TY - JOUR A1 - Steiner, S. A1 - Heldt, J. A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Frömeling, T. T1 - Influence of oxygen vacancies on core-shell formation in solid solutions of (Na,Bi)TiO3 and SrTiO3 N2 - Solid solutions of (Na,Bi)TiO3 (NBT) and SrTiO3 (ST) are materials of interest for high-strain or high-energy density capacitor applications. Often, they exhibit chemical heterogeneity and develop core-shell structures during regular solid-state synthesis with an NBT-rich core. In this case, the NBT forms first so that the strontium needs to diffuse into the material to reach chemical homogeneity. Depending on the presence of core-shell structures, the electrical properties can vary drastically. In this work, we rationalize the effect of variations in oxygen vacancy concentration by Fe-acceptor and Nb-donor doping. It can be shown that a diffusion couple of strontium and oxygen is responsible for chemical homogenization and that the oxygen vacancy content can control the formation of a core-shell structure. KW - Lead-free ceramics KW - Bismuth titanates KW - Core-shell structures KW - Diffusion/diffusivity KW - Ferroelectricity/ferroelectric materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525988 DO - https://doi.org/10.1111/jace.17845 SP - 1 EP - 10 PB - Wiley Periodicals LLC, John Wiley & Sons, Inc. AN - OPUS4-52598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Robens-Radermacher, Annika A1 - Held, Felix A1 - Coelho Lima, Isabela A1 - Titscher, Thomas A1 - Unger, Jörg F. T1 - Efficient identification of random fields coupling Bayesian inference and PGD reduced order model for damage localization N2 - One of the main challenges regarding our civil infrastructure is the efficient operation over their complete design lifetime while complying with standards and safety regulations. Thus, costs for maintenance or replacements must be optimized while still ensuring specified safety levels. This requires an accurate estimate of the current state as well as a prognosis for the remaining useful life. Currently, this is often done by regular manual or visual inspections within constant intervals. However, the critical sections are often not directly accessible or impossible to be instrumented at all. Model‐based approaches can be used where a digital twin of the structure is set up. For these approaches, a key challenge is the calibration and validation of the numerical model based on uncertain measurement data. The aim of this contribution is to increase the efficiency of model updating by using the advantage of model reduction (Proper Generalized Decomposition, PGD) and applying the derived method for efficient model identification of a random stiffness field of a real bridge.” KW - Model reduction KW - Model updating KW - Proper generalized decomposition KW - Random field KW - Variational Bayesian Inference PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521275 DO - https://doi.org/10.1002/pamm.202000063 VL - 20 IS - 1 SP - e202000063 PB - Wiley Online Libary AN - OPUS4-52127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - About alcohol-initiated polymerization of glycolide and separate crystallization of cyclic and linear polyglycolides N2 - Alcohol-initiated polymerizations of glycolide (GL) catalyzed by tin(II) 2-ethylhexanoate (SnOct2) were carried out in bulk with variation of GA/In ratio, temperature and time. Due to a rather strong competition of cyclization polyglycolide (PGA) free of cycles were never obtained. When the cyclic catalysts 2,2-dibutal-2-stanna − 1,3-dithiolane (DSTL) or 2-stanna 1,3-dioxo-4,5,6,7 bibenzepane (SnBiph) were used in combination with 1,4-butanediol the influence of cyclization was even stronger. Furthermore, the degrees of polymerization were higher than the GA/alcohol ratio due to rapid polycondensation in the solid state. At 160 °C or below, the matrixassisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra indicated separate crystallization of low molar mass cyclic and linear PGAs from the same reaction mixture (also observed for poly(L-lactide)s). KW - MALDI TOF MS KW - Polyglycolide KW - Ring opening polymerization KW - Cyclization KW - Crystallization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607282 DO - https://doi.org/10.1016/j.polymer.2024.127440 VL - 309 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-60728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Dussert, F. A1 - Truffier-Boutry, D. A1 - Benayad, A. A1 - Beal, D. A1 - Mattera, L. A1 - Ling, W. L. A1 - Carrière, M. A1 - Reiss, P. T1 - Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity N2 - With the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSexS1−x shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence Quantum yields (PLQY) > 50%and similar PL decay times (64–67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber. The alumina coated core/shell system exhibits the highest stability in terms of PLQY Retention as well as the lowest shift of the PL maximum and lowest increase of the PL linewidth, followed by the CSS QDs and finally the gradient shell system. By means of XPS studies we identify the degradation of the ZnS outer layer and concomitant xidation of the emissive InZnP core as the main origins of degradation in the gradient structure. These modifications do not occur in the case of the alumina-capped sample, which exhibits excellent chemical stability. The gradient shell and CSS systems could be transferred to the aqueous phase using surface ligand exchange with penicillamine. Cytotoxicity studies on human primary keratinocytes revealed that exposure for 24 h to 6.25–100 nM of QDs did not affect cell viability. However, a trend toward reduced cell proliferation is observed for higher concentrations of gradient shell and CSS QDs with a thin ZnS shell, while CSS QDs with a thicker ZnS shell do not exhibit any impact. KW - Indium phosphide KW - Quantum dots KW - Cytotoxicity KW - Photostability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494249 DO - https://doi.org/10.3389/fchem.2019.00466 VL - 7 SP - Article Number: 466 PB - Frontiers Media SA AN - OPUS4-49424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Scholz, Philipp T1 - Sequential Extraction of Incineration Bottom Ash: Conclusions Regarding Ecotoxicity N2 - The classification of incineration bottom ash (IBA) as hazardous or non-hazardous according to ecotoxic hazard property HP14 is still under debate. In this context, only the compounds of Zn and Cu with the hazard statement code H410 are of relevance. With an approach based on the grouping of substances, it was shown that such substances are either readily water-soluble or slightly and sparingly soluble. The concentrations of readily soluble Cu and Zn compounds in IBA are far below the cut-off value of 0.1%. Slightly and sparingly soluble Zn and Cu compounds could be quantified in the first fraction of a four-step sequential extraction procedure. With the results from the complete sequence, the dimensionless synthesis toxicity index (STI) was calculated and was in the range of 494 to 1218 for the four investigated IBA samples. It was concluded that IBA can usually be classified as non-hazardous. KW - Incineration bottom ash KW - Hazard properties KW - Ecotoxicity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605262 DO - https://doi.org/10.3390/app14135541 SN - 2076-3417 VL - 14 IS - 13 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-60526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hupp, Vitus A1 - Schartel, Bernhard A1 - Flothmeier, K. A1 - Hartwig, A. T1 - Pyrolysis and flammability of phosphorus based flame retardant pressure sensitive adhesives and adhesive tapes N2 - Pressure-sensitive adhesive tapes are used in a variety of applications such as construction, aircrafts, railway vehicles, and ships, where flame retardancy is essential. Especially in these applications, phosphorus-based flame retardants are often chosen over halogenated ones due to their advantages in terms of toxicity. Although there are pressure-sensitive adhesives with phosphorus flame retardants available on the market, their flame-retardant modes of action and mechanisms are not entirely understood. This research article provides fundamental pyrolysis research of three phosphorus-based flame retardants that exhibit different mechanisms in a pressuresensitive adhesive matrix. The flame-retardants modes of action and mechanisms of a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivate, an aryl phosphate, and a self-synthesized, covalently bonded DOPO derivate (copolymerized) are investigated. The blended DOPO derivate is volatilized at rather low temperatures while the covalently bonded DOPO derivate decomposes together with the polymer matrix at the same temperature. Both DOPO derivates release PO radicals which are known for their flame inhibition. The aryl phosphate decomposes at higher temperatures, releases small amounts of aryl phosphates into the gas phase, and acts predominantly the condensed phase. The aryl phosphate acts as precursor for phosphoric acid and improves the charring of the pressure sensitive adhesive matrix. All flame retardants enhance the flammability of the adhesives depending on their individual mode of action while the covalently bonded flame retardant additionally improves the mechanical properties at elevated temperatures making it a promising future technology for pressure-sensitive adhesives. KW - Pyrolysis of flame retardant KW - Pyrolysis gas chromatography KW - Mass spectrometry KW - Phosphorus flame retardant KW - Decomposition mechanism KW - Flame retardant pressure sensitive adhesives KW - Flame retardancy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607192 DO - https://doi.org/10.1016/j.jaap.2024.106658 SN - 0165-2370 SN - 1873-250X VL - 181 SP - 1 EP - 31 PB - Elsevier B.V. AN - OPUS4-60719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Heinrich, Ph. A1 - Baum, D. A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography N2 - Among additive manufacturing (AM) technologies, the laser powder bed fusion (L-PBF) is one of the most important technologies to produce metallic components. The layer-wise build-up of components and the complex process conditions increase the probability of the occurrence of defects. However, due to the iterative nature of its manufacturing process and in contrast to conventional manufacturing technologies such as casting, L-PBF offers unique opportunities for in-situ monitoring. In this study, two cameras were successfully tested simultaneously as a machine manufacturer independent process monitoring setup: a high-frequency infrared camera and a camera for long time exposure, working in the visible and infrared spectrum and equipped with a near infrared filter. An AISI 316L stainless steel specimen with integrated artificial defects has been monitored during the build. The acquired camera data was compared to data obtained by computed tomography. A promising and easy to use examination method for data analysis was developed and correlations between measured signals and defects were identified. Moreover, sources of possible data misinterpretation were specified. Lastly, attempts for automatic data analysis by data Integration are presented. KW - Laser powder bed fusion (L-PBF) KW - Selective laser melting (SLM) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Data fusion KW - Lack-of-fusion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502417 DO - https://doi.org/10.3390/met10010103 VL - 10 IS - 1 SP - 103 PB - MDPI CY - Basel, Schweiz AN - OPUS4-50241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ehlert, Christopher A1 - Holzweber, Markus A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Saalfrank, Peter T1 - A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids N2 - In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC₁im]⁺[NTf₂]⁻ and [C₄C₁im]⁺[I]⁻). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra. KW - Ionic liquids KW - NEXAFS KW - DFT spectrum simulations PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-367223 DO - https://doi.org/10.1039/c5cp07434g SN - 1463-9076 SN - 1463-9084 VL - 18 IS - 12 SP - 8654 EP - 8661 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-36722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Beiranvand, Z. A1 - Kakanejadifard, A. A1 - Donskyi, Ievgen A1 - Faghani, A. A1 - Tu, Z. A1 - Lippitz, Andreas A1 - Sasanpour, P. A1 - Maschietto, F. A1 - Paulus, B. A1 - Haag, R. A1 - Adeli, M. T1 - Functionalization of fullerene at room temperature: toward new carbon vectors with improved physicochemical properties N2 - In this work, fullerene has been functionalized with cyanuric Chloride at room temperature by a nitrene mediated [2 + 1] cycloaddition reaction. The adduct after functionalization is inherently in the form of azafulleroid and shows broad UV absorption in the wavelength range of 200–800 nm, as well as photothermal conversion and fluorescence with a high quantum yield. KW - Functionalization of fullerenes KW - XPS KW - NEXAFS PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-387076 DO - https://doi.org/10.1039/c6ra23419d SN - 2046-2069 VL - 6 IS - 114 SP - 112771 EP - 112775 PB - Royal Society of Chemistry (RSC) AN - OPUS4-38707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwarz, F. A1 - Heinrich, Thomas A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Schalley, C. T1 - A photoswitchable rotaxane operating in monolayers on solid support N2 - A novel photoswitchable rotaxane was synthesised and its switching behaviour in solution was analysed with NMR and UV-Vis. A monolayer of rotaxanes was deposited on glass surfaces and the on-surface photoswitching was investigated. Angle-resolved NEXAFS spectra revealed a preferential orientation that reversibly changes upon switching. KW - XPS KW - NEXAFS KW - Photoswitchable rotaxane KW - Self assembly PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-386814 DO - https://doi.org/10.1039/c6cc08586e SN - 0022-4936 SN - 1364-548X SN - 0009-241x SN - 1359-7345 VL - 52 IS - 100 SP - 14458 EP - 14461 PB - Royal Society of Chemistry (RSC) AN - OPUS4-38681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Comprehensive study of deuterium-induced effects in in austenitic stainless steel AISI 304L N2 - The damaging impact of hydrogen on the austenitic stainless steel AISI 304 L was analysed. To this aim, samples were charged electrochemically with the hydrogen isotope deuterium (2H, D) and examined with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and electron backscatter diffraction (EBSD). The fusion of the obtained chemical and structural information revealed local enrichment of deuterium in austenite, transformation into martensite, crack formation and severe roughening of the specimen surface. The results indicated that martensite was not only formed during charging but also during Desorption and ToF-SIMS examinations. Furthermore, cross-sections of deuterium-charged samples revealed that in preferred deformation bands a g/ε/a 0 evolution is taking place. By means of microscopic analyses and carrier gas hot extraction (CGHE), it was found that the use of NaAsO2 as recombination poison decreased the uptake of hydrogen significantly and resulted in severe precipitation on the specimen surfaces. This is in contrast to the popular presumption that NaAsO2 enhances the uptake of hydrogen (and deuterium) during electrochemical charging by hampering its recombination from Atoms to molecules. KW - AISI 304L KW - Hydrogen KW - ToF-SIMS KW - Deuterium KW - Martensite PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477540 DO - https://doi.org/10.1016/j.ijhydene.2019.03.058 SN - 0360-3199 SN - 1879-3487 VL - 44 IS - 23 SP - 12228 EP - 12238 PB - Elsevier Ltd. AN - OPUS4-47754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Shell thickness determination for PTFE‐PS core‐shell nanoparticles using scanning transmission X‐ray microscopy (STXM) N2 - A scanning transmission X‐ray microscopy (STXM)‐based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core‐shell nanoparticles, which exhibit a strong X‐ray absorption contrast and a well‐defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less X‐ray beam‐induced damage of the sample is achieved by recording STXM images only at 2 predetermined energies of maximum Absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core‐shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near‐edge X‐ray absorption fine structure spectroscopy confirms the significant difference in X‐ray absorption behavior between PTFE and PS. Additionally, because of the insolubility of styrene in PTFE a well‐defined interface between particle core and shell is expected. To validate the STXM results, both the naked PTFE cores as well as the complete core‐shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM‐based methodology yields particle dimensions in agreement with the SEM results and provides additional information such as the position of the particle core, which cannot be extracted from a SEM micrograph. T2 - European conference on applications of surface and interface analysis (ECASIA'17) CY - Montpellier, France DA - 24.09.2017 KW - Core-shell nanoparticles KW - Polymers KW - PS KW - PTFE KW - SEM KW - STXM PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449700 DO - https://doi.org/10.1002/sia.6464 SN - 1096-9918 SN - 0142-2421 VL - 50 IS - 11 SP - 1077 EP - 1082 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-44970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Dietrich, P. A1 - Thissen, A. A1 - Unger, Wolfgang T1 - Surface characterisation of Escherichia coli under various conditions by near-ambient pressure XPS N2 - Bacteria are inherently in a hydrated state and therefore not compatible to ultra-high vacuum techniques such as XPS without prior sample preparation involving freeze drying or fast freezing. This has changed with the development of near-ambient pressure (NAP)-XPS, which makes it possible to characterise the bacterial surface with minimal sample preparation. This paper presents NAP-XPS measurements of Escherichia coli under various NAP conditions: at 11 mbar in a humid environment, at 2 mbar after drying in the chamber, pre-dried at 4 mbar, and at 1 mbar after overnight pumping at 10^−4 mbar. The high-resolution spectra of carbon, nitrogen, and oxygen are presented and found to be in general agreement with XPS measurements from freeze-dried and fast-frozen bacteria. However, it was found that the amount of carbon components associated with polysaccharides increases relative to aliphatic carbon during drying and increases further after overnight pumping. This implies that drying has an impact on the bacterial surface. T2 - European conference on applications of surface and interface analysis (ECASIA'17) CY - Montpellier, France DA - 24.09.2018 KW - Bacteria KW - E. coli KW - NAP-XPS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454047 DO - https://doi.org/10.1002/sia.6480 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 11 SP - 996 EP - 1000 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-45404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Afantitis, A. A1 - Melagraki, G. A1 - Isigonis, P. A1 - Tsoumanis, A. A1 - Varsou, D. D. A1 - Valsami-Jones, E. A1 - Papadiamantis, A. A1 - Ellis, L.-J. A. A1 - Sarimveis, H. A1 - Doganis, P. A1 - Karatzas, P. A1 - Tsiros, P. A1 - Liampa, I. A1 - Lobaskin, V. A1 - Greco, D. A1 - Serra, A. A1 - Kinaret, P. A. S. A1 - Saarimäki, L. A. A1 - Grafström, R. A1 - Kohonen, P. A1 - Nymark, P. A1 - Willighagen, E. A1 - Puzyn, T. A1 - Rybinska-Fryca, A. A1 - Lyubartsev, A. A1 - Jensen, K. A. A1 - Brandenburg, J. G. A1 - Lofts, S. A1 - Svendsen, C. A1 - Harrison, S. A1 - Maier, D. A1 - Tamm, K. A1 - Jänes, J. A1 - Sikk, L. A1 - Dusinska, M. A1 - Longhin, E. A1 - Rundén-Pran, E. A1 - Mariussen, E. A1 - El Yamani, N. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Tropsha, A. A1 - Cohen, Y. A1 - Lesczynski, J. A1 - Hendren, C. O. A1 - Wiesner, M. A1 - Winkler, D. A1 - Suzuki, N. A1 - Yoon, T. H. A1 - Choi, J.-S. A1 - Sanabria, N. A1 - Gulumian, M. A1 - Lynch, I. T1 - NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment N2 - Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational ‘safe-by-design’ approaches to facilitate NM commercialization. KW - Nanoinformatics KW - Hazard assessment KW - (Quantitative) Structure-Active Relationships KW - Safe-by-design KW - Predictive modelling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505952 DO - https://doi.org/10.1016/j.csbj.2020.02.023 VL - 18 SP - 583 EP - 602 PB - Elsevier B.V. AN - OPUS4-50595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Robens-Radermacher, Annika A1 - Unger, Jörg F. T1 - Efficient structural reliability analysis by using a PGD model in an adaptive importance sampling schema N2 - One of the most important goals in civil engineering is to guarantee the safety of the construction. Standards prescribe a required failure probability in the order of 10−4 to 10−6. Generally, it is not possible to compute the failure probability analytically. Therefore, many approximation methods have been developed to estimate the failure probability. Nevertheless, these methods still require a large number of evaluations of the investigated structure, usually finite element (FE) simulations, making full probabilistic design studies not feasible for relevant applications. The aim of this paper is to increase the efficiency of structural reliability analysis by means of reduced order models. The developed method paves the way for using full probabilistic approaches in industrial applications. In the proposed PGD reliability analysis, the solution of the structural computation is directly obtained from evaluating the PGD solution for a specific parameter set without computing a full FE simulation. Additionally, an adaptive importance sampling scheme is used to minimize the total number of required samples. The accuracy of the failure probability depends on the accuracy of the PGD model (mainly influenced on mesh discretization and mode truncation) as well as the number of samples in the sampling algorithm. Therefore, a general iterative PGD reliability procedure is developed to automatically verify the accuracy of the computed failure probability. It is based on a goal-oriented refinement of the PGD model around the adaptively approximated design point. The methodology is applied and evaluated for 1D and 2D examples. The computational savings compared to the method based on a FE model is shown and the influence of the accuracy of the PGD model on the failure probability is studied. KW - Reliability KW - Probability of failure KW - Adaptive importance sampling KW - Reduced order models KW - Proper Generalized Decomposition PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510345 DO - https://doi.org/10.1186/s40323-020-00168-z VL - 7 SP - Article number: 29 PB - SpringerOpen AN - OPUS4-51034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Heinrich, Thomas A1 - Tougaard, S. A1 - Werner, W. S. M. A1 - Hronek, M. A1 - Kunz, Valentin A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Hodoroaba, Vasile-Dan A1 - Benemann, Sigrid A1 - Nirmalananthan-Budau, Nithiya A1 - Geißler, Daniel A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Determining the thickness and completeness of the shell of polymer core-shell nanoparticles by X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and transmission scanning electron microscopy N2 - Core–shell nanoparticles (CSNPs) have become indispensable in various industrial applications. However, their real internal structure usually deviates from an ideal core–shell structure. To control how the particles perform with regard to their specific applications, characterization techniques are required that can distinguish an ideal from a nonideal morphology. In this work, we investigated poly(tetrafluoroethylene)–poly(methyl methacrylate) (PTFE–PMMA) and poly(tetrafluoroethylene)–polystyrene (PTFE–PS) polymer CSNPs with a constant core diameter (45 nm) but varying shell thicknesses (4–50 nm). As confirmed by transmission scanning electron microscopy (T-SEM), the shell completely covers the core for the PTFE–PMMA nanoparticles, while the encapsulation of the core by the shell material is incomplete for the PTFE–PS nanoparticles. X-ray photoelectron spectroscopy (XPS) was applied to determine the shell thickness of the nanoparticles. The software SESSA v2.0 was used to analyze the intensities of the elastic peaks, and the QUASES software package was employed to evaluate the shape of the inelastic background in the XPS survey spectra. For the first time, nanoparticle shell thicknesses are presented, which are exclusively based on the analysis of the XPS inelastic background. Furthermore, principal component analysis (PCA)-assisted time-of-flight secondary-ion mass spectrometry (ToF-SIMS) of the PTFE–PS nanoparticle sample set revealed a systematic variation among the samples and, thus, confirmed the incomplete encapsulation of the core by the shell material. As opposed to that, no variation is observed in the PCA score plots of the PTFE–PMMA nanoparticle sample set. Consequently, the complete coverage of the core by the shell material is proved by ToF-SIMS with a certainty that cannot be achieved by XPS and T-SEM. KW - XPS KW - T-SEM KW - ToF-SIMS KW - Core-shell nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499165 DO - https://doi.org/10.1021/acs.jpcc.9b09258 VL - 123 IS - 49 SP - 29765 EP - 29775 PB - American Chemical Society CY - Washington, DC AN - OPUS4-49916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tu, Z. A1 - Donskyi, Ievgen A1 - Qiao, H. A1 - Zhu, Z. A1 - Unger, Wolfgang A1 - Hackenberger, C. P. R. A1 - Chen, W. A1 - Adeli, M. A1 - Haag, R. T1 - Graphene Oxide-Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple-Drug Resistance N2 - Multidrug resistance resulting from a variety of defensive pathways in Cancer has become a global concern with a considerable impact on the mortality associated with the failure of traditional chemotherapy. Therefore, further research and new therapies are required to overcome this challenge. In this work, a cyclic R10 peptide (cR10) is conjugated to polyglycerol-covered nanographene oxide to engineer a nanoplatform for the surmounting of multidrug resistance. The nuclear translocation of the nanoplatform, facilitated by cR10 peptide, and subsequently, a laser-triggered release of the loaded doxorubicin result in efficient anticancer activity confirmed by both in vitro and in vivo experiments. The synthesized nanoplatform with a combination of different features, including active nucleus-targeting, highloading capacity, controlled release of cargo, and photothermal property, provides a new strategy for circumventing multidrug resistant cancers. KW - Graphen Oxide KW - Nanoplatform KW - Cancer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510061 DO - https://doi.org/10.1002/adfm.202000933 VL - 30 IS - 35 SP - 2000933 PB - Wiley VCH AN - OPUS4-51006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Otto, Peter A1 - de Lorenzis, L. A1 - Unger, Jörg F. T1 - Explicit dynamics in impact simulation using a NURBS contact interface N2 - In this paper, the impact problem and the subsequent wave Propagation are considered. For the contact discretization an intermediate non-uniform rational B-spline (NURBS) layer is added between the contacting finite element bodies, which allows a smooth contact formulation and efficient element-based integration. The impact event is ill-posed and requires a regularization to avoid propagating stress oscillations. A nonlinear mesh-dependent penalty regularization is used, where the stiffness of the penalty regularization increases upon mesh refinement. Explicit time integration methods are well suited for wave propagation problems, but are efficient only for diagonal mass matrices. Using a spectral element discretization in combination with a NURBS contact layer the bulk part of the mass matrix is diagonal. KW - Explicit dynamics KW - Impact simulation KW - Isogeometric analysis KW - mortar method KW - spectral elements PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506041 DO - https://doi.org/10.1002/nme.6264 VL - 121 IS - 6 SP - 1248 EP - 1267 PB - Wiley Online Libary AN - OPUS4-50604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Otto, Peter A1 - Lorenzis, L. A1 - Unger, Jörg F. T1 - Explicit dynamics in impact simulation using a NURBS contact interface N2 - In this paper, the impact problem and the subsequent wave propagation are considered. For the contact discretization an intermediate NURBS layer is added between the contacting finite element bodies, which allows a smooth contact formulation and efficient element‐based integration. The impact event is ill‐posed and requires a regularization to avoid propagating stress oscillations. A nonlinear mesh dependent penalty regularization is used, where the stiffness of the penalty regularization increases upon mesh refinement. Explicit time integration methods are well suited for wave propagation problems, but are efficient only for diagonal mass matrices. Using a spectral element discretization and the coupled FE‐NURBS approach the bulk part of the mass matrix is diagonal. KW - Impact simulation KW - Explicit dynamics KW - Isogeometric analysis KW - Spectral elements KW - Mortar method PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494947 DO - https://doi.org/10.1002/nme.6264 SP - 1 EP - 21 PB - Wiley Online Libary AN - OPUS4-49494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - A new test specimen for the determination of the field of view of small-area X-ray photoelectron spectrometers N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces, and so forth. For evaluating the quality of such microstructures, it is often crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. To address this issue, the d80/20 parameter of a line scan across a chemical edge is often used. However, the typical d80/20 parameter does not give information on contributions from the long tails of the X-ray beam intensity distribution or the electron-optical system as defined by apertures. In the VAMAS TWA2 A22 project “Applying planar, patterned, multi-metallic samples to assess the impact of analysis area in surface-chemical analysis,” new test specimen was developed and tested. The here presented testing material consists of a silicon wafer substrate with an Au-film and embedded Cr circular and square spots with decreasing dimensions from 200 μm down to 5 μm. The spot sizes are traceable to the length unit due to size measurements with a metrological SEM. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize, as an example, the FoV of a Kratos AXIS Ultra DLD XPS instrument. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Field of view KW - Reference material KW - Selected area XPS KW - Small-area XPS KW - Small-spot XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509902 DO - https://doi.org/10.1002/sia.6831 SN - 1096-9918 VL - 52 IS - 12 SP - 890 EP - 894 PB - John Wiley & Sons Ltd AN - OPUS4-50990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -