TY - JOUR A1 - Steiner, S. A1 - Heldt, J. A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Frömeling, T. T1 - Influence of oxygen vacancies on core-shell formation in solid solutions of (Na,Bi)TiO3 and SrTiO3 N2 - Solid solutions of (Na,Bi)TiO3 (NBT) and SrTiO3 (ST) are materials of interest for high-strain or high-energy density capacitor applications. Often, they exhibit chemical heterogeneity and develop core-shell structures during regular solid-state synthesis with an NBT-rich core. In this case, the NBT forms first so that the strontium needs to diffuse into the material to reach chemical homogeneity. Depending on the presence of core-shell structures, the electrical properties can vary drastically. In this work, we rationalize the effect of variations in oxygen vacancy concentration by Fe-acceptor and Nb-donor doping. It can be shown that a diffusion couple of strontium and oxygen is responsible for chemical homogenization and that the oxygen vacancy content can control the formation of a core-shell structure. KW - Lead-free ceramics KW - Bismuth titanates KW - Core-shell structures KW - Diffusion/diffusivity KW - Ferroelectricity/ferroelectric materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525988 DO - https://doi.org/10.1111/jace.17845 SP - 1 EP - 10 PB - Wiley Periodicals LLC, John Wiley & Sons, Inc. AN - OPUS4-52598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hofmann-Böllinghaus, Anja A1 - Klippel, Andrea A1 - Gnutzmann, Tanja A1 - Kaudelka, Sven A1 - Rabe, Frederik T1 - Influence of modern plastic furniture on the fire development in fires in homes: large-scale fire tests in living rooms N2 - About 80% of all fire fatalities in Germany occur because of fires in homes. It has been known for some time that modern materials (synonym for materials consisting mostly of synthetic polymers) tend to burn differently from older materials (synonym for materials consisting mostly of fibrous cellulosic substances) and it has been acknowledged that the amount of combustible plastics in homes has increased significantly over the last decades. To investigate the influence of modern furniture and ventilation conditions of fires in homes, a series of four large-scale tests in two Living rooms (LRs) with adjacent rooms (ARs) was performed by BAM and the Frankfurt fire service. Two LRs, one with older furniture and one with modern furniture, were tested twice each. Each test started with the ignition of a paper cushion on an upholstered chair. The influence of modern materials on the fire development was investigated, as well as the influence of the ventilation on the fire development. In all settings, an upholstered chair was the first burning item. Results of the test series show that fires in rooms with modern furniture develop faster than fires in rooms with older furniture. This is true for temperature development in the rooms as well as for smoke production. KW - Room fire KW - Furniture KW - Modern KW - Gas analysis KW - Smoke PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527568 DO - https://doi.org/10.1002/fam.2934 VL - 45 IS - 1 SP - 155 EP - 166 PB - Wiley CY - London AN - OPUS4-52756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manes, M. A1 - Sauca, A. A1 - El Houssami, M. A1 - Andersson, P. A1 - McIntyre, C. A1 - Campbell, R. A1 - Rush, D. A1 - Hofmann-Böllinghaus, Anja A1 - Wagner, P. A1 - Leene, M. A1 - Oberhagemann, D. A1 - Jomaas, G. A1 - Grone, F. A1 - Guillaume, E. T1 - Closing Data Gaps and Paving the Way for Pan-European Fire Safety Efforts: Part II—Terminology of Fire Statistical Variables N2 - A well-defined terminology of fire-related variables is important for correct analyses and supporting knowledge-based decisions regarding the evaluation of building fires at the European level. After developing an overview of current practices for fire statistics in Part I, the terminology used and the data collected by the EU Member States and eight other countries regarding fire incidents, property damage and human losses were mapped to increase awareness of their practice and support a comprehensive assessment of several fire statistical datasets. A questionnaire was distributed to relevant authorities responsible for the collection, elaboration/analysis, and fire statistical data publications to define and select the essential variables for an appropriate fire assessment and fire incident description. Based on the results of the questionnaire able to identify the essential fire statistical variables and a detailed analysis of current definitions adopted in the fire statistics of the EU Member States and other countries, a common terminology is proposed to collect the necessary data in the EU Member States and obtain meaningful datasets based on standardised terms and definitions. The results will generate essential outputs to move towards harmonised fire statistics at the EU level and contribute to an appropriate analysis able to improve fire prevention and fire mitigation in building fires. KW - Fire statistics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575725 DO - https://doi.org/10.1007/s10694-023-01408-5 SN - 1572-8099 SP - 1 EP - 32 PB - Springer CY - Heidelberg AN - OPUS4-57572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jacobson, D. A1 - Darvishi Kamachali, Reza A1 - Thompson, G. B. T1 - Extending Density Phase-Field Simulations to Dynamic Regimes N2 - Density-based phase-field (DPF) methods have emerged as a technique for simulating grain boundary thermodynamics and kinetics. Compared to the classical phase-field, DPF gives a more physical description of the grain boundary structure and chemistry, bridging CALPHAD databases and atomistic simulations, with broad applications to grain boundary and segregation engineering. Notwithstanding their notable progress, further advancements are still warranted in DPF methods. Chief among these are the requirements to resolve its performance constraints associated with solving fourth-order partial differential equations (PDEs) and to enable the DPF methods for simulating moving grain boundaries. Presented in this work is a means by which the aforementioned problems are addressed by expressing the density field of a DPF simulation in terms of a traditional order parameter field. A generic DPF free energy functional is derived and used to carry out a series of equilibrium and dynamic simulations of grain boundaries in order to generate trends such as grain boundary width vs. gradient energy coefficient, grain boundary velocity vs. applied driving force, and spherical grain radius vs. time. These trends are compared with analytical solutions and the behavior of physical grain boundaries in order to ascertain the validity of the coupled DPF model. All tested quantities were found to agree with established theories of grain boundary behavior. In addition, the resulting simulations allow for DPF simulations to be carried out by existing phase-field solvers. KW - CALPHAD KW - Phase-field modelling KW - Phase-Field Simulations PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581365 DO - https://doi.org/10.3390/met13081497 VL - 13 SP - 1 EP - 16 AN - OPUS4-58136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezhov, Alexander A1 - Kulisch, D. A1 - Goncharov, A. A1 - Zhutovsky, S. T1 - A Comparative Study of Factors Influencing Hydration Stoppage of Hardened Cement Paste N2 - There is no consensus on which hydration stoppage method is optimal to preserve the microstructure and mineral composition of samples, especially considering the specific aspects of different testing methods, such as TGA, MIP, or XRD. This paper presents a quantitative comparison between the most popular hydration stoppage strategies and parameters such as the sample piece size, the soaking time in a solvent, and the type, as examined on cement paste hydrated for 7 days. It was found that the carbonation appears either for samples smaller than 2.36 mm and bigger than 4.75 mm or samples soaked in a solvent for longer than 1 h. Fast solvent replacement leads to ettringite diminution and total pore volume increase. Among others, solvent replacement with subsequent gentle heating under a vacuum was found to be the most efficient, whereas it was experimentally demonstrated that isopropyl alcohol stops hydration faster than ethanol and acetone. KW - Hydration stoppage KW - Solvent replacement KW - Soaking time KW - Sample piece size PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582430 DO - https://doi.org/10.3390/su15021080 VL - 15 IS - 2 SP - 1 EP - 21 PB - MDPI CY - Basel, Switzerland. AN - OPUS4-58243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Schönsee, Eric A1 - Jeyifous, Olubunmi Anthony A1 - Mezhov, Alexander A1 - Hüsken, Götz T1 - Introduction of a monitoring system for Bingham fluids in additive manufacturing with concrete N2 - Freeform additive manufacturing of concrete structures is a rising technology in civil engineering with several fascinating advantages. Nonetheless, to ensure reliability and structural integrity, standards and quality control are required in the future to bring this technology into the market. As the concrete is manufactured continuously, continuous quality control of the printing process is also required, i.e. comprehensive process monitoring. At BAM, a test rig will be installed, enabling the printing of concrete structures with a maximum size of 2 m x 1 m x 1 m (l x w x h). Here, process monitoring is the focus of the test rig. In this study, we show the results of the first pump tests, including the measurement of several parameters such as temperature and pressure along the supply system, i.e. from the concrete pump to the printer head. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Additive manufacturing of concrete KW - Process monitoring KW - Non-destructive testing KW - Bingham fluid PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556367 SP - 1 EP - 12 AN - OPUS4-55636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Baer, Wolfram A1 - Wagener, Rainer A1 - Kiyak, Yusuf T1 - Betriebsfestigkeit und Bruchverhalten von bainitischen Schmiedestählen N2 - Die neue Generation von bainitischen Schmiedestählen bietet auf der einen Seite ein erhebliches Festigkeitspotenzial, das es im Sinne des Leichtbaus auch für zyklisch belastete Sicherheitsbauteile zu heben gilt. Auf der anderen Seite geht mit dieser Festigkeitssteigerung im Vergleich zu Vergütungsstählen ein Verlust an Duktilität und Zähigkeit einher. Am Beispiel des Demonstratorbauteils Achsschenkel ging das Forschungsvorhaben der Frage nach, wie ein Freigabeprozess zu gestalten ist, damit das Festigkeitspotenzial der neuen Stähle zuverlässig ausgenutzt werden kann. Als Ergebnis wird eine Vorgehensweise dargestellt, die den Eigenschaften der neuen Generation von Schmiedestählen Rechnung trägt, um den sicheren Betrieb der Komponenten zu gewährleisten. KW - Bainitischer Schmiedestahl KW - Bruchmechanik KW - Sicherheit KW - Betriebsfestigkeit KW - Bauteilauslegung PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594296 SN - 2366-5106 SP - 50 EP - 54 PB - Industrieverband Massivumformung e. V CY - Hagen AN - OPUS4-59429 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poli, Marco A1 - Grätz, Rainer A1 - Schröder, Volkmar T1 - An experimental study on safety-relevant parameters of turbulent gas explosion venting at elevated initial pressure N2 - The effects of a gas explosion in enclosures like vessels can be limited e.g. by gas explosion venting systems. The major design step of this constructive explosion protection method is to determine the required vent area, which depends significantly on whether turbulent combustion exists. However, current standards like NFPA 68 or EN 14994 are applicable only to limited boundary conditions and as far as possible only to laminar flame propagation. Difficulties arise in the assessment or predictability of gas explosion hazard when turbulence occurs. In this research especially venting at elevated initial pressure has been shown to accelerated flame propagations and therefore, to a considerably higher reduced pressure. Therefore, it is essential to provide a broader data base of turbulent combustion and explosion behavior to verify the existing rules or to determine their safety-relevant parameters. For a better safety assessment or design of protective systems the turbulent combustion and accelerated gas explosion behaviour of quiescent methane and hydrogen in air were investigated at initial pressures up to 8 bar using vessels up to 100 litres. In particular a systematic study was performed to investigate the influence of turbulence on the overpressure development during accelerated gas explosion. Moreover, the present study consider the position of the spark igniters, the burning velocity and the maximum pressure rise for different concentration of fuel as well as the size of orifice and/or vent area. A choice of experimental tests showed under the investigated conditions that not only turbulence inducing obstacles but also over sized vent areas could lead to an increased pressure development and therefore to an inacceptable safety state. T2 - 20th International Congress of Chemical and Process Engineering CHISA 2012 CY - Prague, Czech Republic DA - 25.08.2012 KW - Gas explosion venting KW - Turbulent combustion KW - Obstacles PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-264288 DO - https://doi.org/10.1016/j.proeng.2012.07.398 SN - 1877-7058 VL - 42 SP - 90 EP - 99 PB - Elsevier CY - Amsterdam AN - OPUS4-26428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meira, Maria Fernanda Cavalcante A1 - Fernandes, Gabriela Leal Peres A1 - de Camargo, Andréa Simone Stucchi A1 - Ravaro, Leandro Piaggi A1 - Arai, Marylyn Setsuko A1 - Navarro, Maria Fidela de Lima A1 - Brighenti, Fernanda Lourenção A1 - Oliveira, Analú Barros de A1 - Danelon, Marcelle ED - Stucchi de Camargo, Andrea T1 - Modification of restorative glass ionomer cement with zinc oxide nanoparticles and calcium glycerophosphate microparticles: in vitro assessment of mechanical properties and antimicrobial activity N2 - Abstract The incorporation of bioactive agents into resin-modified glass ionomer cement (RMGIC) is a promising strategy to improve its mechanical strength and biofilm control, especially for patients with active dental caries. Objective This study aimed to evaluate the effects of incorporating ZnONPs and CaGP into RMGIC on its mechanical and microbiological properties. Design Six groups were tested: 1) RMGIC (without CaGP/ZnONPs); 2) RMGIC-1.0%ZnONPs; 3) RMGIC-2.0%ZnONPs; 4) RMGIC-3.0%CaGP; 5) RMGIC-3.0%CaGP-1.0%ZnONPs; and 6) RMGIC-3.0%CaGP-2.0%ZnONPs. The compressive strength (CS), diametral tensile strength (DTS), and surface hardness (SH) were evaluated after 24 hours and 7 days. Antimicrobial and antibiofilm activity were evaluated using agar diffusion and biofilm metabolic activity (XTT) assays. Results After 24 hours, all the groups showed similar DTS values (p0.05), except for RMGIC-3.0%CaGP-1.0%ZnONPs, which showed the highest DTS value (p<0.05). Comparing 24 hours and 7 days, the DTS values of RMGIC-3.0%CaGP-2.0%ZnONPs, RMGIC-3.0%CaGP, and RMGIC-3.0%CaGP-2.0%ZnONPs were similar (p=0.360). After 24 hours, the RMGIC group showed the CS highest value, followed by RMGIC-2.0%ZnONPs (p < 0.05). After 7 days, the RMGIC-3.0%CaGP-1.0%ZnONPs group exhibited the highest CS value, approximately 15% higher than RMGIC (p<0.05). The RMGIC-1.0%ZnONPs group exhibited significantly higher SH at 24 hours (p=0.621). At 7 days, the highest SH value was observed for the RMGIC-3.0%CaGP-1.0%ZnONPs group (p<0.05). Regarding antimicrobial and antibiofilm activity, including results from biofilm metabolism assays, the RMGIC-3.0%CaGP-1.0%ZnONPs group demonstrated the most effective antimicrobial and inhibitory effects (p<0.05). Conclusion This study demonstrated that adding ZnONPs and CaGP to RMGIC enhanced its mechanical and antimicrobial and antibiofilm properties, suggesting enhanced mechanical performance and improved protection against cariogenic biofilms—critical factors for successful restorative treatments. Therefore, the addition of ZnONPs and CaGP is a promising strategy to develop advanced restorative materials that improve clinical outcomes, especially for patients with active dental caries. KW - Resin-modified glass ionomer cement KW - Phosphate KW - Zinc oxide nanoparticles KW - Biofilm KW - Mechanical properties PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652799 DO - https://doi.org/10.1590/1678-7757-2025-0356 SN - 1678-7765 VL - 33 SP - 1 EP - 14 PB - FapUNIFESP (SciELO) AN - OPUS4-65279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arai, Marylyn S. A1 - Brambilla, Gabriel V. A1 - Corrêa, Bruna Carolina A1 - Merízio, Leonnam G. A1 - Inada, Natalia M. A1 - de Camargo, Andrea S. S. T1 - A Dual-Mode “Turn-On” Ratiometric Luminescent Sensor Based on Upconverting Nanoparticles for Detection and Differentiation of Gram-Positive and Gram-Negative Bacteria N2 - Infectious bacterial diseases, intensified by antibiotic resistance, cause millions of deaths annually and pose risks beyond human health, including water and food contamination. Current diagnostics are often slow, require complex equipment, and lack specificity, highlighting the need for rapid and reliable detection methods. To address this, we developed a luminescent sensor based on NaYF4 upconverting nanoparticles (UCNPs) doped with Er3+ or Tm3+, coated with COOH-PEG4-COOH, and functionalized with vancomycin (Van) or polymyxin-B (Poly) to selectively target Gram-positive and Gram-negative bacteria, respectively. Gold nanoparticles (AuNPs) served as quenchers, enabling a ratiometric “turn-on” mechanism: upon bacterial binding, the UCNP emission, initially quenched by AuNPs, was partially restored. This allowed Differentiation through changes in the green/red (G/R) ratio for Er-UCNP@PEG4-Van and the blue/red (B/R) ratio for Tm-UCNP@PEG4-Poly. The sensor distinguished between Gram-positive and Gram-negative bacteria over a wide concentration range (0.05 to 5 × 105 CFU/mL) and showed high correlation with actual bacterial counts (r = 0.99 for S. aureus, r = 0.91 for E. coli). This platform is a potential fast, selective, and reliable tool for bacterial detection in clinical and environmental settings. KW - Lminescent sensor KW - Upconverting nanoparticles KW - Gram-positive and Gram-negative bacteria KW - Ratiometric luminescent sensors PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652785 DO - https://doi.org/10.1021/acsomega.5c07006 SN - 2470-1343 VL - 10 IS - 39 SP - 46040 EP - 46050 PB - American Chemical Society (ACS) AN - OPUS4-65278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Afantitis, A. A1 - Melagraki, G. A1 - Isigonis, P. A1 - Tsoumanis, A. A1 - Varsou, D. D. A1 - Valsami-Jones, E. A1 - Papadiamantis, A. A1 - Ellis, L.-J. A. A1 - Sarimveis, H. A1 - Doganis, P. A1 - Karatzas, P. A1 - Tsiros, P. A1 - Liampa, I. A1 - Lobaskin, V. A1 - Greco, D. A1 - Serra, A. A1 - Kinaret, P. A. S. A1 - Saarimäki, L. A. A1 - Grafström, R. A1 - Kohonen, P. A1 - Nymark, P. A1 - Willighagen, E. A1 - Puzyn, T. A1 - Rybinska-Fryca, A. A1 - Lyubartsev, A. A1 - Jensen, K. A. A1 - Brandenburg, J. G. A1 - Lofts, S. A1 - Svendsen, C. A1 - Harrison, S. A1 - Maier, D. A1 - Tamm, K. A1 - Jänes, J. A1 - Sikk, L. A1 - Dusinska, M. A1 - Longhin, E. A1 - Rundén-Pran, E. A1 - Mariussen, E. A1 - El Yamani, N. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Tropsha, A. A1 - Cohen, Y. A1 - Lesczynski, J. A1 - Hendren, C. O. A1 - Wiesner, M. A1 - Winkler, D. A1 - Suzuki, N. A1 - Yoon, T. H. A1 - Choi, J.-S. A1 - Sanabria, N. A1 - Gulumian, M. A1 - Lynch, I. T1 - NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment N2 - Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational ‘safe-by-design’ approaches to facilitate NM commercialization. KW - Nanoinformatics KW - Hazard assessment KW - (Quantitative) Structure-Active Relationships KW - Safe-by-design KW - Predictive modelling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505952 DO - https://doi.org/10.1016/j.csbj.2020.02.023 VL - 18 SP - 583 EP - 602 PB - Elsevier B.V. AN - OPUS4-50595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agostini, G. A1 - Radnik, Jörg T1 - Spectroscopy in Catalysis N2 - Knowledge-based catalyst development is always an interaction between preparation, analysis and catalytic testing. Only if these three factors fit together can success be expected. For the analytic side of this triangle, spectroscopic methods play a crucial role. Whereas with diffraction, scattering and microscopy, decisive insights into the structure and morphology of the catalysts can be obtained, spectroscopy produces new knowledge about the chemical nature of the catalyst, e.g., its bonding and valence states. KW - Spectroscopy KW - Catalysis KW - Operando KW - In situ PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506507 DO - https://doi.org/10.3390/catal10040408 VL - 10 IS - 4 SP - 408 PB - MDPI CY - Basel AN - OPUS4-50650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohammadifar, E. A1 - Ahmadi, V. A1 - Gholami, M.F. A1 - Oehrl, A. A1 - Kolyvushko, O. A1 - Nie, C. A1 - Donskyi, Ievgen A1 - Herziger, S. A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Böttcher, C. A1 - Rabe, J.P. A1 - Osterrieder, K. A1 - Azab, W. A1 - Haag, R. A1 - Adeli, M. T1 - Graphene-Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions N2 - 2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes Simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus Inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes Simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus Inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts. KW - 2D Materials KW - Graphene template KW - Multivalency KW - Polyglycerol KW - Virus inhibition PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527726 DO - https://doi.org/10.1002/adfm.202009003 VL - 31 IS - 32 SP - 2009003 PB - Wiley VCH AN - OPUS4-52772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jungnickel, R. A1 - Mirabella, Francesca A1 - Stockmann, Jörg Manfred A1 - Radnik, Jörg A1 - Balasubramanian, K. T1 - Graphene‑on‑gold surface plasmon resonance sensors resilient to high‑temperature annealing N2 - Gold films coated with a graphene sheet are being widely used as sensors for the detection of label-free binding interactions using surface plasmon resonance (SPR). During the preparation of such sensors, it is often essential to subject the sensor chips to a high-temperature treatment in order to ensure a clean graphene surface. However, sensor chips used currently, which often use chromium as an adhesion promoter, cannot be subjected to temperatures above 250 °C, because under such conditions, chromium is found to reorganize and diffuse to the surface, where it is easily oxidized, impairing the quality of SPR spectra. Here we present an optimized preparation strategy involving a three-cycle tempering coupled with chromium (oxide) etching, which allows the graphene-coated SPR chips to be annealed up to 500 °C with little deterioration of the surface morphology. In addition, the treatment delivers a surface that shows a clear enhancement in spectral response together with a good refractive index sensitivity. We demonstrate the applicability of our sensors by studying the kinetics of avidin–biotin binding at different pH repeatedly on the same chip. The possibility to anneal can be exploited to recover the original surface after sensing trials, which allowed us to reuse the sensor for at least six cycles of biomolecule adsorption. KW - Surface plasmon resonance KW - Graphene KW - Sensing KW - Surface regeneration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564585 DO - https://doi.org/10.1007/s00216-022-04450-4 SN - 1618-2642 SP - 1 EP - 7 PB - Springer AN - OPUS4-56458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nickl, Philip A1 - Hilal, T. A1 - Olal, D. A1 - Donskyi, Ievgen A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Haag, R. T1 - A New Support Film for Cryo Electron Microscopy Protein Structure Analysis Based on Covalently Functionalized Graphene N2 - Protein adsorption at the air–water interface is a serious problem in cryogenic electron microscopy (cryoEM) as it restricts particle orientations in the vitrified ice-film and promotes protein denaturation. To address this issue, the preparation of a graphene-based modified support film for coverage of conventional holey carbon transmission electron microscopy (TEM) grids is presented. The chemical modification of graphene sheets enables the universal covalent anchoring of unmodified proteins via inherent surface-exposed lysine or cysteine residues in a one-step reaction. Langmuir–Blodgett (LB) trough approach is applied for deposition of functionalized graphene sheets onto commercially available holey carbon TEM grids. The application of the modified TEM grids in single particle analysis (SPA) shows high protein binding to the surface of the graphene-based support film. Suitability for high resolution structure determination is confirmed by SPA of apoferritin. Prevention of protein denaturation at the air–water interface and improvement of particle orientations is shown using human 20S proteasome, demonstrating the potential of the support film for structural biology. KW - Functionalized graphene KW - Transmission electron microsocpy KW - Protein structure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566443 DO - https://doi.org/10.1002/smll.202205932 SN - 1613-6810 SP - 2205932 PB - Wiley VCH AN - OPUS4-56644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Castells-Gil, Javier A1 - Zhu, Jinjie A1 - Itskou, Ioanna A1 - Wolpert, Emma H. A1 - Hunter, Robert D. A1 - Tidey, Jeremiah P. A1 - Pedersen, Angus A1 - Solvay, Elisa A1 - Tyrrell, Helen A1 - Petit, Camille A1 - Barrio, Jesús T1 - Impact of N-heterocyclic amine modulators on the structure and thermal conversion of a zeolitic imidazole framework N2 - The zeolitic imidazole framework-8 (ZIF-8) is a crystalline porous material that has been widely employed as template to fabricate porous nitrogen-doped carbons with high microporosity via thermal treatment at high temperatures. The properties of the carbon scaffold are influenced by the pore structure and chemical composition of the parent ZIF. However, the narrow pore size distribution and microporous nature from ZIF-8 often results in low mesopore volume, which is crucial for applications such as energy storage and conversion. Here we show that insertion of N-heterocyclic amines can disrupt the structure of ZIF-8 and dramatically impact the chemical composition and pore structure of the nitrogen-doped carbon frameworks obtained after high-temperature pyrolysis. Melamine and 2,4,6-triaminopyrimidine were chosen to modify the ZIF-8 structure owing to their capability to both coordinate metal ions and establish supramolecular interactions. Employing a wide variety of physical characterization techniques we observed that melamine results in the formation of a mixed-phase material comprising ZIF-8, Zn(Ac)6(Mel)2 and crystallized melamine, while 2,4,6-triaminopyrimidine induces the formation of defects, altering the pore structure. Furthermore, the absence of heterocyclic amine in the ZIF-8 synthesis leads to a new crystalline phase, unreported to date. The thermal conversion of the modified ZIFs at 1000 °C leads to nitrogen-doped carbons bearing Zn moieties with increased surface area, mesopore volume and varying degree of defects compared to ZIF-8 derived carbon. This work therefore highlights both the versatility of heterocyclic amines to modify the structure of framework materials as well as their role in tuning pore structure in nitrogen-doped carbons, paving the way to targeted design of high-performance electrodes for energy storage and conversion. KW - Zeolitic imidazole framework KW - Heterocyclic amine KW - Triaminopyrimidine PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639177 DO - https://doi.org/10.1039/D5TA04831A SN - 2050-7488 SP - 1 EP - 13 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braga, Daniel S. A1 - Pedersen, Angus A1 - Riyaz, Mohd A1 - Barrio, Jesús A1 - Bagger, Alexander A1 - Neckel, Itamar T. A1 - Mariano, Thiago M. A1 - Winkler, Manuel E. G. A1 - Stephens, Ifan E. L. A1 - Titirici, Maria‐Magdalena A1 - Nagao, Raphael T1 - In situ structural evolution and activity descriptor of atomically dispersed catalysts during nitrate electroreduction N2 - Single‐Atom Catalysts (SAC) have emerged as a promising class of materials for various catalytic applications, including the electrochemical nitrate reduction reaction (eNO3RR) and consequently ammonia production. While the efficiency and selectivity of these materials have been extensively highlighted for the eNO3RR, the in situ evolution to their structure and composition during electrocatalysis is largely unexplored and lacks catalyst design principles. To solve this, we investigated a series of high utilization metal‐nitrogen‐carbon (MNC) SACs (M = Cr, Fe, Co, Ni, and Cu) for eNO3RR. Except for CuNC, which selectively produced nitrite, all catalysts exhibited Faradaic efficiencies (FE) for ammonia exceeding 50%. NiNC demonstrated the highest performance (FE of 78.0 ± 2.9% at −0.4 V versus reversible hydrogen electrode (RHE) at pH 13 and maximum ammonia production rate of 615.7 ± 176.5 µmol·h−1·, corresponding to an energy efficiency of 15.1 ± 1.4% at −0.6 VRHE), followed by CoNC. In situ Synchrotron X‐ray fluorescence (SXRF) mapping at various cathodic potentials (from open circuit potential to 0.0 VRHE and then −0.6 VRHE at 100 mV steps) revealed significant mobility of Ni within the carbon matrix, leading to the formation of metallic clusters from 0.0 VRHE. Similar in situ metal clustering is observed for CoNC. Structure‐activity plots are generated from both MNC literature and results obtained here, finding a clear trend between OH binding energy and turnover frequency, with the high activity of NiNC and CoNC in this work explained by their stronger OH binding in the metallic structure compared to their SAC coordination. This work therefore, reveals the structure‐activity‐stability of MNCs for eNO3RR and provides a simple descriptor for identifying highly active eNO3RR catalysts and their in situ structural evolution. KW - Single atom KW - Nitrate reduction KW - Structure-activity-selectivity KW - In situ PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-640353 DO - https://doi.org/10.1002/advs.202510282 SN - 2198-3844 VL - 12 IS - 39 SP - 1 EP - 14 PB - Wiley-VCH CY - Weinheim AN - OPUS4-64035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rua-Ibarz, Ana A1 - Nakadi, Flávio V. A1 - Bolea-Fernandez, Eduardo A1 - Bazo, Antonio A1 - Battistella, Beatrice A1 - Matiushkina, Anna A1 - Resch-Genger, Ute A1 - Abad Andrade, Carlos Enrique A1 - Resano, Martín T1 - Discrete entity analysis via microwave-induced nitrogen plasma–mass spectrometry in single-event mode N2 - In this work, single-event microwave-induced nitrogen plasma–mass spectrometry (single-event MINP-MS) was evaluated for the first time for the analysis of discrete entities such as nanoparticles, biological cells, and microplastics. Nitrogen (N2) effectively overcomes Ar-based polyatomic interferences, enabling (ultra)trace element determination of Fe and Se using their most abundant isotopes, 56Fe (91.66%) and 80Se (49.82%). Iron oxide nanoparticles (Fe2O3 NPs) ranging from 20 to 70 nm were accurately characterized, with excellent agreement with established sizing techniques, such as transmission electron microscopy (TEM) and dynamic light scattering (DLS). A limit of detection (LoD) of 8.6 ag for Fe─equivalent to an LoDsize of 19 nm for Fe2O3─was achieved, which is significantly lower than recent values reported for high-end quadrupole-based ICP-MS. Selenium nanoparticles (SeNPs) of 150 and 250 nm were also accurately characterized, without the N2-based plasma experiencing issues handling relatively large metallic NPs (linearity, R2 = 0.9994). Se-enriched yeast cells (SELM-1 certified reference material) were successfully analyzed via single-cell MINP-MS using external calibration based on SeNPs and a transport efficiency-independent approach. In addition, 2–3 μm polystyrene (PS) and polytetrafluoroethylene (PTFE) were accurately sized by monitoring 12C+, confirming the method’s suitability for handling micrometer-sized polymeric materials (microplastics). The average duration of individual events (680 ± 160 μs) suggests that the digestion of individual entities in N2-based plasmas is comparable to that in Ar-based plasmas. These results open new avenues for this instrumentation as an alternative to ICP ionization sources, also in the context of discrete entity analysis. KW - Microwave-Induced Nitrogen Plasma KW - Discrete entity analysis KW - Particle/droplet event counting KW - Comparison to SP-ICP-MS methodologies KW - Nitrogen plasma vs. argon ICP trade-offs KW - Trace elemental quantification at the single-entity level KW - Time-resolved mass spectrometry for discrete entities PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643825 DO - https://doi.org/10.1021/acs.analchem.5c04341 SN - 0003-2700 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-64382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Oelze, Marcus A1 - Leonhardt, Robert A1 - Schmidt, Anita A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - Exploring Age-Induced Lithium Isotope Fractionation in Lithium-Ion Batteries using Microwave-Induced Cold Nitrogen Plasma Mass Spectrometry N2 - This study explores Microwave-Inductively Coupled Atmospheric-pressure Plasma Mass Spectrometry (MICAP-MS) as a cost-effective alternative to Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) for analyzing lithium isotopic composition in lithium-ion batteries (LIBs). We investigate the performance of MICAP-MS in measuring Li isotope ratios in new and aged commercial lithium cobalt oxide (LCO) batteries. Our results show that MICAP-MS, operating under cold plasma conditions at 800 W with an 8 mm torch position, achieves results metrologically compatible with MC-ICP-MS, with a precision ranging from 0.6‰ to 3.4‰ for δ7Li values. MICAP-MS benefits from a dielectric resonator for uniform plasma, better ion velocity control, and higher energy efficiency. Optimal settings were identified with dwell times of 10 ms for 6Li and 1 ms for 7Li. The study of LIBs revealed that 6Li migrates towards the anode over multiple charge–discharge cycles, causing 7Li to accumulate in the cathode, a fractionation effect that becomes more pronounced with prolonged cycling. MICAP-MS provides a cost-effective, precise alternative to MC-ICP-MS, with lower operational costs and enhanced portability, advancing the study of isotopic fractionation and aging in lithium-ion batteries. KW - MICAP-MS KW - Lithium KW - Battery aging KW - Lithium isotopes KW - Nitrogen plasma KW - Isotope fractionation KW - lithium cobalt oxide KW - LCO PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643777 DO - https://doi.org/10.1039/d4ja00324a SN - 0267-9477 SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Jegielka, Dennis A1 - Aloysius, Allen A1 - Recknagel, Sebastian T1 - SI-traceable total analysis of nitrate and nitrite by isotope dilution optical spectroscopy and its application to Berlin surface waters N2 - Accurate nitrate and nitrite data support water-quality regulation, yet routine methods rely on external calibration and rarely achieve SI traceability. We report a calibration-free determination of nitrate and nitrite by combining isotope dilution with high-resolution continuum-source graphite furnace molecular absorption spectrometry (ID-HR-CS-GF-MAS). A 15N-enriched nitrate spike (its concentration verified by reverse isotope dilution against the standard reference material NIST 3185) provides the SI link, and it is gravimetrically added to samples; nitrate and residual nitrite are converted in situ to nitric oxide (NO), whose 215 nm band is recorded at a pixel resolution of λ/Δλ ≈ 140 000. The 0.2127 nm shift between 14NO and 15NO electronic spectra is resolved, and a three-latent-variable partial least squares regression model yields the 15N/14N ratio with 0.3% precision. Instrumental LoD values of 4.8 ng (14N) and 3.2 ng (15N) translate to a method LoD of 4.8 ng of nitrogen (equivalent to 1.05 mg L−1 NO3− for a 20 μL aliquot). The furnace program allows for successive drying/pyrolysis loops, so additional 20 μL aliquots can be layered onto the graphite platform. Alternatively, a 10 mL anion-exchange solid-phase extraction step concentrates nitrate and nitrite fivefold, allowing for the analysis of even lower sample concentrations. Results for four certified reference materials (2.9 to 1000 mg L−1 NO3−) agreed with certified values, giving relative expanded uncertainties of 2 to 4%. Analysis of twenty Berlin surface-water samples revealed concentrations ranging from 0.10 to 7.3 mg L−1 NO3−, indicating that the Panke River and Teltow Canal are the primary sources of nitrogen. ID-HR-CS-GF-MAS thus delivers ID-MS-level accuracy in a few minutes per run with bench-top optics, and, with optional on-platform or SPE pre-concentration, extends SI-traceable nitrate/nitrite monitoring into the low-ng regime. KW - Isotope dilution KW - Nitrate and nitrite determination KW - SI-traceable quantification KW - Calibration-free analysis KW - Water quality KW - Berlin surface waters KW - NO molecular absorption bands PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643785 DO - https://doi.org/10.1039/D5JA00252D SN - 0267-9477 VL - 40 IS - 10 SP - 2692 EP - 2701 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -