TY - JOUR A1 - Murugan, Jegatheesan A1 - Darvishi Kamachali, Reza T1 - High‑throughput investigation of grain boundary segregation landscape in the Fe–Ni–Cr system N2 - Understanding phase stability in multicomponent alloy systems, particularly at internal interfaces, remains a major challenge in materials science. Grain boundary (co-)segregation is a critical factor influencing interfacial stability, often leading to microstructural degradation and safety concerns. In this study, we investigate segregation behavior in the face-centered cubic (FCC) Fe–Ni–Cr alloy system, a foundational system for many steels, superalloys, and high-entropy alloys. CALPHAD-integrated density-based phase-field model is extended to compute the segregation of Fe, Ni, and Cr at grain boundaries as a function of the bulk composition, with the relative GB density serving as a key parameter representing grain boundary character. A high-throughput computational screening is performed across the stable compositional space at 723 K, 1023 K, and 1323 K. The results reveal a rich and temperature-sensitive segregation landscape, with element-specific enrichment and depletion patterns that vary with alloy composition. Notably, opposite segregation trends between Ni and Cr, and frequent co-segregation of Fe and Ni, are observed at lower temperatures. The developed framework captures the coupled effects of temperature, chemical interactions, grain boundary structure, and enthalpy-entropy compensation on segregation and GB phase stability. The origin and implications of these phenomena are discussed in terms of the underlying thermodynamic driving forces. KW - Segregation Engineering KW - Grain boundary segregation KW - Thermodynamics KW - CALPHAD KW - Fe--Ni--Cr alloys PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-646404 DO - https://doi.org/10.1007/s10853-025-11717-5 SN - 1573-4803 SP - 1 EP - 21 PB - Springer Science + Business Media CY - Dordrecht [u.a.] AN - OPUS4-64640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feldmann, Titus A1 - Fedelich, Bernard A1 - Epishin, A. T1 - Simulation of Hot Isostatic Pressing in a Single-Crystal Ni Base Superalloy with the Theory of Continuously Distributed Dislocations Combined with Vacancy Diffusion N2 - Single-crystal components made of nickel base superalloys contain pores after casting and homogenization heat treatment. Hot isostatic pressing (HIP), which is carried above the γ' -solvus temperature of the alloy, is industrially applied to reduce porosity. A modeling of HIP based on continuously distributed dislocations is developed in a 2D setting. Glide and climb of straight-edge dislocations, as well as vacancy diffusion, are the deformation mechanisms taken into account. Thereby, dislocation glide is controlled by dragging a cloud of large atoms, and climb is controlled by vacancy diffusion. Relying on previous investigations of the creep behavior at HIP temperatures, it is assumed that new dislocations are nucleated at low-angle boundaries (LAB) and move through subgrains until they either reach the opposite LABs or react with other dislocations and annihilate. Vacancies are created at the pore surface and diffuse through the alloy until they are either consumed by climbing dislocations or disappear at the LABs. The field equations are solved by finite elements. It is shown that pore shrinking is mostly controlled by vacancy diffusion as the shear stresses at the LABs are too low to nucleate a sufficient amount of dislocations. KW - Nickel-base superalloys KW - HIP KW - Dislocation KW - Creep KW - Model PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542309 DO - https://doi.org/10.1002/adem.202101341 VL - 2022 PB - Wiley AN - OPUS4-54230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Gröber, Andre A1 - Böllinghaus, Thomas A1 - Kranzmann, Axel T1 - Corrosion fatigue of 1.4542 exposed to a laboratory saline aquifer water CCS-environment N2 - X5CrNiCuNb16-4 has been proven to be sufficient resistant in corrosive environments, but shows rather unusual corrosion behaviour in CCS environment. Therefore a series of 30 specimens was tested at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ∼ 30 Hz). Due to the rather heterogeneous fine machined surfaces (Rz=4) the specimens are comparable with prefabricated parts. X5CrNiCuNb16-4 reached the maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa and lies 60% below the stress amplitude measured in air. The scatter range TN = 1:34 is disproportionately large. Although the fracture surface exhibited the typical striations and corroded surface areas no significant differences were found. The hardness was found to be homogeneous in all specimens tested at 335 HV10. Non-metallic inclusions were found within the microstructure, but no correlation could be found between the inclusions and early rupture. Still specimens that showed inclusions at the fracture surface and its cross section endured lower number of cycles. Additionally Aluminium was analysed in specimens with low number of cycles and may be cause for early rupture during corrosion fatigue tests. These findings reveal a very high sensitivity on a homogeneous microstructure upon the corrosion and corrosion fatigue behaviour of X5CrNiCuNb16-4 and needs to be taken into account when regarding this steel as pipe steel during injection of CO2 into saline aquifers. T2 - 13th International Conference on Greenhouse Gas Control Technologies CY - Lausanne, Switzerland DA - 14.11.2016 KW - Steel KW - Corrosion fatigue KW - Electrochemistry KW - Reliability KW - CCS KW - CO2-storage PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418525 DO - https://doi.org/10.1016/j.egypro.2017.03.1678 SN - 1876-6102 VL - 114 SP - 5219 EP - 5228 AN - OPUS4-41852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epishin, A.I. A1 - Link, T. A1 - Fedelich, Bernard A1 - Svetlov, I.L. A1 - Golubovskiy, E.R. T1 - Hot isostatic pressing of single-crystal nickel-base superalloys: mechanism of pore closure and effect on mechanical properties N2 - Pore annihilation was investigated in the single-crystal nickel-base superalloy CMSX-4. HIP tests at 1288 °C/103 MPa were interrupted at different times, then the specimens were investigated by TEM, metallography and density measurements. The kinetics of pore annihilation was determined. The pore closure mechanism was identified as plastic deformation on the octahedral slip systems. A model describing the kinetics of pore closure has been developed on the base of crystal plasticity and large strain theory. Mechanical tests with the superalloy CMSX-4 and the Ru-containing superalloy VGM4 showed, that HIP significantly increases the fatigue life at low temperatures but has no effect on creep strength. T2 - Eurosuperalloys 2014 - 2nd European symposium on superalloys and their applications CY - Giens, France DA - 12.05.2014 PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-316410 DO - https://doi.org/10.1051/matecconf/20141408003 N1 - Serientitel: MATEC Web of conferences – Series title: MATEC Web of conferences VL - 14 SP - 08003-1 EP - 08003-6 PB - EDP Sciences AN - OPUS4-31641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Finn, Monika A1 - Künecke, Georgia A1 - Rehmer, Birgit A1 - Nolze, Gert A1 - Leistner, C. A1 - Petrushin, N. A1 - Svetlov, I. T1 - Investigation of Elastic Properties of the Single-Crystal Nickel-Base Superalloy CMSX-4 in the Temperature Interval between Room Temperature and 1300 °C N2 - The elastic properties of the single-crystal nickel-base superalloy CMSX-4 used as a blade material in gas turbines were investigated by the sonic resonance method in the temperature interval between room temperature and 1300 °C. Elastic constants at such high temperatures are needed to model the mechanical behavior of blade material during manufacturing (hot isostatic pressing) as well as during technical accidents which may happen in service (overheating). High reliability of the results was achieved using specimens of different crystallographic orientations, exciting various vibration modes as well as precise measurement of the material density and thermal Expansion required for modeling the resonance frequencies by finite element method. Combining the results measured in this work and literature data the elastic constants of the gamma and gamma' phases were predicted. This prediction was supported by measurement of the temperature dependence of the gamma'fraction. All data obtained in this work are given in numerical or analytical forms and can be easily used for different scientific and engineering calculations. KW - Nickel-base superalloys KW - Single-crystals KW - Characterization KW - Elastic constants PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520972 DO - https://doi.org/10.3390/cryst11020152 VL - 11 IS - 2 SP - 152 PB - MDPI AN - OPUS4-52097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza A1 - da Silva, A. A1 - McEniry, E. A1 - Gault, B. A1 - Neugebauer, J. A1 - Raabe, D. T1 - Segregation-assisted spinodal and transient spinodal phase separation at grain boundaries N2 - Segregation to grain boundaries affects their cohesion, corrosion, and embrittlement and plays a critical role in heterogeneous nucleation. In order to quantitatively study segregation and low-dimensional phase separation at grain boundaries, here, we apply a density-based phase-field model. The current model describes the grain-boundary thermodynamic properties based on available bulk thermodynamic data, while the grain-boundary-density profile is obtained using atomistic simulations. To benchmark the performance of the model, Mn grain-boundary segregation in the Fe–Mn system is studied. 3D simulation results are compared against atom probe tomography measurements conducted for three alloy compositions. We show that a continuous increase in the alloy composition results in a discontinuous jump in the segregation isotherm. The jump corresponds to a spinodal Phase separation at grain boundary. For alloy compositions above the jump, we reveal an interfacial transient spinodal phase separation. The transient spinodal phenomenon opens opportunities for knowledge-based microstructure design through the chemical manipulation of grain boundaries. The proposed density-based model provides a powerful tool to study thermodynamics and kinetics of segregation and phase changes at grain boundaries. KW - Grain Boundary Spinodal KW - Densty-based Thermodynamics KW - Microstrucrue Design PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519497 DO - https://doi.org/10.1038/s41524-020-00456-7 VL - 6 IS - 1 SP - 191 PB - Nature AN - OPUS4-51949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Lei A1 - Darvishi Kamachali, Reza T1 - Density-based grain boundary phase diagrams: Application to Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems N2 - Phase diagrams are the roadmaps for designing bulk phases. Similar to bulk, grain boundaries can possess various phases, but their phase diagrams remain largely unknown. Using a recently introduced density-based model, here we devise a strategy for computing multi-component grain boundary phase diagrams based on available bulk (CALPHAD) thermodynamic data. Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems, as important ternary bases for several trending steels and high-entropy alloys, are studied. We found that despite its solute segregation enrichment, a grain boundary can have lower solubility limit than its corresponding bulk, promoting an interfacial chemical decomposition upon solute segregation. This is revealed here for the Fe-Mn-base alloy systems. The origins of this counter-intuitive feature are traced back to two effects, i.e., the magnetic ordering effect and the low cohesive energy of Mn solute element. Different aspects of interfacial phase stability and GB co-segregation in ternary alloys are investigated as well. We show that the concentration gradient energy contributions reduce segregation level but increase grain boundary solubility limit, stabilizing the GB against a chemical decomposition. Density-based grain boundary phase diagrams offer guidelines for systematic investigation of interfacial phase changes with applications to microstructure defects engineering. KW - Densty-based Thermodynamics KW - Microstrucrue Design KW - Grain Boundary Phase Diagram PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522207 DO - https://doi.org/10.1016/j.actamat.2021.116668 SN - 1359-6454 VL - 207 SP - 116668 PB - Elsevier Ltd. AN - OPUS4-52220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steiner, S. A1 - Heldt, J. A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Frömeling, T. T1 - Influence of oxygen vacancies on core-shell formation in solid solutions of (Na,Bi)TiO3 and SrTiO3 N2 - Solid solutions of (Na,Bi)TiO3 (NBT) and SrTiO3 (ST) are materials of interest for high-strain or high-energy density capacitor applications. Often, they exhibit chemical heterogeneity and develop core-shell structures during regular solid-state synthesis with an NBT-rich core. In this case, the NBT forms first so that the strontium needs to diffuse into the material to reach chemical homogeneity. Depending on the presence of core-shell structures, the electrical properties can vary drastically. In this work, we rationalize the effect of variations in oxygen vacancy concentration by Fe-acceptor and Nb-donor doping. It can be shown that a diffusion couple of strontium and oxygen is responsible for chemical homogenization and that the oxygen vacancy content can control the formation of a core-shell structure. KW - Lead-free ceramics KW - Bismuth titanates KW - Core-shell structures KW - Diffusion/diffusivity KW - Ferroelectricity/ferroelectric materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525988 DO - https://doi.org/10.1111/jace.17845 SP - 1 EP - 10 PB - Wiley Periodicals LLC, John Wiley & Sons, Inc. AN - OPUS4-52598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hofmann-Böllinghaus, Anja A1 - Klippel, Andrea A1 - Gnutzmann, Tanja A1 - Kaudelka, Sven A1 - Rabe, Frederik T1 - Influence of modern plastic furniture on the fire development in fires in homes: large-scale fire tests in living rooms N2 - About 80% of all fire fatalities in Germany occur because of fires in homes. It has been known for some time that modern materials (synonym for materials consisting mostly of synthetic polymers) tend to burn differently from older materials (synonym for materials consisting mostly of fibrous cellulosic substances) and it has been acknowledged that the amount of combustible plastics in homes has increased significantly over the last decades. To investigate the influence of modern furniture and ventilation conditions of fires in homes, a series of four large-scale tests in two Living rooms (LRs) with adjacent rooms (ARs) was performed by BAM and the Frankfurt fire service. Two LRs, one with older furniture and one with modern furniture, were tested twice each. Each test started with the ignition of a paper cushion on an upholstered chair. The influence of modern materials on the fire development was investigated, as well as the influence of the ventilation on the fire development. In all settings, an upholstered chair was the first burning item. Results of the test series show that fires in rooms with modern furniture develop faster than fires in rooms with older furniture. This is true for temperature development in the rooms as well as for smoke production. KW - Room fire KW - Furniture KW - Modern KW - Gas analysis KW - Smoke PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527568 DO - https://doi.org/10.1002/fam.2934 VL - 45 IS - 1 SP - 155 EP - 166 PB - Wiley CY - London AN - OPUS4-52756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manes, M. A1 - Sauca, A. A1 - El Houssami, M. A1 - Andersson, P. A1 - McIntyre, C. A1 - Campbell, R. A1 - Rush, D. A1 - Hofmann-Böllinghaus, Anja A1 - Wagner, P. A1 - Leene, M. A1 - Oberhagemann, D. A1 - Jomaas, G. A1 - Grone, F. A1 - Guillaume, E. T1 - Closing Data Gaps and Paving the Way for Pan-European Fire Safety Efforts: Part II—Terminology of Fire Statistical Variables N2 - A well-defined terminology of fire-related variables is important for correct analyses and supporting knowledge-based decisions regarding the evaluation of building fires at the European level. After developing an overview of current practices for fire statistics in Part I, the terminology used and the data collected by the EU Member States and eight other countries regarding fire incidents, property damage and human losses were mapped to increase awareness of their practice and support a comprehensive assessment of several fire statistical datasets. A questionnaire was distributed to relevant authorities responsible for the collection, elaboration/analysis, and fire statistical data publications to define and select the essential variables for an appropriate fire assessment and fire incident description. Based on the results of the questionnaire able to identify the essential fire statistical variables and a detailed analysis of current definitions adopted in the fire statistics of the EU Member States and other countries, a common terminology is proposed to collect the necessary data in the EU Member States and obtain meaningful datasets based on standardised terms and definitions. The results will generate essential outputs to move towards harmonised fire statistics at the EU level and contribute to an appropriate analysis able to improve fire prevention and fire mitigation in building fires. KW - Fire statistics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575725 DO - https://doi.org/10.1007/s10694-023-01408-5 SN - 1572-8099 SP - 1 EP - 32 PB - Springer CY - Heidelberg AN - OPUS4-57572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jacobson, D. A1 - Darvishi Kamachali, Reza A1 - Thompson, G. B. T1 - Extending Density Phase-Field Simulations to Dynamic Regimes N2 - Density-based phase-field (DPF) methods have emerged as a technique for simulating grain boundary thermodynamics and kinetics. Compared to the classical phase-field, DPF gives a more physical description of the grain boundary structure and chemistry, bridging CALPHAD databases and atomistic simulations, with broad applications to grain boundary and segregation engineering. Notwithstanding their notable progress, further advancements are still warranted in DPF methods. Chief among these are the requirements to resolve its performance constraints associated with solving fourth-order partial differential equations (PDEs) and to enable the DPF methods for simulating moving grain boundaries. Presented in this work is a means by which the aforementioned problems are addressed by expressing the density field of a DPF simulation in terms of a traditional order parameter field. A generic DPF free energy functional is derived and used to carry out a series of equilibrium and dynamic simulations of grain boundaries in order to generate trends such as grain boundary width vs. gradient energy coefficient, grain boundary velocity vs. applied driving force, and spherical grain radius vs. time. These trends are compared with analytical solutions and the behavior of physical grain boundaries in order to ascertain the validity of the coupled DPF model. All tested quantities were found to agree with established theories of grain boundary behavior. In addition, the resulting simulations allow for DPF simulations to be carried out by existing phase-field solvers. KW - CALPHAD KW - Phase-field modelling KW - Phase-Field Simulations PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581365 DO - https://doi.org/10.3390/met13081497 VL - 13 SP - 1 EP - 16 AN - OPUS4-58136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezhov, Alexander A1 - Kulisch, D. A1 - Goncharov, A. A1 - Zhutovsky, S. T1 - A Comparative Study of Factors Influencing Hydration Stoppage of Hardened Cement Paste N2 - There is no consensus on which hydration stoppage method is optimal to preserve the microstructure and mineral composition of samples, especially considering the specific aspects of different testing methods, such as TGA, MIP, or XRD. This paper presents a quantitative comparison between the most popular hydration stoppage strategies and parameters such as the sample piece size, the soaking time in a solvent, and the type, as examined on cement paste hydrated for 7 days. It was found that the carbonation appears either for samples smaller than 2.36 mm and bigger than 4.75 mm or samples soaked in a solvent for longer than 1 h. Fast solvent replacement leads to ettringite diminution and total pore volume increase. Among others, solvent replacement with subsequent gentle heating under a vacuum was found to be the most efficient, whereas it was experimentally demonstrated that isopropyl alcohol stops hydration faster than ethanol and acetone. KW - Hydration stoppage KW - Solvent replacement KW - Soaking time KW - Sample piece size PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582430 DO - https://doi.org/10.3390/su15021080 VL - 15 IS - 2 SP - 1 EP - 21 PB - MDPI CY - Basel, Switzerland. AN - OPUS4-58243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Schönsee, Eric A1 - Jeyifous, Olubunmi Anthony A1 - Mezhov, Alexander A1 - Hüsken, Götz T1 - Introduction of a monitoring system for Bingham fluids in additive manufacturing with concrete N2 - Freeform additive manufacturing of concrete structures is a rising technology in civil engineering with several fascinating advantages. Nonetheless, to ensure reliability and structural integrity, standards and quality control are required in the future to bring this technology into the market. As the concrete is manufactured continuously, continuous quality control of the printing process is also required, i.e. comprehensive process monitoring. At BAM, a test rig will be installed, enabling the printing of concrete structures with a maximum size of 2 m x 1 m x 1 m (l x w x h). Here, process monitoring is the focus of the test rig. In this study, we show the results of the first pump tests, including the measurement of several parameters such as temperature and pressure along the supply system, i.e. from the concrete pump to the printer head. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Additive manufacturing of concrete KW - Process monitoring KW - Non-destructive testing KW - Bingham fluid PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556367 SP - 1 EP - 12 AN - OPUS4-55636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madia, Mauro A1 - Baer, Wolfram A1 - Wagener, Rainer A1 - Kiyak, Yusuf T1 - Betriebsfestigkeit und Bruchverhalten von bainitischen Schmiedestählen N2 - Die neue Generation von bainitischen Schmiedestählen bietet auf der einen Seite ein erhebliches Festigkeitspotenzial, das es im Sinne des Leichtbaus auch für zyklisch belastete Sicherheitsbauteile zu heben gilt. Auf der anderen Seite geht mit dieser Festigkeitssteigerung im Vergleich zu Vergütungsstählen ein Verlust an Duktilität und Zähigkeit einher. Am Beispiel des Demonstratorbauteils Achsschenkel ging das Forschungsvorhaben der Frage nach, wie ein Freigabeprozess zu gestalten ist, damit das Festigkeitspotenzial der neuen Stähle zuverlässig ausgenutzt werden kann. Als Ergebnis wird eine Vorgehensweise dargestellt, die den Eigenschaften der neuen Generation von Schmiedestählen Rechnung trägt, um den sicheren Betrieb der Komponenten zu gewährleisten. KW - Bainitischer Schmiedestahl KW - Bruchmechanik KW - Sicherheit KW - Betriebsfestigkeit KW - Bauteilauslegung PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594296 SN - 2366-5106 SP - 50 EP - 54 PB - Industrieverband Massivumformung e. V CY - Hagen AN - OPUS4-59429 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poli, Marco A1 - Grätz, Rainer A1 - Schröder, Volkmar T1 - An experimental study on safety-relevant parameters of turbulent gas explosion venting at elevated initial pressure N2 - The effects of a gas explosion in enclosures like vessels can be limited e.g. by gas explosion venting systems. The major design step of this constructive explosion protection method is to determine the required vent area, which depends significantly on whether turbulent combustion exists. However, current standards like NFPA 68 or EN 14994 are applicable only to limited boundary conditions and as far as possible only to laminar flame propagation. Difficulties arise in the assessment or predictability of gas explosion hazard when turbulence occurs. In this research especially venting at elevated initial pressure has been shown to accelerated flame propagations and therefore, to a considerably higher reduced pressure. Therefore, it is essential to provide a broader data base of turbulent combustion and explosion behavior to verify the existing rules or to determine their safety-relevant parameters. For a better safety assessment or design of protective systems the turbulent combustion and accelerated gas explosion behaviour of quiescent methane and hydrogen in air were investigated at initial pressures up to 8 bar using vessels up to 100 litres. In particular a systematic study was performed to investigate the influence of turbulence on the overpressure development during accelerated gas explosion. Moreover, the present study consider the position of the spark igniters, the burning velocity and the maximum pressure rise for different concentration of fuel as well as the size of orifice and/or vent area. A choice of experimental tests showed under the investigated conditions that not only turbulence inducing obstacles but also over sized vent areas could lead to an increased pressure development and therefore to an inacceptable safety state. T2 - 20th International Congress of Chemical and Process Engineering CHISA 2012 CY - Prague, Czech Republic DA - 25.08.2012 KW - Gas explosion venting KW - Turbulent combustion KW - Obstacles PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-264288 DO - https://doi.org/10.1016/j.proeng.2012.07.398 SN - 1877-7058 VL - 42 SP - 90 EP - 99 PB - Elsevier CY - Amsterdam AN - OPUS4-26428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meira, Maria Fernanda Cavalcante A1 - Fernandes, Gabriela Leal Peres A1 - de Camargo, Andréa Simone Stucchi A1 - Ravaro, Leandro Piaggi A1 - Arai, Marylyn Setsuko A1 - Navarro, Maria Fidela de Lima A1 - Brighenti, Fernanda Lourenção A1 - Oliveira, Analú Barros de A1 - Danelon, Marcelle ED - Stucchi de Camargo, Andrea T1 - Modification of restorative glass ionomer cement with zinc oxide nanoparticles and calcium glycerophosphate microparticles: in vitro assessment of mechanical properties and antimicrobial activity N2 - Abstract The incorporation of bioactive agents into resin-modified glass ionomer cement (RMGIC) is a promising strategy to improve its mechanical strength and biofilm control, especially for patients with active dental caries. Objective This study aimed to evaluate the effects of incorporating ZnONPs and CaGP into RMGIC on its mechanical and microbiological properties. Design Six groups were tested: 1) RMGIC (without CaGP/ZnONPs); 2) RMGIC-1.0%ZnONPs; 3) RMGIC-2.0%ZnONPs; 4) RMGIC-3.0%CaGP; 5) RMGIC-3.0%CaGP-1.0%ZnONPs; and 6) RMGIC-3.0%CaGP-2.0%ZnONPs. The compressive strength (CS), diametral tensile strength (DTS), and surface hardness (SH) were evaluated after 24 hours and 7 days. Antimicrobial and antibiofilm activity were evaluated using agar diffusion and biofilm metabolic activity (XTT) assays. Results After 24 hours, all the groups showed similar DTS values (p0.05), except for RMGIC-3.0%CaGP-1.0%ZnONPs, which showed the highest DTS value (p<0.05). Comparing 24 hours and 7 days, the DTS values of RMGIC-3.0%CaGP-2.0%ZnONPs, RMGIC-3.0%CaGP, and RMGIC-3.0%CaGP-2.0%ZnONPs were similar (p=0.360). After 24 hours, the RMGIC group showed the CS highest value, followed by RMGIC-2.0%ZnONPs (p < 0.05). After 7 days, the RMGIC-3.0%CaGP-1.0%ZnONPs group exhibited the highest CS value, approximately 15% higher than RMGIC (p<0.05). The RMGIC-1.0%ZnONPs group exhibited significantly higher SH at 24 hours (p=0.621). At 7 days, the highest SH value was observed for the RMGIC-3.0%CaGP-1.0%ZnONPs group (p<0.05). Regarding antimicrobial and antibiofilm activity, including results from biofilm metabolism assays, the RMGIC-3.0%CaGP-1.0%ZnONPs group demonstrated the most effective antimicrobial and inhibitory effects (p<0.05). Conclusion This study demonstrated that adding ZnONPs and CaGP to RMGIC enhanced its mechanical and antimicrobial and antibiofilm properties, suggesting enhanced mechanical performance and improved protection against cariogenic biofilms—critical factors for successful restorative treatments. Therefore, the addition of ZnONPs and CaGP is a promising strategy to develop advanced restorative materials that improve clinical outcomes, especially for patients with active dental caries. KW - Resin-modified glass ionomer cement KW - Phosphate KW - Zinc oxide nanoparticles KW - Biofilm KW - Mechanical properties PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652799 DO - https://doi.org/10.1590/1678-7757-2025-0356 SN - 1678-7765 VL - 33 SP - 1 EP - 14 PB - FapUNIFESP (SciELO) AN - OPUS4-65279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arai, Marylyn S. A1 - Brambilla, Gabriel V. A1 - Corrêa, Bruna Carolina A1 - Merízio, Leonnam G. A1 - Inada, Natalia M. A1 - de Camargo, Andrea S. S. T1 - A Dual-Mode “Turn-On” Ratiometric Luminescent Sensor Based on Upconverting Nanoparticles for Detection and Differentiation of Gram-Positive and Gram-Negative Bacteria N2 - Infectious bacterial diseases, intensified by antibiotic resistance, cause millions of deaths annually and pose risks beyond human health, including water and food contamination. Current diagnostics are often slow, require complex equipment, and lack specificity, highlighting the need for rapid and reliable detection methods. To address this, we developed a luminescent sensor based on NaYF4 upconverting nanoparticles (UCNPs) doped with Er3+ or Tm3+, coated with COOH-PEG4-COOH, and functionalized with vancomycin (Van) or polymyxin-B (Poly) to selectively target Gram-positive and Gram-negative bacteria, respectively. Gold nanoparticles (AuNPs) served as quenchers, enabling a ratiometric “turn-on” mechanism: upon bacterial binding, the UCNP emission, initially quenched by AuNPs, was partially restored. This allowed Differentiation through changes in the green/red (G/R) ratio for Er-UCNP@PEG4-Van and the blue/red (B/R) ratio for Tm-UCNP@PEG4-Poly. The sensor distinguished between Gram-positive and Gram-negative bacteria over a wide concentration range (0.05 to 5 × 105 CFU/mL) and showed high correlation with actual bacterial counts (r = 0.99 for S. aureus, r = 0.91 for E. coli). This platform is a potential fast, selective, and reliable tool for bacterial detection in clinical and environmental settings. KW - Lminescent sensor KW - Upconverting nanoparticles KW - Gram-positive and Gram-negative bacteria KW - Ratiometric luminescent sensors PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652785 DO - https://doi.org/10.1021/acsomega.5c07006 SN - 2470-1343 VL - 10 IS - 39 SP - 46040 EP - 46050 PB - American Chemical Society (ACS) AN - OPUS4-65278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Afantitis, A. A1 - Melagraki, G. A1 - Isigonis, P. A1 - Tsoumanis, A. A1 - Varsou, D. D. A1 - Valsami-Jones, E. A1 - Papadiamantis, A. A1 - Ellis, L.-J. A. A1 - Sarimveis, H. A1 - Doganis, P. A1 - Karatzas, P. A1 - Tsiros, P. A1 - Liampa, I. A1 - Lobaskin, V. A1 - Greco, D. A1 - Serra, A. A1 - Kinaret, P. A. S. A1 - Saarimäki, L. A. A1 - Grafström, R. A1 - Kohonen, P. A1 - Nymark, P. A1 - Willighagen, E. A1 - Puzyn, T. A1 - Rybinska-Fryca, A. A1 - Lyubartsev, A. A1 - Jensen, K. A. A1 - Brandenburg, J. G. A1 - Lofts, S. A1 - Svendsen, C. A1 - Harrison, S. A1 - Maier, D. A1 - Tamm, K. A1 - Jänes, J. A1 - Sikk, L. A1 - Dusinska, M. A1 - Longhin, E. A1 - Rundén-Pran, E. A1 - Mariussen, E. A1 - El Yamani, N. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Tropsha, A. A1 - Cohen, Y. A1 - Lesczynski, J. A1 - Hendren, C. O. A1 - Wiesner, M. A1 - Winkler, D. A1 - Suzuki, N. A1 - Yoon, T. H. A1 - Choi, J.-S. A1 - Sanabria, N. A1 - Gulumian, M. A1 - Lynch, I. T1 - NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment N2 - Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational ‘safe-by-design’ approaches to facilitate NM commercialization. KW - Nanoinformatics KW - Hazard assessment KW - (Quantitative) Structure-Active Relationships KW - Safe-by-design KW - Predictive modelling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505952 DO - https://doi.org/10.1016/j.csbj.2020.02.023 VL - 18 SP - 583 EP - 602 PB - Elsevier B.V. AN - OPUS4-50595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agostini, G. A1 - Radnik, Jörg T1 - Spectroscopy in Catalysis N2 - Knowledge-based catalyst development is always an interaction between preparation, analysis and catalytic testing. Only if these three factors fit together can success be expected. For the analytic side of this triangle, spectroscopic methods play a crucial role. Whereas with diffraction, scattering and microscopy, decisive insights into the structure and morphology of the catalysts can be obtained, spectroscopy produces new knowledge about the chemical nature of the catalyst, e.g., its bonding and valence states. KW - Spectroscopy KW - Catalysis KW - Operando KW - In situ PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506507 DO - https://doi.org/10.3390/catal10040408 VL - 10 IS - 4 SP - 408 PB - MDPI CY - Basel AN - OPUS4-50650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohammadifar, E. A1 - Ahmadi, V. A1 - Gholami, M.F. A1 - Oehrl, A. A1 - Kolyvushko, O. A1 - Nie, C. A1 - Donskyi, Ievgen A1 - Herziger, S. A1 - Radnik, Jörg A1 - Ludwig, K. A1 - Böttcher, C. A1 - Rabe, J.P. A1 - Osterrieder, K. A1 - Azab, W. A1 - Haag, R. A1 - Adeli, M. T1 - Graphene-Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions N2 - 2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes Simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus Inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes Simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus Inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts. KW - 2D Materials KW - Graphene template KW - Multivalency KW - Polyglycerol KW - Virus inhibition PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527726 DO - https://doi.org/10.1002/adfm.202009003 VL - 31 IS - 32 SP - 2009003 PB - Wiley VCH AN - OPUS4-52772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -