TY - JOUR A1 - Yusenko, Kirill A1 - Khandarkhaeva, S. A1 - Bykov, M. A1 - Fedotenko, T. A1 - Hanfland, M. A1 - Sukhikh, A. A1 - Gromilov, S. A1 - Dubrovinsky, L. T1 - Face-centered cubic refractory alloys prepared from single-source precursors N2 - Three binary fcc-structured alloys (fcc–Ir0.50Pt0.50, fcc Rh0.66Pt0.33 and fcc–Rh0.50Pd0.50) were 14 prepared from [Ir(NH3)5Cl][PtCl6], [Ir(NH3)5Cl][PtBr6], [Rh(NH3)5Cl]2[PtCl6]Cl2 and 15 [Rh(NH3)5Cl][PdCl4]·H2O, respectively, as single-source precursors. All alloys were prepared by 16 thermal decomposition in gaseous hydrogen flow below 800 °C. Fcc–Ir0.50Pt0.50 and fcc–Rh0.50Pd0.50 17 correspond to miscibility gaps on binary metallic phase diagrams and can be considered as 18 metastable alloys. Detailed comparison of [Ir(NH3)5Cl][PtCl6] and [Ir(NH3)5Cl][PtBr6] crystal 19 structures suggests that two isoformular salts are not isostructural. In [Ir(NH3)5Cl][PtBr6], specific 20 Br…Br interactions are responsible for crystal structure arrangement. Room temperature 21 compressibility of fcc–Ir0.50Pt0.50, fcc–Rh0.66Pt0.33 and fcc–Rh0.50Pd0.50 has been investigated up to 50 GPa 22 in diamond anvil cells. All investigated fcc-structured binary alloys are stable under compression. 23 Atomic volumes and bulk moduli show good agreement with ideal solutions model. For fcc–24 Ir0.50Pt0.50, V0/Z = 14.597(6) Å3·atom-1, B0 = 321(6) GPa, B0' = 6(1); for fcc–Rh0.66Pt0.33, V0/Z = 14.211(3) 25 Å3·atom-1, B0 =259(1) GPa, B0' = 6.66(9); for fcc–Rh0.50Pd0.50, V0/Z = 14.18(2) Å3·atom-1, B0 =223(4) GPa, 26 B0' = 5.0(3). KW - High-pressure KW - Refractory alloys KW - Platinum group metals KW - Single-source precursors PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508176 VL - 13 IS - 6 SP - 1418 PB - MDPI CY - Basel AN - OPUS4-50817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -