TY - JOUR A1 - Arinchtein, A. A1 - Ye, M.-Y. A1 - Yang, Q. A1 - Kreyenschulte, C. A1 - Wagner, Andreas A1 - Frisch, M. A1 - Brückner, A. A1 - Kondratenko, E. A1 - Kraehnert, R. T1 - Dynamics of Reaction-Induced Changes of Model-Type Iron Oxide Phases in the CO2-Fischer-Tropsch-Synthesis JF - ChemCatChem N2 - Iron-based catalysts are employed in CO2-FTS due to their ability to convert CO2 into CO in a first step and their selectivity towards higher hydrocarbons in a second CO hydrogenation step. According to the literature, iron carbides represent the active phase for hydrocarbon formation and are claimed to emerge in the presence of CO. We propose nanostructured FeOx films as model systems to assess information about the complex phase transformations during CO2-FTS. Mesoporous hematite, ferrihydrite, maghemite, maghemite/magnetite films were exposed to CO2-FTS atmospheres at 20 bar and 300°C. Up to three distinct phases were observed depending on the timeon-stream (TOS): a sintered maghemite/magnetite phase, a carbidic core-shell structure, and a low-crystalline, needle-type oxide phase. Our findings indicate that the formation of an intermediary maghemite/magnetite phase, predominant after short TOS (30 h), precedes the evolution of the carbide phase. Yet, even after prolonged TOS (185 h), no full conversion into a bulk carbide is observed. KW - Nanostructured FeOx films KW - CO2 KW - Scanning Auger Spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549709 DO - https://doi.org/10.1002/cctc.202200240 SN - 1867-3880 VL - 14 IS - 14 SP - 1 EP - 11 PB - Wiley-VCH AN - OPUS4-54970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Falkenhagen, Jana T1 - Combined impact of UV radiation and nitric acid on high‐density polyethylene containers as a laboratory test JF - Packaging Technology and Science N2 - In a laboratory test, transparent high‐density polyethylene (HDPE) jerrycans have been exposed to both UV radiation and 55 wt‐% nitric acid solution at (41 ± 2)°C, for up to 20 days. For comparison, UV radiant exposure (21 days) and nitric acid exposure (up to 6 weeks) were performed separately, at nearly equal temperatures. The damages are compared with FTIR spectroscopy in ATR and HT‐gel permeation chromatography(GPC) on a molecular level and with hydraulic internal pressure testing as a component test. For the used jerrycans, relevant oxidation can only be found after the combined exposure. This is caused by the decomposition of nitric acid into nitrous gases by UV radiation, which is also observed at lower concentrations (28 wt‐%). After 6 days of laboratory exposure, this is rated as critical, which corresponds to about 1/10 year in Central Europe, according to the UV radiant exposure. The gradual increase in oxidative damage shows the reproducibility of the test. KW - Molecular mass distribution KW - High-density polyethylene KW - Nitric acid KW - UV radiation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550141 DO - https://doi.org/10.1002/pts.2673 SN - 0894-3214 SP - 1 EP - 7 PB - John Wiley & Sons Ltd AN - OPUS4-55014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Sanders, J. T1 - Quantitative reversible one pot interconversion of three crystalline polymorphs by ball mill grinding JF - Crystengcomm N2 - We demonstrate here using a disulfide system the first example of reversible, selective, and quantitative transformation between three crystalline polymorphs by ball mill grinding. This includes the discovery of a previously unknown polymorph. Each polymorph is reproducibly obtained under well-defined neat or liquid-assisted grinding conditions, revealing subtle control over the apparent thermodynamic stability. We discovered that the presence of a contaminant as low as 1.5% mol mol−1 acting as a template is required to enable all these three polymorph transformations. The relative stabilities of the polymorphs are determined by the sizes of the nanocrystals produced under different conditions and by surface interactions with small amounts of added solvent. For the first time, we show evidence that each of the three polymorphs is obtained with a unique and reproducible crystalline size. This mechanochemical approach gives access to bulk quantities of metastable polymorphs that are inaccessible through recrystallisation. KW - Mechanochemistry KW - Polymorph KW - XRD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549934 DO - https://doi.org/10.1039/D2CE00393G SP - 1 EP - 7 PB - Royal Society of Chemistry AN - OPUS4-54993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Plajer, A. J. T1 - Thioanhydride/isothiocyanate/epoxide ring-opening terpolymerisation: sequence selective enchainment of monomer mixtures and switchable catalysis JF - Polymer Chemistry N2 - We report a new sequence selective terpolymerisation in which three monomers (butylene oxide (BO) A, PhNCS B and phtalic thioanhydride (PTA) C) are selectively enchained into an (ABA′C)n sequence. PTA/PhNCS/BO ring-opening terpolymerisation ROTERP can be coupled with CS2 ROTERP to generate tetrapolymers and with εDL ROP in switchable catalysis for blockpolymer synthesis. KW - Blockcopolymer KW - 1H-NMR KW - TGA KW - DSC KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552339 DO - https://doi.org/10.1039/d2py00629d SP - 1 EP - 5 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-55233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Margreiter, R. A1 - Baumann, J. A1 - Mantouvalou, I. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Strub, E. T1 - Investigations on fire-gilding JF - Archaeometry N2 - Fire-gilding is a historic technique for the application of golden layers on a number of different base materials utilizing a gold amalgam. This technique leaves a significant amount of Hg in the golden layer, giving archeometrists a reliable indicator to identify firegildings. Recent findings on presumably fire-gilded objects have shown in several cases significantly lower Hg content than previously studied objects. This prompted a synchrotron-based X-ray fluorescence investigation into the Hg distribution along the material–gilding interface, as well as a series of measurements regarding the Hg content development in fire-gilded samples during artificial aging. This work presents findings on laboratory-prepared fire-gildings, indicating an Hg enrichment at the interface of firegilded silver samples. Notably, such an enrichment is missing in fire-gilded copper samples. Further, it is confirmed that fire-gilded layers typically do not undercut an Hg bulk content of 5%. In this light, it seems improbable that ancient samples that contain <5% Hg are fire-gilded. The results presented in this study might lead to a non-destructive method to identify the Hg enrichment at the interface. This might be obtained by a combination of different non-destructive measurements and might also work unambiguously in samples in which the gold top layer is altered. KW - BAMline KW - X-Ray Fluorescence KW - Gilding KW - Depth profile KW - Archaeometry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552885 DO - https://doi.org/10.1111/arcm.12797 SN - 0003-813X SP - 1 EP - 14 PB - Wiley online library AN - OPUS4-55288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Harald A1 - Hodoroaba, Vasile-Dan A1 - Schmidt, Alexandra A1 - Rasmussen, K. A1 - Rauscher, H. T1 - Counting Small Particles in Electron Microscopy Images — Proposal for Rules and Their Application in Practice JF - Nanomaterials N2 - Electron microscopy (EM) is the gold standard for the characterisation of the morphology (size and shape) of nanoparticles. Visual observation of objects under examination is always a necessary first step in the characterisation process. Several questions arise when undertaking to identify and count particles to measure their size and shape distribution. In addition to challenges with the dispersion and identification of the particles, more than one protocol for counting particles is in use. This paper focuses on precise rules for the counting of particles in EM micrographs, as this influences the measurement accuracy of the number of particles, thus implicitly affecting the size values of the counted particles. We review and compare four different, commonly used methods for counting, which we then apply in case studies. The impact of the selected counting rule on the obtained final particle size distribution is highlighted. One main aim of this analysis is to support the application of a specific, well-defined counting approach in accordance with regulatory requirements to contribute to achieving more reliable and reproducible results. It is also useful for the new harmonised measurement procedures for determining the particle size and particle size distribution of nanomaterials. KW - Nano KW - Particle size distribution KW - Nanoparticle KW - Nanomaterial KW - OECD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551891 DO - https://doi.org/10.3390/nano12132238 SN - 2079-4991 VL - 12 IS - 13 SP - 2238 PB - MDPI CY - Basel AN - OPUS4-55189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kittner, Maria A1 - Kerndorff, A. A1 - Ricking, M. A1 - Bednarz, M. A1 - Obermaier, N. A1 - Lukas, M. A1 - Asenova, M. A1 - Bordós, G. A1 - Eisentraut, Paul A1 - Hohenblum, P. A1 - Hudcova, H. A1 - Humer, F. A1 - István, T. G. A1 - Kirchner, M. A1 - Marushevska, O. A1 - Nemejcová, D. A1 - Oswald, P. A1 - Paunovic, M. A1 - Sengl, M. A1 - Slobodnik, J. A1 - Spanowsky, K. A1 - Tudorache, M. A1 - Wagensonner, H. A1 - Liska, I. A1 - Braun, U. A1 - Bannick, C. G. T1 - Microplastics in the Danube River Basin: A First Comprehensive Screening with a Harmonized Analytical Approach JF - ACS ES&T Water N2 - In this study, carried out within the Joint Danube Survey 4, a comprehensive microplastic screening in the water column within a large European river basin from its source to estuary, including major tributaries, was realized. The objective was to develop principles of a systematic and practicable microplastic monitoring strategy using sedimentation boxes for collection of suspended particulate matter followed by its subsequent analysis using thermal extraction desorption-gas chromatography/mass spectrometry. In total, 18 sampling sites in the Danube River Basin were investigated. The obtained suspended particulate matter samples were subdivided into the fractions of >100 μm and <100 μm and subsequently analyzed for microplastic mass contents. The results showed that microplastics were detected in all samples, with polyethylene being the predominant polymer with maximum contents of 22.24 μg/mg, 3.23 μg/mg for polystyrene, 1.03 μg/mg for styrene-butadiene-rubber, and 0.45 μg/mg for polypropylene. Further, polymers such as different sorts of polyester, polyacrylates, polylactide, and natural rubber were not detected or below the detection limit. Additional investigations on possible interference of polyethylene signals by algae-derived fatty acids were assessed. In the context of targeted monitoring, repeated measurements provide more certainty in the interpretation of the results for the individual sites. Nevertheless, it can be stated that the chosen approach using an integrative sampling and determination of total plastic content proved to be successful. KW - Thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS), monitoring KW - Microplastics KW - River KW - Suspended particulate matter (SPM) KW - Sedimentation box (SB) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551444 DO - https://doi.org/10.1021/acsestwater.1c00439 VL - 2 IS - 7 SP - 1174 EP - 1181 PB - ACS Publications AN - OPUS4-55144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - George, Janine A1 - Petretto, G. A1 - Naik, Aakash Ashok A1 - Esters, M. A1 - Jackson, A. J. A1 - Nelson, R. A1 - Dronskowski, R. A1 - Rignanese, G.-M. A1 - Hautier, G. T1 - Automated bonding analysis with crystal orbital Hamilton populuations JF - ChemPlusChem N2 - Automated bonding analysis software has been developed based on Crystal Orbital Hamilton Populations to facilitate high-throughput bonding analysis and machine-learning of bonding features. This work presents the software and discusses its applications to simple and complex materials such as GaN, NaCl, the oxynitrides XTaO2N (X=Ca, Ba, Sr) and Yb14Mn1Sb11. KW - Chemical bonds KW - Automation KW - High-throughput PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551641 DO - https://doi.org/10.1002/cplu.202200123 SN - 2192-6506 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hesse, R. A1 - Denecke, R. A1 - Radnik, Jörg T1 - Testing and validating the improved estimation of the spectrometer-transmission function with UNIFIT 2022 JF - Surface and Interface Analysis N2 - Recent developments of X-ray photoelectron spectroscopy using excitation energies different from the usual lab-sources Mg Kα and Al Kα, thus covering larger and different kinetic energy ranges, require more flexible approaches for determining the transmission function than the well-established ones using reference spectra. Therefore, the approach using quantified peak areas (QPA) was refined allowing a more precise estimation of the transmission function. This refinement was tested by comparing the results obtained with the new version with former calculations. Furthermore, the obtained transmission function was validated by comparing the results with a transmission function using the reference spectrum of polyethylene. Additionally, an ionic liquid was used as reference for estimating the transmission function at the energy resolved HE-SGM beamline at BESSY II. Comparison between the measured and stoichiometric composition shows that a transmission function was determined, which allows a reasonable quantification. KW - XPS KW - Quantification KW - Software UNIFIT 2022 KW - Synchrotron radiation KW - Transmission function IERF PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551671 DO - https://doi.org/10.1002/sia.7131 SN - 0142-2421 SP - 1 EP - 7 PB - Wiley-VCH AN - OPUS4-55167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Hodoroaba, Vasile-Dan A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Multilevel effective material approximation for modeling ellipsometric measurements on complex porous thin films JF - Advanced optical technologies N2 - Catalysts are important components in chemical processes because they lower the activation energy and thus determine the rate, efficiency and selectivity of a chemical reaction. This property plays an important role in many of today’s processes, including the electrochemical splitting of water. Due to the continuous development of catalyst materials, they are becoming more complex, which makes a reliable evaluation of physicochemical properties challenging even for modern analytical measurement techniques and industrial manufacturing. We present a fast, vacuum-free and non-destructive analytical approach using multi-sample spectroscopic ellipsometry to determine relevant material parameters such as film thickness, porosity and composition of mesoporous IrOx–TiOy films. Mesoporous IrOx–TiOy films were deposited on Si wafers by sol–gel synthesis, varying the composition of the mixed oxide films between 0 and 100 wt%Ir. The ellipsometric modeling is based on an anisotropic Bruggeman effective medium approximation (a-BEMA) to determine the film thickness and volume fraction of the material and pores. The volume fraction of the material was again modeled using a Bruggeman EMA to determine the chemical composition of the materials. The ellipsometric fitting results were compared with complementary methods, such as scanning electron microscopy (SEM), electron probe microanalysis (EPMA) as well as environmental ellipsometric porosimetry (EEP). KW - Electrochemical catalysts KW - Mixed metal oxide KW - Multi-sample analysis KW - Spectroscopic ellipsometry KW - Thin mesoporous films PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551026 DO - https://doi.org/10.1515/aot-2022-0007 SN - 2192-8584 SN - 2192-8576 VL - 11 IS - 3-4 (Topical issue: Ellipsometry) SP - 137 EP - 147 PB - De Gruyter CY - Berlin AN - OPUS4-55102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, Chayanika A1 - Kastania, Eleni A1 - Witt, Julia A1 - Özcan Sandikcioglu, Özlem T1 - Corrosion protection properties of poly(4-vinyl pyridine) containing multilayer polymeric coatings on magnesium alloy AZ31 JF - Materials and Corrosion N2 - The aim of this study is to develop polymeric thin films for corrosion protection of magnesium alloy AZ31. As polymer matrix, poly(4-vinyl pyridine) (P4VP) is selected due to its semiconducting properties and protonic conductivity. Polyacrylic acid is tested as crosslinking layers to improve interfacial adhesion. The macroscopic corrosion properties of the multilayer coatings are investigated by means of electrochemical methods, such as linear sweep voltammetry and electrochemical impedance spectroscopy (EIS), in corrosive media simulating technical and biomedical applications. It is demonstrated that thin multilayer coatings can suppress the corrosion rates of magnesium alloys. To our best knowledge, this is the first demonstration of the use of P4VP as a conducting polymer film with protonic conductivity for corrosion protection of magnesium alloys. KW - Multilayercoatings KW - AZ31 KW - Corrosion protection KW - Intrinsically conducting polymers KW - Magnesium alloys PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551799 DO - https://doi.org/10.1002/maco.202112708 SN - 0947-5117 VL - 73 IS - 3 SP - 427 EP - 435 PB - Wiley VHC-Verlag AN - OPUS4-55179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Accorsi, M. A1 - Tiemann, M. A1 - Wehrhan, L. A1 - Finn, Lauren M. A1 - Cruz, R. A1 - Rautenberg, Max A1 - Emmerling, Franziska A1 - Heberle, J. A1 - Keller, B. G. A1 - Rademann, J. T1 - Pentafluorophosphato-Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine-Specific Protein Interactions JF - Angewandte Chemie International Edition N2 - Phosphotyrosine residues are essential functional switches in health and disease. Thus, phosphotyrosine biomimetics are crucial for the development of chemical tools and drug molecules. We report here the discovery and investigation of pentafluorophosphato amino acids as novel phosphotyrosine biomimetics. A mild acidic pentafluorination protocol was developed and two PF5-amino acids were prepared and employed in peptide synthesis. Their structures, reactivities, and fluorine-specific interactions were studied by NMR and IR spectroscopy, X-ray diffraction, and in bioactivity assays. The mono-anionic PF5 motif displayed an amphiphilic character binding to hydrophobic surfaces, to water molecules, and to protein-binding sites, exploiting charge and H−F-bonding interactions. The novel motifs bind 25- to 30-fold stronger to the phosphotyrosine binding site of the protein tyrosine phosphatase PTP1B than the best current biomimetics, as rationalized by computational methods, including molecular dynamics simulations. KW - Chemical Biology KW - Drug Development KW - Pentafluorophosphates KW - Phosphotyrosine Biomimetics KW - Protein Tyrosine Phosphatases PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549984 DO - https://doi.org/10.1002/anie.202203579 SN - 1433-7851 VL - 134 IS - 25 SP - 1 EP - 6 PB - Wiley-VCH GmbH AN - OPUS4-54998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering JF - npj Materials degradation N2 - The roles extracellular polymeric substances (EPS) play in mineral attachment and weathering were studied using genetically modified biofilms of the rock-inhabiting fungus Knufia petricola strain A95. Mutants deficient in melanin and/or carotenoid synthesis were grown as air-exposed biofilms. Extracted EPS were quantified and characterised using a combination of analytical techniques. The absence of melanin affected the quantity and composition of the produced EPS: mutants no longer able to form melanin synthesised more EPS containing fewer pullulan-related glycosidic linkages. Moreover, the melanin-producing strains attached more strongly to the mineral olivine and dissolved it at a higher rate. We hypothesise that the pullulan-related linkages, with their known adhesion functionality, enable fungal attachment and weathering. The released phenolic intermediates of melanin synthesis in the Δsdh1 mutant might play a role similar to Fe-chelating siderophores, driving olivine dissolution even further. These data demonstrate the need for careful compositional and quantitative analyses of biofilm-created microenvironments. KW - Biofilms PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549025 DO - https://doi.org/10.1038/s41529-022-00253-1 SN - 2397-2106 VL - 6 SP - 1 EP - 11 PB - Springer Nature CY - London AN - OPUS4-54902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Porta-Velilla, L. A1 - Turan, N. A1 - Cubero, Á. A1 - Shao, W. A1 - Li, H. A1 - de la Fuente, G.F. A1 - Martínez, E. A1 - Larrea, Á. A1 - Castro, M. A1 - Koralay, H. A1 - Çavdar, Ş. A1 - Bonse, Jörn A1 - Angurel, L.A. T1 - Highly Regular Hexagonally-Arranged Nanostructures on Ni-W Alloy Tapes upon Irradiation with Ultrashort UV Laser Pulses JF - Nanomaterials N2 - Nickel tungsten alloy tapes (Ni—5 at% W, 10 mm wide, 80 µm thick, biaxially textured) used in second-generation high temperature superconductor (2G-HTS) technology were laser-processed in air with ultraviolet ps-laser pulses (355 nm wavelength, 300 ps pulse duration, 250–800 kHz pulse repetition frequency). By employing optimized surface scan-processing strategies, various laser-generated periodic surface structures were generated on the tapes. Particularly, distinct surface microstructures and nanostructures were formed. These included sub-wavelength-sized highly-regular hexagonally-arranged nano-protrusions, wavelength-sized line-grating-like laser-induced periodic surface structures (LIPSS, ripples), and larger irregular pyramidal microstructures. The induced surface morphology was characterized in depth by electron-based techniques, including scanning electron microscopy (SEM), electron back scatter diffraction (EBSD), cross-sectional transmission electron microscopy (STEM/TEM) and energy dispersive X-ray spectrometry (EDS). The in-depth EBSD crystallographic analyses indicated a significant impact of the material initial grain orientation on the type of surface nanostructure and microstructure formed upon laser irradiation. Special emphasis was laid on high-resolution material analysis of the hexagonally-arranged nano-protrusions. Their formation mechanism is discussed on the basis of the interplay between electromagnetic scattering effects followed by hydrodynamic matter re-organization after the laser exposure. The temperature stability of the hexagonally-arranged nano-protrusion was explored in post-irradiation thermal annealing experiments, in order to qualify their suitability in 2G-HTS fabrication technology with initial steps deposition temperatures in the range of 773–873 K. KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser processing KW - Hexagonally-arranged nano-protrusions KW - Second-generation high temperature superconductor technology KW - Electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552551 DO - https://doi.org/10.3390/nano12142380 SN - 2079-4991 VL - 12 IS - 14 SP - 1 EP - 23 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Röder, Bettina A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Controlling polymorphism in molecular cocrystals by variable temperature ball milling JF - Faraday Discussions N2 - Mechanochemistry offers a unique opportunity to modify and manipulate crystal forms, often providing new products as compared with conventional solution methods. While promising, there is little known about how to control the solid form through mechanochemical means, demanding dedicated investigations. Using a model organic cocrystal system (isonicotinamide:glutaric acid), we here demonstrate that with mechanochemistry, polymorphism can be induced in molecular solids under conditions seemingly different to their conventional thermodynamic (thermal) transition point. Whereas Form II converts to Form I upon heating to 363 K, the same transition can be initiated under ball milling conditions at markedly lower temperatures (348 K). Our results indicate that mechanochemical techniques can help to reduce the energy barriers to solid form transitions, offering new insights into controlling polymorphic forms. Moreover, our results suggest that the nature of mechanochemical transformations could make it difficult to interpret mechanochemical solid form landscapes using conventional equilibrium-based tools. KW - Mechanochemistry KW - Polymorphism KW - TRIS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564728 DO - https://doi.org/10.1039/d2fd00115b SP - 1 EP - 16 PB - Royal Society of Chemistry AN - OPUS4-56472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lifka, S. A1 - Harsányi, K. A1 - Baumgartner, E. A1 - Pichler, L. A1 - Baiko, D. A1 - Wasmuth, Karsten A1 - Heitz, J. A1 - Meyer, M. A1 - Joel, A.-C. A1 - Bonse, Jörn A1 - Baumgartner, W. ED - Mail, M. T1 - Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders JF - Beilstein Journal of Nanotechnology N2 - Nanofibers are drawing the attention of engineers and scientists because their large surface-to-volume ratio is favorable for applications in medicine, filter technology, textile industry, lithium-air batteries, and optical sensors. However, when transferring nanofibers to a technical product in the form of a random network of fibers, referred to as nonwoven fabric, the stickiness of the freshly produced and thus fragile nanofiber nonwoven remains a problem. This is mainly because nanofibers strongly adhere to any surface because of van der Waals forces. In nature, there are animals that are actually able to efficiently produce, process, and handle nanofibers, namely cribellate spiders. For that, the spiders use the calamistrum, a comb-like structure of modified setae on the metatarsus of the hindmost (fourth) legs, to which the 10–30 nm thick silk nanofibers do not stick due to a special fingerprint-like surface nanostructure. In this work, we present a theoretical model of the interaction of linear nanofibers with a sinusoidally corrugated surface. This model allows for a prediction of the adhesive interaction and, thus, the design of a suitable surface structure to prevent sticking of an artificially nonwoven of nanofibers. According to the theoretical prediction, a technical analogon of the nanoripples was produced by ultrashort pulse laser processing on different technically relevant metal surfaces in the form of so-called laser-induced periodic surface structures (LIPSS). Subsequently, by means of a newly established peel-off test, the adhesion of an electrospun polyamide fiber-based nonwoven was quantified on such LIPSS-covered aluminium alloy, steel, and titanium alloy samples, as well as on polished (flat) control samples as reference and, additionally, on samples with randomly rough surfaces. The latter revealed that the adhesion of electrospun nanofiber nonwoven is significantly lowered on the nanostructured surfaces compared with the polished surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Cribellate spiders KW - Calamistrum KW - Electrospinning KW - Nanofibers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561799 DO - https://doi.org/10.3762/bjnano.13.105 SN - 2190-4286 VL - 13 SP - 1268 EP - 1283 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-56179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Loges, A. A1 - Scholz, G. A1 - Amadeu de Sosa, Nader A1 - Jingjing, S. A1 - Emmerling, Franziska A1 - John, T. A1 - Paulus, B. A1 - Braun, T. T1 - Studies on the local structure of the F/OH site in topaz by magic angle spinning nuclear magnetic resonance and Raman spectroscopy JF - European journal of mineralogy N2 - he mutual influence of F and OH groups in neighboring sites in topaz (Al2SiO4(F,OH)2) was investigated using magic angle spinning nuclear magnetic resonance (MAS NMR) and Raman spectroscopy. The splitting of 19F and 1H NMR signals, as well as the OH Raman band, provides evidence for hydrogen bond formation within the crystal structure. Depending on whether a given OH group has another OH group or fluoride as its neighbor, two different hydrogen bond constellations may form: either OH···O···HO or F···H···O. The proton accepting oxygen was determined to be part of the SiO4 tetrahedron using 29Si MAS NMR. Comparison of the MAS NMR data between an OH-bearing and an OH-free topaz sample confirms that the 19F signal at −130 ppm stems from F− ions that take part in H···F bonds with a distance of ∼ 2.4 Å, whereas the main signal at −135 ppm belongs to fluoride ions with no immediate OH group neighbors. The Raman OH sub-band at 3644 cm−1 stems from OH groups neighboring other OH groups, whereas the sub-band at 3650 cm−1 stems from OH groups with fluoride neighbors, which are affected by H···F bridging. The integrated intensities of these two sub-bands do not conform to the expected ratios based on probabilistic calculations from the total OH concentration. This can be explained by a difference in the polarizability of the OH bond between the different hydrogen bond constellations or partial order or unmixing of F and OH, or a combination of both. This has implications for the quantitative interpretation of Raman data on OH bonds in general and their potential use as a probe for structural (dis-)order. No indication of tetrahedrally coordinated Al was found with 27Al MAS NMR, suggesting that the investigated samples likely have nearly ideal Al/Si ratios, making them potentially useful as high-density electron microprobe reference materials for Al and Si, as well as for F. KW - Topas KW - NMR KW - XRD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561863 DO - https://doi.org/10.5194/ejm-34-507-2022 SN - 1617-4011 VL - 34 IS - 5 SP - 507 EP - 521 PB - Copernicus Publications CY - Göttingen AN - OPUS4-56186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Hoch, C. T1 - Laudatio Prof. Dr.-Ing. Caroline Röhr JF - Zeitschrift für anorganische und allgemeine Chemie N2 - It is a laudatio on the ocations of Prof. Dr.-Ing. Caroline Röhrs 60th birthday. KW - Metal-oxides PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561877 DO - https://doi.org/10.1002/zaac.202200159 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 2 PB - John Wiley & Sons, Ltd AN - OPUS4-56187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Iro, M. A1 - Ingerle, D. A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kregsamer, P. A1 - Streli, C. T1 - Investigation of polycapillary half lenses for quantitative confocal micro-X-ray fluorescence analysis JF - Journal of synchrotron radiation N2 - The use of polycapillary optics in confocal micro-X-ray fluorescence analysis (CMXRF) enables the destruction-free 3D investigation of the elemental composition of samples. The energy-dependent transmission properties, concerning intensity and spatial beam propagation of three polycapillary half lenses, which are vital for the quantitative interpretation of such CMXRF measurements, are investigated in a monochromatic confocal laboratory setup at the Atominstitut of TU Wien, and a synchrotron setup on the BAMline beamline at the BESSY II Synchrotron, Helmholtz-Zentrum-Berlin. The empirically established results, concerning the intensity of the transmitted beam, are compared with theoretical values calculated with the polycap software package and a newly presented analytical model for the transmission function. The resulting form of the newly modelled energy-dependent transmission function is shown to be in good agreement with Monte Carlo simulated results for the complete energy regime, as well as the empirically established results for the energy regime between 6 keV and 20 keV. An analysis of possible fabrication errors was conducted via pinhole scans showing only minor fabrication errors in two of the investigated polycapillary optics. The energy-dependent focal spot size of the primary polycapillary was investigated in the laboratory via the channel-wise evaluation of knife-edge scans. Experimental results are compared with data given by the manufacturer as well as geometric estimations for the minimal focal spot size. Again, the resulting measurement points show a trend in agreement with geometrically estimated results and manufacturer data. KW - BAMline KW - Synchrotron KW - Capillary KW - confocal PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562430 DO - https://doi.org/10.1107/S1600577522009699 SN - 1600-5775 VL - 29 SP - 1376 EP - 1384 PB - International Union of Crystallography CY - Chester AN - OPUS4-56243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de O. Primo, J. A1 - Horsth, D.F. A1 - de S. Correa, J. A1 - Das, A. A1 - Bittencourt, C. A1 - Umek, P. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Zanetta, C. A1 - Anaissi, F.J. T1 - Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water JF - Nanomaterials N2 - n this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial dis- infection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in “Standard Methods for the Examination of Water and Wastewater” were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis,and disinfection efficiency. KW - Synchrotron KW - BAMline PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562440 DO - https://doi.org/10.3390/nano12101764 SN - 2079-4991 VL - 12 IS - 10 SP - 1 EP - 18 PB - MDPI CY - Basel AN - OPUS4-56244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -