TY - JOUR A1 - Grzelec, Małgorzata A1 - Haas, Sylvio A1 - Helman-Ważny, Agnieszka T1 - Application of scanning small-angle X-ray scattering in the identification of sheet formation techniques in historical papers N2 - Among writing substrates produced historically in different regions of the world, paper is one of the most complex materials. Its complexity results not only from a variety of highly processed ingredients, which can be used in its production, but also from a variety of methods in which these materials are combined to form the fibrillar network referred to as paper. While material identification methods are well established in the analysis of historical papers, the identification of manufacturing technologies is still an under-researched topic, that requires the development of appropriate methods and measurement protocols. This paper reports on the results of a research project aimed at the application of synchrotron scanning small angle X-ray scattering (SAXS) method in the characterization of paper structure, with emphasis on the assessment of fibrillar orientation as a marker characteristic for different, historical papermaking technologies. The main objective of this study consists of the development of a measurement protocol involving the SAXS technique complemented by other analytical methods in the characterization of the fibrous paper structure. KW - SAXS KW - Paper analysis KW - Papermaking technology KW - Fiber orientation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651594 DO - https://doi.org/10.1007/s00339-024-08157-4 SN - 0947-8396 VL - 131 IS - 1 SP - 1 EP - 16 PB - Springer Science and Business Media LLC AN - OPUS4-65159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graebner, Maraike A1 - Giese, Marcel A1 - Lorenz, Svenja A1 - Treutler, Kai A1 - Schröpfer, Dirk A1 - Wesling, Volker A1 - Kannengießer, Thomas T1 - Wear resistance of modified NiMoCrSi claddings in relation to the resulting surface machinability via ultrasonic-assisted milling N2 - In the field of plastics processing, extruder screws are subjected to significant wear stresses. The extruder screw is the main wear component in those production machines and is usually coated with intermetallic wear protection alloys composed of Ni-based alloys, specifically Colmonoy C56 PTA (NiMoCrSi). There is a growing demand for providing an economic machinability of these alloys to achieve defined contours with a sufficient surface integrity. Recent investigations exhibit promising results applying ultrasonic milling for such hard-to-cut materials. The Colmonoy C56 is modified by various alloying additions Ti, Nb, Mo, Hf, and Al, and then cladded on a steel S355 via Plasma Transferred Arc process. The effect of alloying additions on the microstructure is analyzed regarding their resistance to abrasive and adhesive wear. With Miller test ASTM G75 the influence of alloying elements on resistance to abrasive wear for two abrasive materials is investigated (high-grade corundum F220 and quartz powder). The wear loss is not increased for additions of Nb and Ti compared to the base material C56. Modifications with Hf or Al reduces the resistance to abrasive wear and significantly increases material loss. The extruder screw is also subject to adhesive wear, which can be quantified by means of the pin-roll test. It is demonstrated that the addition of Hf, for example, contributes to a reduction in wear loss. Aim of the investigations is to find suitable modifications for the wear claddings of C56 for a sufficient machineability, without compemising the wear resistant. The machinability is considerably affected by the alloy additions, and is determined using ultrasonic-assisted milling. The addition of hafnium reduces machinability, i.e. significantly increases cutting forces. The incorporation of Nb exhibits a significant reduction of cutting forces, and results in reduced tool wear and an enhanced of surface integrity (roughness, density of defects, residual stresses). KW - Colmonoy C56 KW - PTA welding KW - Adhesive wear KW - Abrasive wear KW - Ultrasonic-assisted milling process KW - Surface integrity KW - Service life and efficiency KW - Substitution of critical raw materials PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651530 DO - https://doi.org/10.1016/j.wear.2025.205830 SN - 0043-1648 VL - 571 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-65153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vöse, Markus A1 - Fedelich, Bernard A1 - Otto, F. A1 - Eggeler, G. T1 - Micromechanical modeling of creep damage in a copper-antimony alloy N2 - A micromechanical model of creep induced grain boundary damage is proposed, which allows for the simulation of creep damage in a polycrystal with the finite element method. Grain boundary cavitation and sliding are considered via a micromechanically motivated cohesive zone model, while the grains creep following the slip system theory. The model has been calibrated with creep test data from pure Cu single crystals and a coarse-grained polycrystalline Cu-Sb alloy. The test data includes porosity measurements and estimates of grain boundary sliding. Finally, the model has been applied to Voronoi models of polycrystalline structures. In particular the influence of grain boundary sliding on the overall creep rate is demonstrated. T2 - ECF20 - 20th European conference on fracture CY - Trondheim, Norway DA - 28.06.2014 KW - Creep damage KW - Grain boundary sliding KW - Cohesive zone KW - Micromechanical model KW - Polycrystal PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-309914 DO - https://doi.org/10.1016/j.mspro.2014.06.006 SN - 2211-8128 VL - 3 SP - 21 EP - 26 PB - Curran CY - Red Hook, NY, USA AN - OPUS4-30991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klippel, A. A1 - Hofmann-Böllinghaus, Anja A1 - Gnutzmann, Tanja A1 - Piechnik, K. T1 - Reaction-to-fire testing of bus interior materials: Assessing burning behaviour and smoke gas toxicity N2 - Although fire safety regulations for buses have been adapted in recent years regarding, for example, fire detection and engine fire suppression systems, the changes in regulations for bus interior materials are minimal. A comparison of fire safety regulations for interior materials in other transport sectors for trains, ships or aircraft reveals a much lower level of requirements for bus materials. Although repeated bus accidents as well as fire statistics show the danger a bus fire can pose to passengers. In particular, the combination of a fire incident and passengers with reduced mobility led to severe disasters in Germany and other European countries. To enhance the fire safety for passengers, the interior bus materials are crucial as the fire development in the bus cabin determines whether escape and rescue is possible. Against this background, bus interior materials were tested in different fire test scenarios. Measurement of a wide variety of parameters, for example, the mass loss, ignition time, smoke gas composition, heat release rate among others were carried out. Tested materials complied to the newest set of requirements. For this purpose, interior materials and their components had to be identified according to their chemical structure. Parts of the tests were funded by BASt (Federal Highway Research Institute) in the project 82.0723/2018. Experimental results show reaction-to-fire behaviour which lead to very limited times for escape and rescue in case of fire in a bus cabin. Based on the studies on fire behaviour and toxicity assessment, recommendations for improved fire safety regulations for interior materials could be made. KW - Burning behaviour KW - Bus interior materials KW - Cone calorimeter KW - DIN tube furnace KW - FTIR spectroscopy KW - Reference values KW - Smoke toxicity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576085 DO - https://doi.org/10.1002/fam.3108 SN - 1099-1018 VL - 47 IS - 5 SP - 665 EP - 680 PB - Wiley CY - New York, NY AN - OPUS4-57608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - An, Biwen Annie A1 - Deland, Eric A1 - Sobol, Oded A1 - Yao, Jizheng A1 - Skovhus, T. L. A1 - Koerdt, Andrea T1 - The differences in the corrosion product compositions of Methanogen-induced microbiologically influenced corrosion (Mi-MIC) between static and dynamic growth conditions N2 - Currently, corrosion rates (CR) and/or corrosion products (CP) obtained for methanogen-induced microbiologically influenced corrosion (Mi-MIC) on carbon steel are mainly analyzed from static-incubations. By using a multiport-flow-column, much higher CRs (0.72 mm/yr) were observed, indicating static-incubations are not suitable for determining the corrosive potential of Mi-MIC. With the combination of various analytical methods (ToF-SIMS/SEM-EDS/SEM-FIB) and contrary to previously published data, we observed that CPs contained phosphorus, oxygen, magnesium, calcium and iron but lacked carbon-related species (e.g. siderite). Overall, siderite nucleation is disrupted by methanogens, as they convert aqueous bicarbonate into carbon dioxide for methanogenesis resulting in increased localized corrosion. KW - Carbon steel KW - Modelling studies KW - SIMS KW - SEM KW - Reactor conditions KW - Microbiologically influenced corrosion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517632 DO - https://doi.org/10.1016/j.corsci.2020.109179 SN - 0010-938X VL - 180 SP - 9179 PB - Elsevier AN - OPUS4-51763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Volkmar A1 - Askar, Enis A1 - Tashqin, T. T1 - Sicherheitstechnische Eigenschaften von Gemischen aus Wasserstoff und Erdgas N2 - Bei der Power-to-Gas-Technologie wird überschüssiger Strom aus erneuerbaren Ener-gien durch Elektrolyse von Wasser in Wasserstoff umgewandelt. Dieser Wasserstoff kann als „chemischer Energiespeicher“ dienen und rückverstromt werden oder aber in das Erdgasnetz eingespeist werden. Die BAM hat die Auswirkungen von Wasserstoffzu-sätzen zum Erdgas im Hinblick auf den Explosionsschutz untersucht und sicherheitstechnische Kenngrößen für Erdgas-Wasserstoff-Gemische bestimmt. Von besonderem Interesse waren dabei die Explosionsgrenzen, die Sauerstoffgrenzkonzentration, die maximalen Explosionsdrücke, die KG-Werte und die Normspaltweiten. Für die Messungen sind zwei Modellgase eingesetzt worden, reines Methan und ein Modell-Erdgas mit Anteilen höherer Kohlenwasserstoffe. Sie repräsentieren die Bandbreite der in Deutschland eingesetzten Erdgase. Die Untersuchungen ergaben, dass bei einem Zusatz von bis zu 10 Mol-% Wasserstoff keine der untersuchten Kenngrößen signifikant beeinflusst wird. Die Gemische haben nur geringfügig erweiterte Explosionsbereiche und bleiben, wie die reinen Erdgase, in der Explosionsgruppe IIA. Auch die maximalen Explosionsdrücke und die zeitlichen Druckanstiege bei den Gasexplosionen werden nur wenig beeinflusst. T2 - Kolloquium zur chemischen und physikalischen Sicherheitstechnik CY - Berlin, Germany DA - 14.06.2016 KW - Wasserstoff KW - Erdgasnetz KW - Energiespeicherung KW - Explosionsschutz KW - Sicherheitstechnische Kenngrößen PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-373099 SN - 978-3-9817853-5-7 SN - 0938-5533 VL - 2016 SP - 60 EP - 67 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin, Germany AN - OPUS4-37309 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böllinghaus, Thomas A1 - Wentland, Eva A1 - Jaßmann, R. A1 - Keller, R. A1 - Wolfrum, Anne T1 - Conservation of the Shaft #1 Headgear at the Tsumeb Mine, Namibia: Corrosion Protection N2 - The Tsumeb Mine in Namibia represents one of the best-preserved mining sites in the world and is rapidly gaining cross-disciplinary interest among cultural and engineering scientists. Most of the open pit and the shaft mining equipment are still in place, including the ore processing units and the local power plant. The mining area thus deserves recognition as an industrial world heritage site, especially due to the rarity of such locations on the African continent. The Shaft #1 headgear, built in 1924, represents one of the oldest known riveted steel headgears of the Promnitz design worldwide. In contrast to similar steel structures located in the northern hemisphere, it has been exposed to a different rural semi-arid climate since it is located in the Otavi Mountain Land, characterized by semi-annual change of rainy and dry seasons. Parts of the Shaft #1 headgear have remained largely untouched for more than 70 years. Besides its outstanding heritage value, it thus also represents an interesting object for studying the composition of corrosion layers formed on mild steel surfaces when exposed to continental and industrial mining atmospheres. To find a suitable transparent corrosion prevention coating, various on-site coating samples were evaluated after 11 months of outdoor exposure, including Owatrol Oil®, which is based on natural oil and alkyd resin with strong wicking potential. The substance is frequently applied for the conservation of single components but is not yet widely used on large steel structures in the field of industrial heritage conservation. However, it represented the most stable anti-corrosion coating under the local atmospheric conditions in the on-site tests. Thus, the suitability of Owatrol Oil® as a transparent coating for corrosion protection of riveted mild steel structures in such climates was further investigated as a more recent approach for the conservation of large steel structures. Since the protective coatings are exposed to strong UV radiation in the local climate, the addition of a specific UV stabilizer mixture was also tested. For such laboratory tests, two mild steel samples were taken. The first one originated from a diagonal strut of the 1920s and the second one from a handrail mounted in the early 1960s. Using corresponding high-resolution scanning electron microscopy (HR-SEM) and energy-dispersive X-ray spectroscopy (EDX) it was found that the corrosion layers are predominantly composed of lepidocrocite and goethite. A weathering program simulating the specific environmental conditions at Tsumeb in a UV climate chamber was developed and the corrosion resistance of the mild steel surface was subsequently evaluated by potentiodynamic measurements. Such tests proved to be a fast and reliable procedure for ranking the corrosion resistance of the old mild steels. It was found that the long-term corrosion layers already provide significant protection against further corrosion in the simulated environment. However, the study also showed that this can be further improved by the application of the Owatrol Oil® as a protective coating that also seals crevices. The addition of the UV stabilizers, however, led to a significant deterioration in corrosion protection, even in comparison to that of the uncoated long-term corrosion layers on the surface. Regular overcoating seems more advisable for the long-term preservation of the Shaft #1 headgear than modifying the Owatrol Oil® Coating with the tested UV-stabilizing additives. KW - Potentiodynamic measurements KW - Mining head gear KW - Mild steels KW - Chemical composition KW - Characterization of corrosion layers KW - Alkyd resin-based coating KW - UV-blocker addition KW - Weathering tests PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541476 DO - https://doi.org/10.1080/00393630.2021.2004007 SN - 0039-3630 SP - 1 EP - 15 PB - Taylor & Francis Online AN - OPUS4-54147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza T1 - Melting upon Coalescence of Solid Nanoparticles N2 - The large surface-to-volume ratio of nanoparticles is understood to be the source of many interesting phenomena. The melting temperature of nanoparticles is shown to dramatically reduce compared to bulk material. Yet, at temperatures below this reduced melting point, a liquid-like atomic arrangement on the surface of nanoparticles is still anticipated to influence its properties. To understand such surface effects, here, we study the coalescence of Au nanoparticles of various sizes using molecular dynamics simulations. Analysis of the potential energy and Lindemann index distribution across the nanoparticles reveals that high-energy, high-mobility surface atoms can enable the coalescence of nanoparticles at temperatures much lower than their corresponding melting point. The smaller the nanoparticles, the larger the difference between their melting and coalescence temperatures. For small enough particles and/or elevated enough temperatures, we found that the coalescence leads to a melting transition of the two nominally solid nanoparticles, here discussed in relation to the heat released due to the surface reduction upon the coalescence and the size dependence of latent heat. Such discontinuous melting transitions can lead to abrupt changes in the properties of nanoparticles, important for their applications at intermediate temperatures. KW - Nanoparticles KW - Molecular Dynamics KW - Surface-induced Melting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552183 DO - https://doi.org/10.3390/solids3020025 VL - 3 IS - 2 SP - 361 EP - 373 PB - MDPI AN - OPUS4-55218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mosquera Feijoo, Maria A1 - Oder, Gabriele A1 - Saliwan Neumann, Romeo A1 - Buchheim, Michaela A1 - Kranzmann, Axel A1 - Olbricht, Jürgen T1 - Impact of Sample Geometry and Surface Finish on VM12‑SHC Ferritic–Martensitic Steel Under Cyclic Steam Atmosphere Operating Conditions N2 - The steam side oxidation of ferritic–martensitic VM12-SHC steel was investigated under thermo-cyclic conditions in water steam at 620/320 °C and 30 bar with a focus on assessing the influence of pre-oxidation time, specimen geometry and surface finish. The specimens were pre-oxidized under isothermal conditions in water steam at 620 °C and 30 bar for 500 h or 1500 h. After pre-oxidation treatment, all specimens were subjected up to 258 thermal cycles. Three different geometries—rectangular coupons, U-shaped ring segments and ring samples—were investigated to evaluate the influence of open/closed shape, and flat/curved surface on corrosion rate. At the same time, two types of surface finish were considered: “as received” and “ground.” The formation of a protective scale by pre-oxidation was investigated. EBSD and ESMA analyses revealed that the Cr-content of the alloy appeared to be insufficient for obtaining a protective oxide scale under studied conditions, at the same time the anayses confirmed that initial oxidation depends on presence of minor alloying elements as Si and Mn, strong oxide formers which can alter the kinetics and morphology of the corrosion reaction. Moreover, rectangular coupons with small wall thickness and flat surface exhibited the highest corrosion rate, while “ground” curved samples showed only local oxidation. This indicates that for same pre-oxidation time, oxidation kinetics is controlled by curvature. KW - Cyclic steam oxidation KW - 12%Cr steel KW - Specimen geometry KW - Surface treatments PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551808 DO - https://doi.org/10.1007/s11085-022-10114-6 SN - 0030-770X SP - 1 EP - 18 PB - Springer AN - OPUS4-55180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anderson, J. A1 - Boström, L. A1 - Chiva, R. A1 - Guillaume, E. A1 - Colwell, S. A1 - Hofmann-Böllinghaus, Anja A1 - Toth, P. T1 - European approach to assess the fire performance of façades N2 - Several attempts have been made in the past to develop a European harmonized testing and assessment method for façades before the European commission decided to publish a call for tender on the topic. A project consortium from five countries (Sweden, UK, France, Germany and Hungary) applied to the call for tender and was contracted to develop a European approach to assess the fire performance of façades. 24 sub-contractors and 14 stakeholder entities were part of the project. The objective of the European project was to address a request from the Standing Committee of Construction (SCC) to provide EC Member States regulators with a means to regulate the fire performance of façade systems based on a European Approach agreed by SCC. The initial stages of this Project were focused on establishing a Register of the regulatory requirements in all Member States in relation to the fire Performance of façade systems, and to identify those Member States who have regulatory requirements for the fire performance façade systems which go beyond the current EN 13501 (reaction to fire and fire resistance) classification systems and to collate the details of these additional requirements. After having confirmed the regulatory needs a testing and classification methodology based on BS 8414 and DIN 4102-20 was developed to address the identified key performance and classification characteristics. This paper is a short overview of results the two-year development work, which Final Report published by the European Commission in 2018. KW - Facade KW - Regulation KW - Testing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530501 DO - https://doi.org/10.1002/fam.2878 SN - 1099-1018 VL - 45(5) IS - Special issue: Facade fire safety SP - 598 EP - 608 PB - Wiley CY - Oxford AN - OPUS4-53050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elfetni, Seif A1 - Darvishi Kamachali, Reza T1 - PINNs-MPF: A Physics-Informed Neural Network framework for Multi-Phase-Field simulation of interface dynamics N2 - We present PINNs-MPF framework, an application of Physics-Informed Neural Networks (PINNs) to handle Multi-Phase-Field (MPF) simulations of microstructure evolution. A combination of optimization techniques within PINNs and in direct relation to MPF method are extended and adapted. The numerical resolution is realized through a multi-variable time-series problem by using fully discrete resolution. Within each interval, space, time, and phases/grains are treated separately, constituting discrete subdomains. PINNs-MPF is equipped with an extended multi-networking (parallelization) concept to subdivide the simulation domain into multiple batches, with each batch associated with an independent NN trained to predict the solution. To ensure continuity across the spatio-temporal-phasic subdomains, a Master NN efficiently is to handle interactions among the multiple networks and facilitates the transfer of learning. A pyramidal training approach is proposed to the PINN community as a dual-impact method: to facilitate the initialization of training when dealing with multiple networks, and to unify the solution through an extended transfer of learning. Furthermore, a comprehensive approach is adopted to specifically focus the attention on the interfacial regions through a dynamic meshing process, significantly simplifying the tuning of hyper-parameters, serving as a key concept for addressing MPF problems using machine learning. We perform a set of systematic simulations that benchmark foundational aspects of MPF simulations, i.e., the curvature-driven dynamics of a diffuse interface, in the presence and absence of an external driving force, and the evolution and equilibrium of a triple junction. The proposed PINNs-MPF framework successfully reproduces benchmark tests with high fidelity and Mean Squared Error (MSE) loss values ranging from 10^−6 to 10^−4 compared to ground truth solutions. KW - Machine learning KW - PINNs KW - Phase-field method KW - Microstructure evolution KW - Parallel training KW - Neural networks PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629740 DO - https://doi.org/10.1016/j.enganabound.2025.106200 SN - 0955-7997 VL - 176 SP - 1 EP - 22 PB - Elsevier CY - Amsterdam AN - OPUS4-62974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elfetni, Seifallah A1 - Darvishi Kamachali, Reza T1 - PINNs-MPF: An Efficient Physics-Informed Machine Learning-based Solver for Multi-Phase-Field Simulations using Tensorflow N2 - This paper introduces PINNs-MPF, a novel Machine Learning-based solver designed for Multi-Phase-Field (MPF) and diffuse interface simulations, offering innovative approaches to address complex challenges in addressing microstructure evolution in polycrystalline materials using Machine Learning. The framework not only surpasses current limitations in handling multi-phase problems but also allows for potential upscaling to tackle more intricate scenarios. Developed in Python, the related code leverages optimized libraries like TensorFlow, showcasing efficiency and potential scalability in materials science and engineering simulations. This framework, integrating advanced techniques such as multi-networking and training optimization, setting a new standard in predictive capabilities and understanding complex physical phenomena. KW - Machine Learning KW - Microstructure Simulation KW - Phase Field PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631917 DO - https://doi.org/10.1016/j.simpa.2025.100753 SN - 2665-9638 VL - 24 SP - 1 EP - 4 PB - Elsevier B.V. AN - OPUS4-63191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhou, X. A1 - Wei, Y. A1 - Kühbach, M. A1 - Zhao, H. A1 - Vogel, F. A1 - Darvishi Kamachali, Reza A1 - Thompson, G. B. A1 - Raabe, D. A1 - Gault, B. T1 - Revealing in-plane grain boundary composition features through machine learning from atom probe tomography data N2 - Grain boundaries (GBs) are planar lattice defects that govern the properties of many types of polycrystalline materials. Hence, their structures have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the atomic length scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability to quantify chemical characteristics at near-atomic scale. Using APT data sets, we present here a machine-learning-based approach for the automated quantification of chemical features of GBs. We trained a convolutional neural network (CNN) using twenty thousand synthesized images of grain interiors, GBs, or triple junctions. Such a trained CNN automatically detects the locations of GBs from APT data. Those GBs are then subjected to compositional mapping and analysis, including revealing their in-plane chemical decoration patterns. We applied this approach to experimentally obtained APT data sets pertaining to three case studies, namely, Ni-P, Pt-Au, and Al-Zn-Mg-Cu alloys. In the first case, we extracted GB specific segregation features as a function of misorientation and coincidence site lattice character. Secondly, we revealed interfacial excesses and in-plane chemical features that could not have been found by standard compositional analyses. Lastly, we tracked the temporal evolution of chemical decoration from early-stage solute GB segregation in the dilute limit to interfacial phase separation, characterized by the evolution of complex composition patterns. This machine-learning-based approach provides quantitative, unbiased, and automated access to GB chemical analyses, serving as an enabling tool for new discoveries related to interface thermodynamics, kinetics, and the associated chemistry-structure-property relations. KW - Machine learning KW - Digitalization KW - Alloy microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543049 DO - https://doi.org/10.1016/j.actamat.2022.117633 SN - 1359-6454 VL - 226 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam AN - OPUS4-54304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geoerg, Paul A1 - Schumann, Jette A1 - Holl, Stefan A1 - Holl, Maik A1 - Hofmann-Böllinghaus, Anja T1 - The influence of individual impairments in crowd dynamics N2 - The importance of empirical relations to quantify the movement of pedestrians through a facility has increased during the last decades since performance-based design methods became more common. Bottlenecks are of special interest because of their importance for egress routes and as they result in a reduced capacity. The empirical relations as the density-dependent movement speed or flow rate were derived by studies under laboratory conditions, which were usually conducted with populations of homogeneous characteristics forbetter control of influencing variables. If individual characteristics of a crowd become more heterogeneous, individuals were forced to adapt their individual movement and control individual manoeuvring. These unintended interactions lead to a different shape of the fundamental empirical relations. Here, we present results from a movement study under well-controlled boundary conditions in which participants with and without different characteristics of disabilities participated. To consider the effect of different heterogeneities on the capacity of a facility, fundamental diagrams are generated using the Voronoi method. If participants with visible disabilities (such as using assistive devices) are part of a crowd, significant differences relating to the shape of the empirical Relations and the capacities are found. This indicates that the heterogeneity of a Population leads to an increased interpersonal interaction which results in influenced movement characteristics. KW - Engineering egress data KW - Heterogeneity KW - Human behaviour KW - Movement characteristics KW - Pedestrian dynamics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508943 DO - https://doi.org/10.1002/fam.2789 SN - 0308-0501 VL - 45 IS - 4 SP - 529 EP - 542 PB - Wiley Online Libary CY - New Jersey, USA AN - OPUS4-50894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, L. A1 - Darvishi Kamachali, Reza A1 - Li, Z. A1 - Zhang, Z. T1 - Grain boundary energy effect on grain boundary segregation in an equiatomic high-entropy alloy N2 - Grain boundary (GB) Segregation has a substantial effect on the microstructure evolution and properties of polycrystalline alloys. The mechanism of nanoscale segregation at the various GBs in multicomponent alloys is of great challenge to reveal and remains elusive so far. To address this issue, we studied the GB segregation in a representative equiatomic FeMnNiCoCr high-entropy alloy (HEA) aged at 450 °C. By combining transmission Kikuchi diffraction, atom probe tomography analysis and a density-based thermodynamics modeling, we uncover the nanoscale segregation behavior at a series of well-characterized GBs of different characters. No segregation occurs at coherent twin boundaries; only slight nanoscale segregation of Ni takes place at the low-angle GBs and vicinal \Sigma 29b coincidence site lattice GBs. Ni and Mn show cosegregation of high levels at the general high-angle GBs with a strong depletion in Fe, Cr, and Co. Our density-based thermodynamic model reveals that the highly negative energy of mixing Ni and Mn is the main driving force for nanoscale cosegregation to the GBs. This is further assisted by the opposite segregation of Ni and Cr atoms with a positive enthalpy of mixing. It is also found that GBs of higher interfacial energy, possessing lower atomic densities (higher disorder and free volume), show higher segregation levels. By clarifying the origins of GB segregations in the FeMnNiCoCr HEA, the current work provides fundamental ideas on nanoscale segregation at crystal defects in multicomponent alloys. KW - Thermodynamics KW - High-Entropy Alloys KW - Grain Boundary Segregation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508827 DO - https://doi.org/10.1103/PhysRevMaterials.4.053603 VL - 4 IS - 5 SP - 053603 PB - American Physical Society AN - OPUS4-50882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Hänninen, H. A1 - Böllinghaus, Thomas T1 - In-situ ToF-SIMS analyses of deuterium re-distribution in austenitic steel AISI 304L under mechanical load N2 - Hydrocarbons fuel our economy. Furthermore, intermediate goods and consumer products are often hydrocarbon-based. Beside all the progress they made possible, hydrogen-containing substances can have severe detrimental effects on materials exposed to them. Hydrogen-assisted failure of iron alloys has been recognised more than a century ago. The present study aims to providing further insight into the degradation of the austenitic stainless steel AISI 304L (EN 1.4307) exposed to hydrogen. To this end, samples were electrochemically charged with the hydrogen isotope deuterium (2H, D) and analysed by scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that deuterium caused a phase transformation from the original γ austenite into ε- and α’-martensite. Despite their low solubility for hydrogen, viz. deuterium, the newly formed phases showed high deuterium concentration which was attributed to the increased density of traps. Information about the behaviour of deuterium in the material subjected to external mechanical load was gathered. A four-point-bending device was developed for this purpose. This allowed to analyse in-situ pre-charged samples in the ToF-SIMS during the application of external mechanical load. The results indicate a movement of deuterium towards the regions of highest stress. KW - ToF-SIMS KW - Hydrogen KW - Deuterium KW - AISI 304L KW - EBSD PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505142 DO - https://doi.org/10.1038/s41598-020-60370-2 VL - 10 IS - 1 SP - 3611 PB - Nature AN - OPUS4-50514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Lippold, J. ED - Böllinghaus, Thomas ED - Norrish, J. ED - Scotti, A. T1 - Hydrogen-assisted cracking in GMA welding of high-strength structural steels using the modified spray arc process N2 - High-strength structural steels are used in machine, steel, and crane construction with yield strength up to 960 MPa. However, welding of these steels requires profound knowledge of three factors in terms of avoidance of hydrogen-assisted cracking (HAC): the interaction of microstructure, local stress/strain, and local hydrogen concentration. In addition to the three main factors, the used arc process is also important for the performance of the welded joint. In the past, the conventional transitional arc process (Conv. A) was mainly used for welding of high-strength steel grades. In the past decade, the so-called modified spray arc process (Mod. SA) has been increasingly used for welding production. This modified process enables reduced seam opening angles with increased deposition rates compared with the Conv. A. Economic benefits of using this arc type are a reduction of necessary weld beads and required filler material. In the present study, the susceptibility to HAC in the heat-affected zone (HAZ) of the high-strength structural steel S960QL was investigated with the externally loaded implant test. For that purpose, both Conv. A and Mod. SA were used with same heat input at different deposition rates. Both conducted test series showed same embrittlement index “EI” of 0.21 at diffusible hydrogen concentrations of 1.3 to 1.6 ml/100 g of arc weld metal. The fracture occurred in the HAZ or in the weld metal (WM). However, the test series withMod. SA showed a significant extension of the time to failure of several hours compared with tests carried out with Conv. A. KW - High-strength steel KW - GMA welding KW - Diffusible hydrogen KW - Implant test KW - Fractography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515330 DO - https://doi.org/10.1007/s40194-020-00978-0 SN - 1878-6669 SN - 0043-2288 VL - 64 IS - 12 SP - 1997 EP - 2009 PB - Springer CY - Berlin Heidelberg AN - OPUS4-51533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Piechnik, Kira A1 - Hofmann-Böllinghaus, Anja A1 - Klippel, Andrea T1 - Self‐ignition of forest soil samples demonstrated through hot storage tests N2 - AbstractThe increasing threat of forest fires on a global scale is not only a matter of concern due to the potential harm they may cause to both human and animal life but also due to their significant role in exacerbating climate change. In light of these circumstances, one might inquire as to whether forest soil can self‐ignite and, if so, under what conditions and at what temperatures this phenomenon may occur. This question is being addressed in the German pilot “Fire science of wildfires and safety measures” of the EU project TREEADS, and the first results are presented below. The importance of basic research into the self‐ignition of forest soil cannot be underestimated, as it provides crucial knowledge to prevent forest fires and protect human and animal health. Furthermore, mitigating the occurrence of forest fires can also play a role in reducing greenhouse gas emissions, contributing to global efforts to combat climate change. The procedure of the hot storage test is an effective means of determining whether a material can self‐ignite. During the investigation of six soil samples, it was found that five of them were indeed capable of self‐ignition. In addition to determining whether the material ignites, the modified hot storage test also analyzed the resulting smoke gases and measured their concentration. The research question of whether regional forest soil is capable of self‐ignition can be answered with yes based on these initial tests. Further experiments are needed to determine if self‐ignition causes forest fires. KW - FTIR KW - Hot storage KW - Ignition KW - Soil KW - Wildfire PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594617 DO - https://doi.org/10.1002/fam.3198 SN - 1099-1018 VL - 48 IS - 4 SP - 495 EP - 507 PB - Wiley CY - New York, NY AN - OPUS4-59461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Konert, Florian A1 - Campari, Alessandro A1 - Nietzke, Jonathan A1 - Sobol, Oded A1 - Paltrinieri, Nicola A1 - Alvaro, Antonio T1 - Evaluation of the tensile properties of X65 pipeline steel in compressed gaseous hydrogen using hollow specimens N2 - Hydrogen has great potential on the path towards decarbonization of the energy and transport sectors and can mitigate the urgent issue of global warming. It can be sustainably produced through water electrolysis with potentially zero emissions, and efficiently used (e.g., in fuel cell systems). Despite its environmental advantages, hydrogen-metal interactions could result in the degradation of the mechanical properties of several structural materials. In order to determine the magnitude of the material degradation in relation to hydrogen exposure, extensive material testing is required. The standardized procedure for in-situ testing for the quantification of the impact of compressed gaseous hydrogen (CGH2) relies on the utilization of an autoclave around the tested specimen. Such test set-up is complex, expensive, time-consuming and requires special equipment, trained personnel, and strict safety procedures. A relatively recent method to circumvent these issues and provide affordable results consists of using hollow specimens, thus applying the hydrogen pressure inside rather than outside the specimen. It allows to reduce the volume of hydrogen by several orders of magnitude and to perform the tests more efficiently and in a safer manner. This study focuses on evaluating the tensile properties of X65 vintage pipeline steel tested in a high-pressure hydrogen environment using hollow specimens. Tests are performed in 6 MPa H2 and Ar at the nominal strain rate of 10−6 s−1 to evaluate the reduced area at fracture and the elongation loss. The effect of surface finishing on crack initiation and propagation is investigated by comparing two different manufacturing techniques. In this way, this study provides insights into the applicability of a novel, reliable, and safe testing method which can be used to assess the hydrogen-assisted ductility loss in metallic materials. KW - Mechanical Engineering KW - Hydrogen Embrittlement KW - SSRT KW - Hollow specimen KW - Pipeline steel KW - In-situ tensile test PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595887 DO - https://doi.org/10.1016/j.prostr.2024.01.074 SN - 2452-3216 VL - 54 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-59588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Konert, Florian A1 - Wieder, Frank A1 - Nietzke, Jonathan A1 - Meinel, Dietmar A1 - Böllinghaus, Thomas A1 - Sobol, Oded T1 - Evaluation of the impact of gaseous hydrogen on pipeline steels utilizing hollow specimen technique and μCT N2 - The high potential of hydrogen as a key factor on the pathway towards a climate neutral economy, leads to rising demand in technical applications, where gaseous hydrogen is used. For several metals, hydrogen-metal interactions could cause a degradation of the material properties. This is especially valid for low carbon and highstrength structural steels, as they are commonly used in natural gas pipelines and analyzed in this work. This work provides an insight to the impact of hydrogen on the mechanical properties of an API 5L X65 pipeline steel tested in 60 bar gaseous hydrogen atmosphere. The analyses were performed using the hollow specimen technique with slow strain rate testing (SSRT). The nature of the crack was visualized thereafter utilizing μCT imaging of the sample pressurized with gaseous hydrogen in comparison to one tested in an inert atmosphere. The combination of the results from non-conventional mechanical testing procedures and nondestructive imaging techniques has shown unambiguously how the exposure to hydrogen under realistic service pressure influences the mechanical properties of the material and the appearance of failure. KW - Energy Engineering and Power Technology KW - Condensed Matter Physics KW - Fuel Technology KW - Renewable Energy, Sustainability and the Environment KW - µCT KW - Hollow Specimen Technique KW - Hydrogen Embrittlement PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595077 DO - https://doi.org/10.1016/j.ijhydene.2024.02.005 SN - 0360-3199 VL - 59 SP - 874 EP - 879 PB - Elsevier B.V. AN - OPUS4-59507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -