TY - JOUR A1 - Pellegrino, F. A1 - Sordello, F. A1 - Mino, L. A1 - Prozzi, M. A1 - Mansfeld, Ulrich A1 - Hodoroaba, Vasile-Dan A1 - Minero, C. T1 - Polyethylene Glycol as Shape and Size Controller for the Hydrothermal Synthesis of SrTiO3 Cubes and Polyhedra JF - Nanomaterials N2 - Understanding the correlation between the morphological and functional properties of particulate materials is crucial across all fields of physical and natural sciences. This manuscript reports on the investigation of the effect of polyethylene glycol (PEG) employed as a capping Agent in the synthesis of SrTiO3 crystals. The crucial influence of PEG on both the shape and size of the strontium titanate particles is revealed, highlighting the effect on the photocurrents measured under UV–Vis irradiation. KW - Polyethylene glycol KW - Strontium titanate KW - Controlled morphology KW - Photoelectrochemistry KW - Electron microscopy KW - EDS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512892 DO - https://doi.org/10.3390/nano10091892 VL - 10 IS - 9 SP - 1892 PB - MDPI CY - Basel, CH AN - OPUS4-51289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Boehm, S. A1 - Kim, K. J. T1 - Analysis of elemental composition of Fe1-xNix and Si1-xGex alloy thin films by electron probe microanalysis and micro-focus X-ray fluorescence JF - Surface and Interface Analysis N2 - The present study reports on results of analysis of the elemental composition of thin films by electron probe microanalysis with energy dispersive (ED-EPMA) X-ray spectrometry in conjunction with the dedicated thin-film analysis software package Stratagem and by X-ray fluorescence in its version with a micro-focus X-ray fluorescence (μ-XRF) source attached to a scanning electron microscope (SEM). Two thin-film systems have been analyzed: Fe1-xNix on silicon wafer and Si1-xGex on Al2O3 substrate, in both cases the layers being grown to a thickness of about 200 nm by ion beam sputter deposition. Samples of five different atomic fractions have been produced and analyzed for each thin-film system. Moreover, reference samples with certified elemental composition and thickness have been also available. This study is part of an interlaboratory comparison organized in the frame of standardization technical committee ISO/TC 201 “Surface chemical analysis.” Two laboratories have been analyzed by ED-EPMA (one laboratory standardless and one laboratory using both standardless and with standards variants) and one laboratory by μ-XRF (standardless and with standards). All the elemental compositions obtained with different methods are in very good agreement for the complete two sets of five samples each. KW - Thin films KW - Elemental composition KW - FeNi KW - SiGe KW - Electron probe microanalysis KW - X-ray Fluorescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509262 DO - https://doi.org/10.1002/sia.6834 SN - 0142-2421 VL - 52 IS - 12 SP - 929 EP - 932 PB - John Wiley & Sons Ltd AN - OPUS4-50926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mech, A. A1 - Wohlleben, W. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Weigel, S. A1 - Babick, F. A1 - Brüngel, R. A1 - Friedrich, C. M. A1 - Rasmussen, K. A1 - Rauscher, H. T1 - Nano or Not Nano? A Structured Approach for Identifying Nanomaterials According to the European Commission’s Definition JF - Small N2 - Identifying nanomaterials (NMs) according to European Union Legislation is challenging, as there is an enormous variety of materials, with different physico-chemical properties. The NanoDefiner Framework and its Decision Support Flow Scheme (DSFS) allow choosing the optimal method to measure the particle size distribution by matching the material properties and the performance of the particular measurement techniques. The DSFS leads to a reliable and economic decision whether a material is an NM or not based on scientific criteria and respecting regulatory requirements. The DSFS starts beyond regulatory requirements by identifying non-NMs by a proxy Approach based on their volume-specific surface area. In a second step, it identifies NMs. The DSFS is tested on real-world materials and is implemented in an e-tool. The DSFS is compared with a decision flowchart of the European Commission’s (EC) Joint Research Centre (JRC), which rigorously follows the explicit criteria of the EC NM definition with the focus on identifying NMs, and non-NMs are identified by exclusion. The two approaches build on the same scientific basis and measurement methods, but start from opposite ends: the JRC Flowchart starts by identifying NMs, whereas the NanoDefiner Framework first identifies non-NMs. KW - Classification KW - Definition KW - Identification KW - Nanomaterials KW - Particle size KW - Regulation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510917 DO - https://doi.org/10.1002/smll.202002228 SN - 1613-6829 SP - 2002228-1 EP - 2002228-16 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Breitenbach, Romy A1 - Radnik, Jörg A1 - Feldmann, Ines A1 - Schuessler, J.A. A1 - von Blanckenburg, F. A1 - Gorbushina, Anna A1 - Schott, J. T1 - How the rock-inhabiting fungus K. petricola A95 enhances olivine dissolution through attachment JF - Geochimica et Cosmochimica Acta N2 - Free-living and mycorrhizal fungi are able to enhance the weathering of rock and other solid substrates. Deciphering the exact mechanisms of these natural processes requires their experimental simulation. Moreover, by performing these simulations with genetically amenable rock-weathering fungi, one can knock-out certain fungal traits and consequently identify their weathering-relevant function. Here, the effect of the rock-inhabiting fungus, Knufia petricola A95, on the dissolution kinetics of an Fe-bearing olivine (Mg1.86Fe0.19SiO4) is investigated at 25 °C and pH 6 using reproducible batch and mixed flow experiments. The availability of a melanin-deficient mutant (ΔKppks) of K. petricola A95, which produces more extracellular polymeric substances (EPS) than the wild type (WT), enables the comparative study of the role of melanin and EPS in olivine dissolution. In abiotic dissolution experiments, the olivine dissolution rate decreased considerably over time at pH 6 but not at pH 3.5. This inhibition of abiotic olivine dissolution at pH 6 was most likely caused by the in-situ oxidation of ferrous Fe and/or the precipitation of ferric hydroxides at the olivine surface. In corresponding biotic experiments at pH 6, both the wild type K. petricola and its melanin-deficient mutant ΔKppks solubilised and bound significant amounts of Fe released by olivine dissolution. Fe oxidation and precipitation were thus prevented and olivine dissolution proceeded faster than in the abiotic experiments. By sequestering Fe directly at the olivine surface, the attached wild type K. petricola cells were particularly efficient at preventing the oxidation of Fe at the mineral surface: the slowdown of olivine dissolution almost completely disappeared. The attachment capacity of these wild type cells is most likely mediated by wild type-specific EPS. Our presented experimental systems allow the oxidation of mineral-released Fe and include a rock-inhabiting fungus, thus simulating chemical, physical and biological conditions that set dissolution rates in a way that is relevant to natural ecosystems. KW - Black fungi KW - Bio-weathering KW - Forsterite KW - Knock-out mutant KW - Extracellular polymeric substances KW - Melanin Adhesion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509332 DO - https://doi.org/10.1016/j.gca.2020.05.010 VL - 282 SP - 76 EP - 97 PB - Elsevier Ltd. AN - OPUS4-50933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Sparnacci, K. A1 - Unger, Wolfgang A1 - Tougaard, S. T1 - Determining nonuniformities of core-shell nanoparticle coatings by analysis of the inelastic background of X-ray photoelectron spectroscopy survey spectra JF - Surface and interface analysis N2 - Most real core-shell nanoparticle (CSNP) samples deviate from an ideal core-shell structure potentially having significant impact on the particle properties. An ideal structure displays a spherical core fully encapsulated by a shell of homogeneous thickness, and all particles in the sample exhibit the same shell thickness. Therefore, analytical techniques are required that can identify and characterize such deviations. This study demonstrates that by analysis of the inelastic background in X-ray photoelectron spectroscopy (XPS) survey spectra, the following types of deviations can be identified and quantified: the nonuniformity of the shell thickness within a nanoparticle sample and the incomplete encapsulation of the cores by the shell material. Furthermore, CSNP shell thicknesses and relative coverages can be obtained. These results allow for a quick and straightforward comparison between several batches of a specific CSNP, different coating approaches, and so forth. The presented XPS methodology requires a submonolayer distribution of CSNPs on a substrate. Poly(tetrafluoroethylene)-poly(methyl methacrylate) and poly(tetrafluoroethylene)-polystyrene polymer CSNPs serve as model systems to demonstrate the applicability of the approach. KW - Core-shell KW - Nanoparticles KW - Inelastic background KW - Polymers KW - QUASES KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511315 DO - https://doi.org/10.1002/sia.6865 SN - 0142-2421 SN - 1096-9918 VL - 52 SP - 1 EP - 8 PB - Wiley CY - Chichester AN - OPUS4-51131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tu, Z. A1 - Donskyi, Ievgen A1 - Qiao, H. A1 - Zhu, Z. A1 - Unger, Wolfgang A1 - Hackenberger, C. P. R. A1 - Chen, W. A1 - Adeli, M. A1 - Haag, R. T1 - Graphene Oxide-Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple-Drug Resistance JF - Advanced Functional Materials N2 - Multidrug resistance resulting from a variety of defensive pathways in Cancer has become a global concern with a considerable impact on the mortality associated with the failure of traditional chemotherapy. Therefore, further research and new therapies are required to overcome this challenge. In this work, a cyclic R10 peptide (cR10) is conjugated to polyglycerol-covered nanographene oxide to engineer a nanoplatform for the surmounting of multidrug resistance. The nuclear translocation of the nanoplatform, facilitated by cR10 peptide, and subsequently, a laser-triggered release of the loaded doxorubicin result in efficient anticancer activity confirmed by both in vitro and in vivo experiments. The synthesized nanoplatform with a combination of different features, including active nucleus-targeting, highloading capacity, controlled release of cargo, and photothermal property, provides a new strategy for circumventing multidrug resistant cancers. KW - Graphen Oxide KW - Nanoplatform KW - Cancer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510061 DO - https://doi.org/10.1002/adfm.202000933 VL - 30 IS - 35 SP - 2000933 PB - Wiley VCH AN - OPUS4-51006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Bütefisch, S. A1 - Busch, I. A1 - Weimann, T. A1 - Passiu, C. A1 - Rossi, A. A1 - Unger, Wolfgang T1 - A new test specimen for the determination of the field of view of small-area X-ray photoelectron spectrometers JF - Surface and Interface Analysis N2 - Small-area/spot photoelectron spectroscopy (SAXPS) is a powerful tool for the investigation of small surface features like microstructures of electronic devices, sensors or other functional surfaces, and so forth. For evaluating the quality of such microstructures, it is often crucial to know whether a small signal in a spectrum is an unwanted contamination of the field of view (FoV), defined by the instrument settings, or it originated from outside. To address this issue, the d80/20 parameter of a line scan across a chemical edge is often used. However, the typical d80/20 parameter does not give information on contributions from the long tails of the X-ray beam intensity distribution or the electron-optical system as defined by apertures. In the VAMAS TWA2 A22 project “Applying planar, patterned, multi-metallic samples to assess the impact of analysis area in surface-chemical analysis,” new test specimen was developed and tested. The here presented testing material consists of a silicon wafer substrate with an Au-film and embedded Cr circular and square spots with decreasing dimensions from 200 μm down to 5 μm. The spot sizes are traceable to the length unit due to size measurements with a metrological SEM. For the evaluation of the FoV, we determined the Au4f intensities measured with the center of the FoV aligned with the center of the spot and normalized to the Au4f intensity determined on the Au-film. With this test specimen, it was possible to characterize, as an example, the FoV of a Kratos AXIS Ultra DLD XPS instrument. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Field of view KW - Reference material KW - Selected area XPS KW - Small-area XPS KW - Small-spot XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509902 DO - https://doi.org/10.1002/sia.6831 SN - 1096-9918 VL - 52 IS - 12 SP - 890 EP - 894 PB - John Wiley & Sons Ltd AN - OPUS4-50990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmed, R. A1 - Vaishampayan, A. A1 - Cuellar-Camacho, J. L. A1 - Wight, D. J. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang A1 - Grohmann, E. A1 - Haag, R. A1 - Wagner, O. T1 - Multivalent Bacteria Binding by Flexible Polycationic Microsheets Matching Their Surface Charge Density JF - Advance Material Interfaces N2 - Aiming at the overall negative surface charge of bacteria, a new strategy of antibacterial agents based on large polymer-modified graphene oxide (GO) sheets is assessed. The presented flexible, polycationic Sheets match the size and charge density of the Escherichia coli surface charge density (2 × 1014 cm−2). These matching parameters create an unspecific but very strong bacteria adsorber by multivalent, electrostatic attraction. Their interaction with bacteria is visualized via atomic force and confocal microscopy and shows that they effectively bind and wrap around E. coli cells, and thereby immobilize them. The incubation of Gram-negative and -positive bacteria (E. coli and methicillin-resistant Staphylococcus aureus, MRSA) with these polycationic sheets leads to the inhibition of proliferation and a reduction of the colony forming bacteria over time. This new type of antibacterial agent acts in a different mode of Action than classical biocides and could potentially be employed in medicinal, technical, or agriculture applications. The presented microsheets and their unspecific binding of cell interfaces could further be employed as adsorber material for bacterial filtration or immobilization for imaging, analysis, or sensor technologies. KW - Surface charge KW - Bacteria KW - Graphene oxide KW - Escherichia coli KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509651 DO - https://doi.org/10.1002/admi.201902066 VL - 7 IS - 15 SP - 1902066 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Borghetti, P. A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Garcia, S. A1 - Gómez, E. A1 - Blanco, M. A1 - Alberto, G. A1 - Martra, G. T1 - Organic surface modification and analysis of titania nanoparticles for self‐assembly in multiple layers JF - Surface and Interface Analysis N2 - The characteristics of TiO2 coatings can greatly influence their final performance in large‐scale applications. In the present study, self‐assembly of TiO2 nanoparticles (NPs) in multiple layers was selected as a deposition procedure on various substrates. For this, the main prerequisite constitutes the surface modification of both NPs and substrate with, for example, silane coupling agents. A set of functionalized TiO2 NPs has been produced by reaction with either (3‐aminopropyl)triethoxysilane (APTES) or (3‐aminopropyl)phosphonic acid (APPA) to functionalize the NP surface with free amino‐groups. Then, the complementary functionalized NP set can be obtained from an aliquot of the first one, through the conversion of free surface amino groups to aldehydes by reaction with glutaraldehyde (GA). Several types of TiO2 NPs differing in size, shape, and specific surface area have been functionalized. Fourier‐transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), SEM/ energy‐dispersive X‐ray spectroscopy (EDS), XPS, Auger electron spectroscopy (AES), and Time‐of‐Flight (ToF)‐SIMS analyses have been carried out to evaluate the degree of functionalization, all the analytical methods employed demonstrating successful functionalization of TiO2 NP surface with APTES or APPA and GA. KW - TiO2 KW - Nanoparticles KW - Surface functionalization KW - Layer-by-layer deposition KW - Surface chemical analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508601 DO - https://doi.org/10.1002/sia.6842 SN - 1096-9918 VL - 52 IS - 12 SP - 829 EP - 834 PB - John Wiley & Sons Ltd AN - OPUS4-50860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agostini, G. A1 - Radnik, Jörg T1 - Spectroscopy in Catalysis JF - Catalysts N2 - Knowledge-based catalyst development is always an interaction between preparation, analysis and catalytic testing. Only if these three factors fit together can success be expected. For the analytic side of this triangle, spectroscopic methods play a crucial role. Whereas with diffraction, scattering and microscopy, decisive insights into the structure and morphology of the catalysts can be obtained, spectroscopy produces new knowledge about the chemical nature of the catalyst, e.g., its bonding and valence states. KW - Spectroscopy KW - Catalysis KW - Operando KW - In situ PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506507 DO - https://doi.org/10.3390/catal10040408 VL - 10 IS - 4 SP - 408 PB - MDPI CY - Basel AN - OPUS4-50650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Afantitis, A. A1 - Melagraki, G. A1 - Isigonis, P. A1 - Tsoumanis, A. A1 - Varsou, D. D. A1 - Valsami-Jones, E. A1 - Papadiamantis, A. A1 - Ellis, L.-J. A. A1 - Sarimveis, H. A1 - Doganis, P. A1 - Karatzas, P. A1 - Tsiros, P. A1 - Liampa, I. A1 - Lobaskin, V. A1 - Greco, D. A1 - Serra, A. A1 - Kinaret, P. A. S. A1 - Saarimäki, L. A. A1 - Grafström, R. A1 - Kohonen, P. A1 - Nymark, P. A1 - Willighagen, E. A1 - Puzyn, T. A1 - Rybinska-Fryca, A. A1 - Lyubartsev, A. A1 - Jensen, K. A. A1 - Brandenburg, J. G. A1 - Lofts, S. A1 - Svendsen, C. A1 - Harrison, S. A1 - Maier, D. A1 - Tamm, K. A1 - Jänes, J. A1 - Sikk, L. A1 - Dusinska, M. A1 - Longhin, E. A1 - Rundén-Pran, E. A1 - Mariussen, E. A1 - El Yamani, N. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Tropsha, A. A1 - Cohen, Y. A1 - Lesczynski, J. A1 - Hendren, C. O. A1 - Wiesner, M. A1 - Winkler, D. A1 - Suzuki, N. A1 - Yoon, T. H. A1 - Choi, J.-S. A1 - Sanabria, N. A1 - Gulumian, M. A1 - Lynch, I. T1 - NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment JF - Computational and Structural Biotechnology Journal N2 - Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational ‘safe-by-design’ approaches to facilitate NM commercialization. KW - Nanoinformatics KW - Hazard assessment KW - (Quantitative) Structure-Active Relationships KW - Safe-by-design KW - Predictive modelling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505952 DO - https://doi.org/10.1016/j.csbj.2020.02.023 VL - 18 SP - 583 EP - 602 PB - Elsevier B.V. AN - OPUS4-50595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulka, M.W. A1 - Nie, C. A1 - Nickl, P. A1 - Kerkhoff, Y. A1 - Garg, A. A1 - Salz, D. A1 - Radnik, Jörg A1 - Grunwald, I. A1 - Haag, R. T1 - Surface-Initiated Grafting of Dendritic Polyglycerol from Mussel-Inspired Adhesion-Layers for the Creation of Cell-Repelling Coatings JF - Advanced materials interfaces N2 - Biofouling is a major challenge in the application of textiles, biosensors, and biomedical implants. In the current work, a straightforward method for the solvent-free polymerization of antifouling dendritic polyglycerol (dPG) from mussel-inspired dendritic polyglycerol (MI-dPG) coatings on hydrophilic titanium dioxide (TiO2) and hydrophobic polydimethylsiloxane (PDMS) is reported. Surface characterization is performed by static water contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Significant lower CA values are obtained after dPG grafting from MI-dPG-coated TiO2 and MI-dPG coated PDMS. Furthermore, XPS shows a time-dependent increase of the CO bond content upon dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. Analysis of the surface morphology by SEM shows a clear time-dependent increase in the surface roughness upon dPG grafting from MI-dPG-coated TiO2 and MIdPG-coated PDMS. When the viability of two adhesive cell types is studied via LIVE/DEAD staining, a strong reduction in the cell density is observed after the dPG grafting from MI-dPG-coated TiO2 and MI-dPG-coated PDMS (a decrease of >95% in all cases). The combined results show that biocompatible but highly cell-repelling surfaces are efficiently constructed via the grafting of dPG from MI-dPG-coated TiO2 and MI-dPG-coated PDMS. KW - Repelling surface coatings KW - Dendritic polyglycerol KW - Mussel-inspired adhesives KW - Surface-initated grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516590 DO - https://doi.org/10.1002/admi.202000931 SN - 2196-7350 VL - 7 IS - 24 SP - 931 PB - Wiley VCH AN - OPUS4-51659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, F. A1 - Isopescu, R. A1 - Pellutiè, L. A1 - Sordello, F. A1 - Rossi, A. M. A1 - Ortel, Erik A1 - Martra, G. A1 - Hodoroaba, Vasile-Dan A1 - Maurino, V. T1 - Machine learning approach for elucidating and predicting the role of synthesis parameters on the shape and size of TiO2 nanoparticles JF - Scientific Reports N2 - In the present work a series of design rules are developed in order to tune the morphology of TiO2 nanoparticles through hydrothermal process. Through a careful experimental design, the influence of relevant process parameters on the synthesis outcome are studied, reaching to the develop predictive models by using Machine Learning methods. The models, after the validation and training, are able to predict with high accuracy the synthesis outcome in terms of nanoparticle size, polydispersity and aspect ratio. Furthermore, they are implemented by reverse engineering approach to do the inverse process, i.e. obtain the optimal synthesis parameters given a specific product characteristic. For the first time, it is presented a synthesis method that allows continuous and precise control of NPs morphology with the possibility to tune the aspect ratio over a large range from 1.4 (perfect truncated bipyramids) to 6 (elongated nanoparticles) and the length from 20 to 140 nm. KW - Machine learning KW - Nanoparticles KW - Titanium dioxide KW - Size KW - Shape KW - Synthesis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515084 DO - https://doi.org/10.1038/s41598-020-75967-w VL - 10 IS - 1 SP - 18910 PB - Springer Nature AN - OPUS4-51508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigert, Florian A1 - Müller, A. A1 - Häusler, I. A1 - Geißler, Daniel A1 - Skroblin, D. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Resch-Genger, Ute T1 - Combining HR‑TEM and XPS to elucidate the core–shell structure of ultrabright CdSe/CdS semiconductor quantum dots JF - Scientific reports N2 - Controlling thickness and tightness of surface passivation shells is crucial for many applications of core–shell nanoparticles (NP). Usually, to determine shell thickness, core and core/shell particle are measured individually requiring the availability of both nanoobjects. This is often not fulfilled for functional nanomaterials such as many photoluminescent semiconductor quantum dots (QD) used for bioimaging, solid state lighting, and display technologies as the core does not show the applicationrelevant functionality like a high photoluminescence (PL) quantum yield, calling for a whole nanoobject approach. By combining high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS), a novel whole nanoobject approach is developed representatively for an ultrabright oleic acid-stabilized, thick shell CdSe/CdS QD with a PL quantum yield close to unity. The size of this spectroscopically assessed QD, is in the range of the information depth of usual laboratory XPS. Information on particle size and monodispersity were validated with dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) and compared to data derived from optical measurements. In addition to demonstrating the potential of this novel whole nanoobject approach for determining architectures of small nanoparticles, the presented results also highlight challenges faced by different sizing and structural analysis methods and method-inherent uncertainties. KW - Photoluminescence KW - Single particle KW - Microscopy KW - Particle architecture KW - Thickness KW - SAXS KW - Shell KW - XPS KW - TEM KW - Semiconductor KW - Quantum dot KW - Photophysics KW - Quantum yield PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517911 DO - https://doi.org/10.1038/s41598-020-77530-z VL - 10 IS - 1 SP - 20712 PB - Springer Nature AN - OPUS4-51791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Broicher, Cornelia A1 - Zeng, F. A1 - Pfänder, N. A1 - Frisch, M. A1 - Bisswanger, T. A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Palkovits, S. A1 - Beine, A. K. A1 - Palkovits, R. T1 - Iron and Manganese Containing Multi-Walled Carbon Nanotubes as Electrocatalysts for the Oxygen Evolution Reaction - Unravelling Influences on Activity and Stability JF - Chemistry Europe N2 - Hydrogen economy is a central aspect of future energy supply, as hydrogen can be used as energy storage and fuel. In order tomake water electrolysis efficient, the limiting oxygen evolution reaction (OER) needs to be optimized. Therefore, C-based composite materials containing earth-abundant Fe and Mn were synthesized, characterized and tested in the OER. For pyrolysis temperatures above 700°C N-rich multi-walled carbon nanotubes (MWCNT) are obtained. Inside the tubes Fe3C particles are formed, Fe and Mn oxides are incorporated in the carbon matrix and metal spinel nanoparticles cover the outer surface. The best catalyst prepared at 800°C achieves a low overpotential of 389 mV (at 10 mA/cm2) and high stability (22.6 h). From electrochemical measurements and characterization it can be concluded that the high activity is mainly provided by MWCNT, Fe3C and the metal oxides in the conductive carbon matrix. The metal spinel nanoparticles in contrast protect the MWCNT from oxidation and thereby contribute to the high stability. KW - Oxygen Evolution Reaction KW - Carbon Nanotubes KW - Stability PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513955 DO - https://doi.org/10.1002/cctc.202000944 VL - 12 IS - 21 SP - 1 EP - 8 PB - Wiley Online Libary AN - OPUS4-51395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Pfüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Assessing optical and electrical properties of highly active IrOx catalysts for the electrochemical oxygen evolution reaction via spectroscopic ellipsometry JF - ACS Catalysis N2 - Efficient water electrolysis requires highly active electrodes. The activity of corresponding catalytic coatings strongly depends on material properties such as film thickness, crystallinity, electrical conductivity, and chemical surface speciation. Measuring these properties with high accuracy in vacuum-free and nondestructive methods facilitates the elucidation of structure−activity relationships in realistic environments. Here, we report a novel approach to analyze the optical and electrical properties of highly active oxygen evolution reaction (OER) catalysts via spectroscopic ellipsometry (SE). Using a series of differently calcined, mesoporous, templated iridium oxide films as an example, we assess the film thickness, porosity, electrical resistivity, electron concentration, electron mobility, and interband and intraband transition energies by modeling of the optical spectra. Independently performed analyses using scanning electron microscopy, energy-dispersive X-ray spectroscopy, ellipsometric porosimetry, X-ray reflectometry, and absorption spectroscopy indicate a high accuracy of the deduced material properties. A comparison of the derived analytical data from SE, resonant photoemission spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy with activity measurements of the OER suggests that the intrinsic activity of iridium oxides scales with a shift of the Ir 5d t2g sub-level and an increase of p−d interband transition energies caused by a transition of μ1-OH to μ3-O species. KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive ambient analysis KW - Intrinsic OER activity KW - Complementary methodology and metrology PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516288 DO - https://doi.org/10.1021/acscatal.0c03800 SN - 2155-5435 VL - 10 IS - 23 SP - 14210 EP - 14223 PB - American Chemical Society AN - OPUS4-51628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Wang, Shu A1 - Radnik, Jörg A1 - You, Yi A1 - Resch-Genger, Ute T1 - Assessing the protective effects of different surface coatings on NaYF4:YB3+, Er3+, upconverting nanoparticles in buffer and DMEM JF - Scientific reports N2 - We studied the dissolution behavior of β NaYF4:Yb(20%), Er(2%) UCNP of two different sizes in biologically relevant media i.e., water (neutral pH), phosphate buffered saline (PBS), and Dulbecco’s modified Eagle medium (DMEM) at different temperatures and particle concentrations. Special emphasis was dedicated to assess the influence of different surface functionalizations, particularly the potential of mesoporous and microporous silica shells of different thicknesses for UCNP stabilization and protection. Dissolution was quantified electrochemically using a fluoride ion selective electrode (ISE) and by inductively coupled plasma optical emission spectrometry (ICP OES). In addition, dissolution was monitored fluorometrically. These experiments revealed that a thick microporous silica shell drastically decreased dissolution. Our results also underline the critical influence of the chemical composition of the aqueous environment on UCNP dissolution. In DMEM, we observed the formation of a layer of adsorbed molecules on the UCNP surface that protected the UCNP from dissolution and enhanced their fluorescence. Examination of this layer by X ray photoelectron spectroscopy (XPS) and mass spectrometry (MS) suggested that mainly phenylalanine, lysine, and glucose are adsorbed from DMEM. These findings should be considered in the future for cellular toxicity studies with UCNP and other nanoparticles and the design of new biocompatible surface coatings. KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515984 DO - https://doi.org/10.1038/s41598-020-76116-z SN - 2045-2322 VL - 10 IS - 1 SP - 19318-1 EP - 19318-11 PB - Springer Nature CY - London AN - OPUS4-51598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hünger, K.-J. A1 - Kositz, M. A1 - Danneberg, M. A1 - Radnik, Jörg T1 - Enrichment of aluminium in the near‐surface region of natural quartzite rock after aluminium exposure JF - Surface and Interface Analysis N2 - Alkali–silica reaction (ASR) is an ongoing problem that causes damage to concrete constructions and reduces their durability. Therefore, minimizing this undesired reaction is of great interest for both safety and economic reasons. Additives containing high aluminium content are very effective in reducing the release of silica and enhancing the durability of concrete; however, the mechanism for this effect is still under discussion. In this study, an enrichment of aluminium in the near‐surface region was observed for natural quartzite rock after storage in Al (OH)3 and metakaolin as aluminium sources, from which we conclude that the formation of aluminosilicate sheets of a few nanometres inhibits the silica release; this hypothesis is supported by high‐resolution spectra of Al 2p, Si 2p and O 1s. KW - Alkali-silica reaction KW - Quartzite rock KW - X-ray photoelectron spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519394 DO - https://doi.org/10.1002/sia.6918 SN - 0142-2421 SP - 1 EP - 7 PB - Wiley VCH AN - OPUS4-51939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Müller, Anja A1 - Radnik, Jörg A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Laue, P. A1 - Luch, A. A1 - Tentschert, J. T1 - Preparation of Nanoparticles for ToF-SIMS and XPS Analysis JF - Jove-Journal of Visualized Experiments N2 - Nanoparticles have gained increasing attention in recent years due to their potential and application in different fields including medicine, cosmetics, chemistry, and their potential to enable advanced materials. To effectively understand and regulate the physico-chemical properties and potential adverse effects of nanoparticles, validated measurement procedures for the various properties of nanoparticles need to be developed. While procedures for measuring nanoparticle size and size Distribution are already established, standardized methods for analysis of their surface chemistry are not yet in place, although the influence of the surface chemistry on nanoparticle properties is undisputed. In particular, storage and preparation of nanoparticles for surface analysis strongly influences the analytical results from various methods, and in order to obtain consistent results, sample preparation must be both optimized and standardized. In this contribution, we present, in detail, some standard procedures for preparing nanoparticles for surface analytics. In principle, nanoparticles can be deposited on a suitable substrate from suspension or as a powder. Silicon (Si) Wafers are commonly used as substrate, however, their cleaning is critical to the process. For sample preparation from suspension, we will discuss drop-casting and spin-coating, where not only the cleanliness of the substrate and purity of the suspension but also its concentration play important roles for the success of the preparation methodology. For nanoparticles with sensitive ligand shells or coatings, deposition as powders is more suitable, although this method requires particular care in fixing the sample. KW - Titania nanoparticles KW - X-ray photoelectron spectroscopy KW - Secondary ion mass spectrometry KW - Surface chemisttry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520103 UR - https://www.jove.com/video/61758 DO - https://doi.org/10.3791/61758 VL - 163 SP - e61758 AN - OPUS4-52010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Hänninen, H. A1 - Böllinghaus, Thomas T1 - In-situ ToF-SIMS analyses of deuterium re-distribution in austenitic steel AISI 304L under mechanical load JF - Scientific Reports N2 - Hydrocarbons fuel our economy. Furthermore, intermediate goods and consumer products are often hydrocarbon-based. Beside all the progress they made possible, hydrogen-containing substances can have severe detrimental effects on materials exposed to them. Hydrogen-assisted failure of iron alloys has been recognised more than a century ago. The present study aims to providing further insight into the degradation of the austenitic stainless steel AISI 304L (EN 1.4307) exposed to hydrogen. To this end, samples were electrochemically charged with the hydrogen isotope deuterium (2H, D) and analysed by scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that deuterium caused a phase transformation from the original γ austenite into ε- and α’-martensite. Despite their low solubility for hydrogen, viz. deuterium, the newly formed phases showed high deuterium concentration which was attributed to the increased density of traps. Information about the behaviour of deuterium in the material subjected to external mechanical load was gathered. A four-point-bending device was developed for this purpose. This allowed to analyse in-situ pre-charged samples in the ToF-SIMS during the application of external mechanical load. The results indicate a movement of deuterium towards the regions of highest stress. KW - ToF-SIMS KW - Hydrogen KW - Deuterium KW - AISI 304L KW - EBSD PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505142 DO - https://doi.org/10.1038/s41598-020-60370-2 VL - 10 IS - 1 SP - 3611 PB - Nature AN - OPUS4-50514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -