPUS4-50475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solomun, Tihomir A1 - Hahn, Marc Benjamin A1 - Smiatek, J. T1 - Raman spectroscopic signature of ectoine conformations in bulk solution and crystalline state N2 - Recent crystallographic results revealed conformational changes of zwitterionic ectoine upon hydration. By means of confocal Raman spectroscopy and density functional theory calculations, we present a detailed study of this transformation process as part of a Fermi resonance analysis. The corresponding findings highlight that all resonant couplings are lifted upon exposure to water vapor as a consequence of molecular binding processes. The importance of the involved molecular groups for water binding and conformational changes upon hydration is discussed. Our approach further Shows that the underlying rapid process can be reversed by carbon dioxide saturated atmospheres. For the first time, we also confirm that the conformational state of ectoine in aqueous bulk solution coincides with crystalline ectoine in its dihydrate state, thereby highlighting the important role of a few bound water molecules. KW - Fermi resonance KW - Ectoine hydration KW - DFT calculations of Raman spectra KW - Position of carboxylate group PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509855 DO - https://doi.org/10.1002/cphc.202000457 SN - 1439-4235 SN - 1439-7641 VL - 21 IS - 17 SP - 1945 EP - 1950 PB - Wiley-VCH CY - Weinheim AN - OPUS4-50985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. KW - Micromagnetism KW - LLG KW - LL equation KW - Landau Lifshitz equation KW - Landau Lifshitz Gilbert equation KW - Stochastic Landau Lifshitz equation KW - Stochastic Landau Lifshitz Gilbert equation KW - Curie temperature KW - Magnetic Nanoparticles KW - Thin film systems KW - Temeprature scaling KW - Phase transition KW - Magnet coupling KW - Ferromagnetism KW - Superparamagnetism KW - Paramagnetism KW - Ni KW - Co KW - Fe KW - Steel KW - Nickel KW - Cobalt KW - Iron KW - Temperature effects KW - Cell size KW - Damping factor KW - Gamma KW - Alpha KW - Spin KW - Magnetic moment KW - Magnetic interacion KW - Magnetization dynamics KW - Domain wall KW - Exchange length KW - temeprature dependent exchange length KW - Bloch wall KW - Neel wall KW - Exchange interaction KW - Magnetic anisotropy KW - Simulation KW - OOMMF KW - Object oriented micromagnetic framework PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484610 DO - https://doi.org/10.1088/2399-6528/ab31e6 VL - 3 IS - 7 SP - 075009-1 EP - 075009-8 PB - IOPscience CY - England AN - OPUS4-48461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hünger, K.-J. A1 - Kositz, M. A1 - Danneberg, M. A1 - Radnik, Jörg T1 - Enrichment of aluminium in the near‐surface region of natural quartzite rock after aluminium exposure N2 - Alkali–silica reaction (ASR) is an ongoing problem that causes damage to concrete constructions and reduces their durability. Therefore, minimizing this undesired reaction is of great interest for both safety and economic reasons. Additives containing high aluminium content are very effective in reducing the release of silica and enhancing the durability of concrete; however, the mechanism for this effect is still under discussion. In this study, an enrichment of aluminium in the near‐surface region was observed for natural quartzite rock after storage in Al (OH)3 and metakaolin as aluminium sources, from which we conclude that the formation of aluminosilicate sheets of a few nanometres inhibits the silica release; this hypothesis is supported by high‐resolution spectra of Al 2p, Si 2p and O 1s. KW - Alkali-silica reaction KW - Quartzite rock KW - X-ray photoelectron spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519394 DO - https://doi.org/10.1002/sia.6918 SN - 0142-2421 SP - 1 EP - 7 PB - Wiley VCH AN - OPUS4-51939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Topolniak, Ievgeniia A1 - Silbernagl, Dorothee A1 - Altmann, Korinna A1 - Sturm, Heinz T1 - Long-time behavior of surface properties of microstructures fabricated by multiphoton lithography N2 - The multiphoton lithography (MPL) technique represents the future of 3D microprinting, enabling the production of complex microscale objects with high precision. Although the MPL fabrication parameters are widely evaluated and discussed, not much attention has been given to the microscopic properties of 3D objects with respect to their surface properties and time-dependent stability. These properties are of crucial importance when it comes to the safe and durable use of these structures in biomedical applications. In this work, we investigate the surface properties of the MPL-produced SZ2080 polymeric microstructures with regard to the physical aging processes during the post-production stage. The influence of aging on the polymeric microstructures was investigated by means of Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). As a result, a time-dependent change in Young’s Modulus, plastic deformation, and adhesion and their correlation to the development in chemical composition of the surface of MPL-microstructures are evaluated. The results presented here are valuable for the application of MPL-fabricated 3D objects in general, but especially in medical technology as they give detailed information of the physical and chemical time-dependent dynamic behavior of MPL-printed surfaces and thus their suitability and performance in biological systems. KW - Multiphoton lithography KW - Additive manufacturing KW - Microfabrication KW - SZ2080 negative photo-resist KW - Young´s modulus KW - Aging KW - Surface properties KW - X-ray photoelectron spectroscopy KW - Atomic force microscopy KW - Force-distance-curve PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542166 DO - https://doi.org/10.3390/nano11123285 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donskyi, Ievgen A1 - Nie, C. A1 - Ludwig, K. A1 - Trimpert, J. A1 - Ahmed, R. A1 - Quaas, E. A1 - Achazi, K. A1 - Radnik, Jörg A1 - Adeli, M. A1 - Haag, R. A1 - Osterrieder, K. T1 - Graphene Sheets with Defined Dual Functionalities for the Strong SARS-CoV-2 Interactions N2 - Search of new strategies for the inhibition of respiratory viruses is one of the urgent health challenges worldwide, as most of the current therapeutic agents and treatments are inefficient. Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) has caused a pandemic and has taken lives of approximately two Million people to date. Even though various vaccines are currently under development, virus, and especially its spike glycoprotein can mutate, which highlights a Need for a broad-spectrum inhibitor. In this work, inhibition of SARS-CoV-2 by graphene platforms with precise dual sulfate/alkyl functionalities is investigated. A series of graphene derivatives with different lengths of aliphatic chains is synthesized and is investigated for their ability to inhibit SARS-CoV-2 and feline coronavirus. Graphene derivatives with long alkyl chains (>C9) inhibit coronavirus replication by virtue of disrupting viral envelope. The ability of these graphene platforms to rupture viruses is visualized by atomic force microscopy and cryogenic electron microscopy. A large concentration window (10 to 100-fold) where graphene platforms display strongly antiviral activity against native SARS-CoV-2 without significant toxicity against human cells is found. In this concentration range, the synthesized graphene platforms inhibit the infection of enveloped viruses efficiently, opening new therapeutic and metaphylactic avenues against SARS-CoV-2. KW - Graphene KW - Graphene-based polyglycerol sulfates KW - SARS-CoV2 inhibitor KW - Virucidality PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520858 DO - https://doi.org/10.1002/smll.202007091 VL - 17 IS - 11 SP - 7091 PB - Wiley VCH AN - OPUS4-52085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winckelmann, Alexander A1 - Morcillo Garcia-Morato, Dalia A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - Determination of lithium in human serum by isotope dilution atomic absorption spectrometry N2 - The therapeutic dose of lithium (Li) compounds, which are widely used for the treatment of psychiatric and hematologic disorders, is close to its toxic level; therefore, drug monitoring protocols are mandatory. Herein, we propose a fast, simple, and low-cost analytical procedure for the traceable determination of Li concentration in human serum, based on the monitoring of the Li isotope dilution through the partially resolved isotope shift in its electronic transition around 670.80 nm using a commercially available high-resolution continuum source graphite furnace atomic absorption spectrometer. With this technique, serum samples only require acidic digestion before analysis. The procedure requires three measurements—an enriched 6Li spike, a mixture of a certified standard solution and spike, and a mixture of the sample and spike with a nominal 7Li/6Li ratio of 0.82. Lanthanum has been used as an internal spectral standard for wavelength correction. The spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Both the spectral constants and the correlation between isotope ratio and relative band intensity have been experimentally obtained using commercially available materials enriched with Li isotopes. The Li characteristic mass (mc) obtained corresponds to 0.6 pg. The procedure has been validated using five human serum certified reference materials. The results are metrologically comparable and compatible to the certified values. The measurement uncertainties are comparable to those obtained by the more complex and expensive technique, isotope dilution mass spectrometry. KW - Lithium KW - Human serum KW - Isotope dilution KW - Atomic absorption spectrometry KW - High-resolution continuum source graphite furnace atomic absorption spectrometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532446 DO - https://doi.org/10.1007/s00216-021-03636-6 VL - 414 IS - 1 SP - 251 EP - 256 PB - Springer CY - Berlin AN - OPUS4-53244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Sobol, Oded A1 - Altmann, Korinna A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem T1 - Preconditioning of AISI 304 stainless steel surfaces in the presence of flavins—Part I: Effect on surface chemistry and corrosion behavior N2 - Stainless steel AISI 304 surfaces were studied after a mild anodic polarization for oxide growth in the presence and absence of two derivatives of vitamin B2 (riboflavin and flavin mononucleotide) that can be secreted by metal‐reducing bacteria and act as a chelating agent for iron species. The alterations in oxide chemistry were studied by means of surface‐sensitive techniques such as X‐ray photoelectron spectroscopy and time‐of‐flight secondary ion mass spectrometry analysis. The complementary electrochemical characterization revealed a preferential growth of an oxide/hydroxide iron‐rich film that is responsible for an altered pit initiation and nucleation behavior. These findings suggest that as the corrosion behavior is determined by the interplay of the chemical and electronic properties, only a mild anodic polarization in the presence of redox‐active molecules is able to alter the chemical and electronic structure of the passive film formed on stainless steel AISI 304. This helps to achieve a profound understanding of the mechanisms of microbially influenced corrosion (MIC) and especially the possible effects of the redox‐active biomolecules, as they may play an important role in the corrosion susceptibility of stainless steel surfaces. KW - Corrosion KW - Stainless steel KW - Surface analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528117 DO - https://doi.org/10.1002/maco.202012191 VL - 72 IS - 6 SP - 974 EP - 982 PB - Wiley AN - OPUS4-52811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hesse, R. A1 - Denecke, R. A1 - Radnik, Jörg T1 - Testing and validating the improved estimation of the spectrometer-transmission function with UNIFIT 2022 N2 - Recent developments of X-ray photoelectron spectroscopy using excitation energies different from the usual lab-sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well-established ones using reference spectra. Therefore, the approach using quantified peak areas (QPA) was refined allowing a more precise estimation of the transmission function. This refinement was tested by comparing the results obtained with the new version with former calculations. Furthermore, the obtained transmission function was validated by comparing the results with a transmission function using the reference spectrum of polyethylene. Additionally, an ionic liquid was used as reference for estimating the transmission function at the energy resolved HE-SGM beamline at BESSY II. Comparison between the measured and stoichiometric composition shows that a transmission function was determined, which allows a reasonable quantification. KW - XPS KW - Quantification KW - Software UNIFIT 2022 KW - Synchrotron radiation KW - Transmission function IERF PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551671 DO - https://doi.org/10.1002/sia.7131 SN - 0142-2421 SP - 1 EP - 7 PB - Wiley-VCH AN - OPUS4-55167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Topolniak, Ievgeniia A1 - Weise, Matthias A1 - Sturm, Heinz T1 - Shape deviations of DLW microstructures in dependency of fabrication parameters N2 - Deep understanding of the effects associated with fabrication parameters and their influence on the resulting structures shape is essential for the further development of direct laser writing (DLW). In particular, it is critical for development of reference materials, where structure parameters are precisely fabricated and should be reproduced with use of DLW technology. In this study we investigated the effect of various fabrication and preparation parameters on the structural precision of interest for reference materials. A well-studied photo-curable system, SZ2080 negative photo-resist with 1 wt.% Michler's ketone (Bis) photo-initiator, was investigated in this work. The correlation between applied laser power, laser velocity, fabrication direction on the deviations in the structure shape were observed by means of white light interferometry microscopy. Moreover, influence of slicing and hatching distances as well as prebake time were studied as function of sample shape. Deviations in the structure form between the theoretically expected and the one detected after DLW fabrication were observed in the range up to 15%. The observed shape discrepancies show the essential importance of fine-tuning the fabrication parameter for reference structure production. KW - Direct laser writing KW - Fabrication parameters KW - Structural precision KW - SZ2080 negative photo-resist KW - White light interferometry microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535906 DO - https://doi.org/10.1088/1361-6439/ac2a14 VL - 31 IS - 12 SP - 1 EP - 8 PB - IOP Science AN - OPUS4-53590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tuma, Dirk A1 - Moreau, A. A1 - Polishuk, I. A1 - Segovia, J. J. A1 - Vega-Maza, D. A1 - Martín, M. C. T1 - Measurements and predictions of densities and viscosities in CO2 + hydrocarbon mixtures at high pressures and temperatures: CO2 + n-pentane and CO2 + n-hexane blends N2 - This work reports new experimental data on densities and viscosities of (CO2 + n-pentane) and (CO2 + n-hexane) mixtures at high pressures and temperatures. The densities were measured by a vibrating-tube densimeter with an expanded uncertainty (k = 2) smaller than 1.8 kg/m3 at six isotherms (from 273.15 K to 373.15 K), twelve pressures starting at 5 MPa up to 100 MPa, and at six CO2 molar compositions (from 0 to 0.6). The viscosities were measured by a vibrating-wire viscometer with the corresponding relative expanded uncertainty (k = 2) smaller than 0.016 at five isotherms (from 273.15 K to 373.15 K), twelve pressures (from 5 MPa up to 100 MPa), and at two CO2 molar compositions (0.1 and 0.3). The densities were fitted by the semiempirical Tammann-Tait equation for density data and the Vogel-Fulcher-Tammann (VFT) equation for viscosity data, respectively. The Groupe Européen de Recherches Gazières (GERG-2008) equation of state was also applied for modelling the densities. Over-all robustness and reliability of the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) and its critical point-based modification (CP-PC-SAFT) were examined. Accuracies of the Modified Yarranton-Satyro (MYS) coupled with CP-PC-SAFT and the NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP 10) in predicting the viscosities were evaluated. KW - CO2 + n-alkanes KW - thermophysical properties KW - Perturbed-Chain Statistical Association Fluid Theory PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555728 DO - https://doi.org/10.1016/j.molliq.2022.119518 SN - 0167-7322 VL - 360 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam AN - OPUS4-55572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Page, T.M. A1 - Nie, C. A1 - Neander, L. A1 - Povolotsky, T.L. A1 - Sahoo, A.K. A1 - Nickl, Philip A1 - Adler, J.M. A1 - Bawadkji, O. A1 - Radnik, Jörg A1 - Achazi, K. A1 - Ludwig, K. A1 - Lauster, D. A1 - Netz, R.R. A1 - Trimpert, J. A1 - Kaufer, B. A1 - Haag, R. A1 - Donskyi, Ievgen T1 - Functionalized Fullerene for Inhibition of SARS-CoV-2 Variants N2 - As virus outbreaks continue to pose a challenge, a nonspecific viral inhibitor can provide significant benefits, especially against respiratory viruses. Polyglycerol sulfates recently emerge as promising agents that mediate interactions between cells and viruses through electrostatics, leading to virus inhibition. Similarly, hydrophobic C60 fullerene can prevent virus infection via interactions with hydrophobic cavities of surface proteins. Here, two strategies are combined to inhibit infection of SARS-CoV-2 variants in vitro. Effective inhibitory concentrations in the millimolar range highlight the significance of bare fullerene’s hydrophobic moiety and electrostatic interactions of polysulfates with surface proteins of SARS-CoV-2. Furthermore, microscale thermophoresis measurements support that fullerene linear polyglycerol sulfates interact with the SARS-CoV-2 virus via its spike protein, and highlight importance of electrostatic interactions within it. All-atom molecular dynamics simulations reveal that the fullerene binding site is situated close to the receptor binding domain, within 4 nm of polyglycerol sulfate binding sites, feasibly allowing both portions of the material to interact simultaneously. KW - Covalent functionalization KW - Fullerene KW - SARS-CoV 2 KW - Sulfated materials KW - Virus inhibition PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568672 DO - https://doi.org/10.1002/smll.202206154 SN - 1613-6810 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-56867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - First of its kind: a test artifact for direct laser writing N2 - With femtosecond-laser direct writing (fs-LDW) maturing in all aspects as a manufacturing technology, a toolset for quality assurance must be developed. In this work we introduce a first of its kind test artifact. Test artifacts are standardized 3D models with specific geometric features to evaluate the performance of writing parameters. Test artifacts are already common in other 3D additive manufacturing technologies e.g. selective laser melting. The test artifact introduced in this work was developed in particular to accommodate the high geometrical resolution of fs-LDW structures and the limited possibilities to examine the resulting structure. Geometric accuracy, surface adhesion as well as confocal Raman spectroscopy results were considered when evaluating the design of the test artifact. We will explain the individual features and design considerations of our fs-LDW test artifact. The difference between two slicers, Cura and 3DPoli, and the implications on measured feature sizes and the general shape is quantified. The measured geometries are used to derive a general design guide for a specific combination of photoresists, laser power and scanning speed and to analyze the geometric accuracy of a structure produced using these guidelines. The shown test artifact is publicly available as STL file on GitHub (https://github.com/BAMresearch/2PP-TestArtifact) and in the supplement. KW - Laser direct writing KW - Multi photon lithography KW - Reference material KW - Raman spectroscopy KW - Confocal raman imaging KW - Slicers KW - Open data on zenodo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580951 DO - https://doi.org/10.1088/1361-6501/acc47a VL - 34 IS - 7 SP - 1 EP - 14 PB - IOP Science AN - OPUS4-58095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A. L. A1 - Silbernagl, Dorothee A1 - Yasuda, N. A1 - Feiler, Torvid A1 - Sturm, Heinz A1 - Emmerling, Franziska T1 - An atomistic mechanism for elasto-plastic bending in molecular crystals N2 - Mechanically flexible single crystals of molecular materials offer potential for a multitude of new directions in advanced materials design. Before the full potential of such materials can be exploited, insight into their mechanisms of action must be better understood. Such insight can be only obtained through synergistic use of advanced experimentation and simulation. We herein report the first detailed mechanistic study of elasto-plastic flexibility in a molecular solid. An atomistic origin for this mechanical behaviour is proposed through a combination of atomic force microscopy, μ-focus synchrotron X-ray diffraction, Raman spectroscopy, ab initio simulation, and computed elastic tensors. Our findings suggest that elastic and plastic bending are intimately linked and result from extensions of the same molecular deformations. The proposed mechanism bridges the gap between contested mechanisms, suggesting its applicability as a general mechanism for elastic and plastic bending in organic molecular crystals. KW - Mechanical property KW - Mechanical flexibility KW - Organic crystal PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577722 DO - https://doi.org/10.1039/D2SC06470G SN - 2041-6520 VL - 14 IS - 13 SP - 3441 EP - 3450 PB - Royal Society of Chemisty (RSC) CY - London/Cambridge AN - OPUS4-57772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jungnickel, R. A1 - Mirabella, Francesca A1 - Stockmann, Jörg Manfred A1 - Radnik, Jörg A1 - Balasubramanian, K. T1 - Graphene‑on‑gold surface plasmon resonance sensors resilient to high‑temperature annealing N2 - Gold films coated with a graphene sheet are being widely used as sensors for the detection of label-free binding interactions using surface plasmon resonance (SPR). During the preparation of such sensors, it is often essential to subject the sensor chips to a high-temperature treatment in order to ensure a clean graphene surface. However, sensor chips used currently, which often use chromium as an adhesion promoter, cannot be subjected to temperatures above 250 °C, because under such conditions, chromium is found to reorganize and diffuse to the surface, where it is easily oxidized, impairing the quality of SPR spectra. Here we present an optimized preparation strategy involving a three-cycle tempering coupled with chromium (oxide) etching, which allows the graphene-coated SPR chips to be annealed up to 500 °C with little deterioration of the surface morphology. In addition, the treatment delivers a surface that shows a clear enhancement in spectral response together with a good refractive index sensitivity. We demonstrate the applicability of our sensors by studying the kinetics of avidin–biotin binding at different pH repeatedly on the same chip. The possibility to anneal can be exploited to recover the original surface after sensing trials, which allowed us to reuse the sensor for at least six cycles of biomolecule adsorption. KW - Surface plasmon resonance KW - Graphene KW - Sensing KW - Surface regeneration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564585 DO - https://doi.org/10.1007/s00216-022-04450-4 SN - 1618-2642 SP - 1 EP - 7 PB - Springer AN - OPUS4-56458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Plajer, A. J. T1 - Thioanhydride/isothiocyanate/epoxide ring-opening terpolymerisation: sequence selective enchainment of monomer mixtures and switchable catalysis N2 - We report a new sequence selective terpolymerisation in which three monomers (butylene oxide (BO) A, PhNCS B and phtalic thioanhydride (PTA) C) are selectively enchained into an (ABA′C)n sequence. PTA/PhNCS/BO ring-opening terpolymerisation ROTERP can be coupled with CS2 ROTERP to generate tetrapolymers and with εDL ROP in switchable catalysis for blockpolymer synthesis. KW - Blockcopolymer KW - 1H-NMR KW - TGA KW - DSC KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552339 DO - https://doi.org/10.1039/d2py00629d SP - 1 EP - 5 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-55233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winckelmann, Alexander A1 - Nowak, S. A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - High-Resolution Atomic Absorption Spectrometry Combined With Machine Learning Data Processing for Isotope Amount Ratio Analysis of Lithium N2 - An alternative method for lithium isotope amount ratio analysis based on a combination of high-resolution atomic absorption spectrometry and spectral data analysis by machine learning (ML) is proposed herein. It is based on the well-known isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by the state-of-the-art high-resolution continuum source graphite furnace atomic absorption spectrometry. For isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions, ranging from 0.06 to 0.99 mol mol–1, previously determined by a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS). The calibration ML model was validated with two certified reference materials (LSVEC and IRMM-016). The procedure was applied toward the isotope amount ratio determination of a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. The results of these determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9 to 6.2‰. This precision was sufficient to resolve naturally occurring variations, as demonstrated for samples ranging from approximately −3 to +15‰. To assess its suitability to technical applications, the NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification. The results obtained were metrologically compatible with each other. KW - Lithium KW - Isotope KW - Machine learning KW - Algorithms KW - Reference material KW - AAS KW - Atomic Absorption Spectrometry PY - 2021 DO - https://doi.org/10.1021/acs.analchem.1c00206 SN - 1520-6882 VL - 93 IS - 29 SP - 10022 EP - 10030 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-53028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Walter, Astrid A1 - Panne, Ulrich A1 - Weller, Michael G. T1 - A novel immunoreagent for the specific and sensitive detection of the explosive triacetone triperoxide (TATP) N2 - Triacetone triperoxide (TATP) is a primary explosive, which was used in various terrorist attacks in the past. For the development of biosensors, immunochemical µ-TAS, electronic noses, immunological test kits, or test strips, the availability of antibodies of high quality is crucial. Recently, we presented the successful immunization of mice, based on the design, synthesis, and conjugation of a novel TATP derivative. Here, the long-term immunization of rabbits is shown, which resulted in antibodies of extreme selectivity and more than 1,000 times better affinity in relation to the antibodies from mice. Detection limits below 10 ng L-1 (water) were achieved. The working range covers more than four decades, calculated from a precision profile. The cross-reactivity tests revealed an extraordinary selectivity of the antibodies—not a single compound could be identified as a relevant cross-reactant. The presented immunoreagent might be a major step for the development of highly sensitive and selective TATP detectors particularly for security applications. KW - Organic peroxides KW - Terrorism KW - Biosensor development PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-240291 UR - http://www.mdpi.com/2079-6374/1/3/93 DO - https://doi.org/10.3390/bios1030093 SN - 2079-6374 VL - 1 IS - 3 SP - 93 EP - 106 PB - MDPI CY - Basel AN - OPUS4-24029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -