TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Nietzke, Jonathan A1 - Kannengießer, Thomas T1 - In situ measurement of hydrogen concentration in steel using laser‑induced breakdown spectroscopy (LIBS) N2 - The ISO 3690 standard “Determination of hydrogen content in arc weld metal” requires a thermal activation of the diffusible hydrogen in a piece of weld metal for the subsequent ex situ concentration measurement by carrier gas hot extraction CGHE or thermal desorption spectroscopy (TCD). Laser-induced breakdown spectroscopy (LIBS) offers a time and spatially resolved, almost non-destructive, in situ measurement of hydrogen at surfaces without sample preparation. We measured hydrogen in steels, which were charged either electrochemically or by high-pressure hydrogen gas, and compared the results. Further, the feasibility of quantitative hydrogen line scan measurements with LIBS was demonstrated by measuring hydrogen at water jet cut surfaces. The hydrogen concentrations measured with the help of LIBS were compared with CGHE measurements. It was observed that hydrogen can be reliably measured with LIBS for concentrations larger than 2 wt.-ppm. The maximum hydrogen concentration achieved using electrochemical charging was 85.1 ppm. The results show that LIBS is a promising technique for time- and spatially resolved measurements of hydrogen in steels. T2 - IIW Annual Assembly 2023 CY - Singapore KW - LIBS KW - Hydrogen measurement KW - Welding KW - Stainless steel KW - Diffusible hydrogen PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593664 DO - https://doi.org/10.1007/s40194-023-01677-2 SP - 1 EP - 9 PB - Springer AN - OPUS4-59366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böllinghaus, Thomas A1 - Cross, Carl T1 - Obituary: Prof. Dr.-Ing. Hans Hoffmeister N2 - On November 3, 2023, our dear colleague, Prof. Dr.-Ing. Hans Hoffmeister, born in 1932 in Kassel, Germany, passed away in Ahrensburg, near Hamburg, Germany. KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594160 DO - https://doi.org/10.1007/s40194-023-01675-4 SP - 1 EP - 2 PB - Springer Science and Business Media LLC AN - OPUS4-59416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - Birkholz, Henk A1 - Jung, Matthias A1 - Waitelonis, Jörg A1 - Mädler, Lutz A1 - Sack, Harald T1 - PMD Core Ontology: Achieving semantic interoperability in materials science N2 - Knowledge representation in the Materials Science and Engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant (consistent) and variant (context-specific) knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. In this paper, an approach how to maintain a comprehensive MSE-centric terminology composing a mid-level ontology–the Platform MaterialDigital Core Ontology (PMDco)–via MSE community-based curation procedures is presented. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics. Additionally, it demonstrates how the PMDco lowers development and integration thresholds. Moreover, the research highlights how to fuel it with real-world data sources ranging from manually conducted experiments and simulations with continuously automated industrial applications. KW - Ontology KW - Materials science and engineering KW - Knowledge representation KW - Reproducibility KW - Semantic interoperability KW - Semantic data integration PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592948 DO - https://doi.org/10.1016/j.matdes.2023.112603 SN - 0264-1275 VL - 237 SP - 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-59294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klimek, André A1 - Stelzner, Ludwig A1 - Hothan, Sascha A1 - Zehfuß, Jochen T1 - Influence of thermal strain on concrete spalling N2 - Understanding the susceptibility to spalling of concrete members in case of fire is important to evaluate the residual load-bearing capacity. The investigations of the spalling phenomenon of a concrete mixture using real scale members are necessary but expensive to carry out. Reducing the specimen size leads to an increase of boundary effects that can result in a reduced spalling or absence of spalling. In this study, fire tests were carried out on unrestrained, single-sided exposed, cuboid shaped specimens (0.6 m x 0.6 m x 0.29 m) as well as unrestrained and steel ring restrained cylindrical specimens (Ø = 0.47 m, h = 0.29 m), which induce different boundary conditions. These fire tests were carried out on two ordinary concrete mixtures. The two mixtures differ only in the type of aggregates (quartz gravel and basalt grit) and were used to investigate the influence of the thermal expansion of the aggregate on the spalling behaviour of the concrete. The results show a significant increase of the spalling depth due to the restrained thermal expansion achieved by the applied steel rings. Additionally, the type of aggregate has a direct influence on the spalling behaviour of a concrete mixture. The reduction of the boundary effects by the steel rings recreate the test conditions in the centre of a large concrete member. Thus, this type of specimen is suitable to determine the susceptibility to spalling of a material (screening-tests) as preliminary investigations to full scale fire tests. KW - Spalling KW - Concrete KW - Fire test KW - Restraint KW - Screening test PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593350 DO - https://doi.org/10.1617/s11527-023-02274-x VL - 57 SP - 1 EP - 14 PB - Springer AN - OPUS4-59335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Kneiske, Sönke A1 - Guilherme Buzanich, Ana A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Zr fluoride catalyst: A useful tool for C-F bond activation N2 - A route to a ZrF4 catalyst active in room temperature Friedel–Crafts and dehydrofluorination reactions was developed via a fluorolytic sol–gel route, which was followed by a postfluorination step using a stream of CHClF2. The behaviour of different Zr(IV) precursors in a sol–gel reaction with anhydrous isopropanol/HF solution was investigated. The subsequent post-fluorination step was optimised in its temperature ramp and confirmed the necessity of a fluorination of the generated xerogels to obtain catalytic activity. The process is discussed in the context of the analysis of the materials using Brunauer–Emmett–Teller analysis (BET), powder X-ray diffraction (XRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The local structure of the amorphous catalyst was elucidated by extended X-ray absorption fine structure spectroscopy (EXAFS). KW - Catalysis KW - Heterogeneous catalysis KW - C-F bond activation KW - Postfluorination PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593433 DO - https://doi.org/10.1039/D3CY01439H SN - 2044-4761 SP - 1 EP - 8 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten ED - Becker, Amadeus ED - Schröpfer, Dirk ED - Kromm, Arne ED - Kannengießer, Thomas ED - Scharf-Wildenhain, R. ED - Hälsig, A. ED - Hensel, J. T1 - Residual Stress Evolution during Slot Milling for Repair Welding and Wire Arc Additive Manufacturing of High-Strength Steel Components N2 - High-strength steels offer potential for weight optimization due to reduced wall thicknesses in modern constructions. Additive manufacturing processes such as Wire Arc Additive Manufacturing (WAAM) enable the resource-efficient production of structures. In the case of defects occurring in weld seams orWAAM components due to unstable process conditions, the economical solution is local gouging or machining and repair welding. It is important to understand the effects of machining steps on the multiaxial stress state in conjunction with the design-related shrinkage restraints. Research into how welding and slot milling of welds andWAAM structures affects residual stresses is still lacking. For this reason, component-related investigations with high-strength steels with yield strengths ≥790 MPa are carried out in our research. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyze the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and microstructure of the specimens with the initial residual stresses induced by welding. Subsequent repair welds can result in significantly higher residual stresses. KW - High strength steels KW - Additive manufacturing KW - Residual stress KW - Repair welding KW - Ditigtal image correlation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593515 DO - https://doi.org/10.3390/met14010082 VL - 14 IS - 1 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-59351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andreoli, A. F. A1 - Fantin, Andrea A1 - Kasatikov, S. A1 - Bacurau, V. P. A1 - Widom, M. A1 - Gargarella, P. A1 - Mazzer, E. M. A1 - Woodcock, T. G. A1 - Nielsch, K. A1 - Coury, F. G. T1 - The impact of chemical short-range order on the thermophysical properties of medium- and high-entropy alloys N2 - The unusual behavior observed in the coefficient of thermal expansion and specific heat capacity of CrFeNi, CoCrNi, and CoCrFeNi medium/high-entropy alloys is commonly referred to as the K-state effect. It is shown to be independent of the Curie temperature, as demonstrated by temperature-dependent magnetic moment measurements. CoCrFeNi alloy is chosen for detailed characterization; potential reasons for the K-state effect such as texture, recrystallization, and second-phase precipitation are ruled out. An examination of the electronic structure indicates the formation of a pseudo-gap in the Density of States, which suggests a specific chemical interaction between Ni and Cr atoms upon alloying. Hybrid Monte Carlo/Molecular Dynamic (MC/MD) simulations indicate the presence of non-negligible chemical short-range order (CSRO). Local lattice distortions are shown to be negligible, although deviations around Cr and Ni elements from those expected in a fully disordered structure are experimentally observed by X-ray absorption spectroscopy. The determined bonding distances are in good agreement with MC/MD calculations. A mechanism is proposed to explain the anomalies and calorimetric experiments and their results are used to validate the mechanism. KW - Mechanical Engineering KW - Mechanics of Materials KW - General Materials Science PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595869 DO - https://doi.org/10.1016/j.matdes.2024.112724 SN - 0264-1275 VL - 238 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-59586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Was, G.S. A1 - Bahn, C.-B. A1 - Busby, J. A1 - Cui, B. A1 - Farkas, D. A1 - Gussev, M. A1 - Rigen He, M. A1 - Hesterberg, J. A1 - Jiao, Z. A1 - Johnson, D. A1 - Kuang, W. A1 - McMurtrey, M. A1 - Robertson, I. A1 - Sinjlawi, A. A1 - Song, M. A1 - Stephenson, K. A1 - Sun, K. A1 - Swaminathan, Srinivasan A1 - Wang, M. A1 - West, E. T1 - How irradiation promotes intergranular stress corrosion crack initiation N2 - Irradiation assisted stress corrosion cracking (IASCC) is a form of intergranular stress corrosion cracking that occurs in irradiated austenitic alloys. It requires an irradiated microstructure along with high temperature water and stress. The process is ubiquitous in that it occurs in a wide range of austenitic alloys and water chemistries, but only when the alloy is irradiated. Despite evidence of this degradation mode that dates back to the 1960s, the mechanism by which it occurs has remained elusive. Here, using high resolution electron backscattering detection to analyze local stress-strain states, high resolution transmission electron microscopy to identify grain boundary phases at crack tips, and decoupling the roles of stress and grain boundary oxidation, we are able to unfold the complexities of the phenomenon to reveal the mechanism by which IASCC occurs. The significance of the findings impacts the mechanical integrity of core components of both current and advanced nuclear reactor designs worldwide. KW - Irradiation KW - Stress corrosion cracking KW - Grain boundaries KW - Oxidation KW - Austenitic alloys PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595748 DO - https://doi.org/10.1016/j.pmatsci.2024.101255 SN - 0079-6425 VL - 143 SP - 1 EP - 15 PB - Elsevier AN - OPUS4-59574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohring, W. A1 - Karafiludis, Stephanos A1 - Manzoni, Anna M. A1 - Laplanche, G. A1 - Schneider, M. A1 - Stephan-Scherb, C. T1 - High-Temperature Corrosion of High- and Medium-Entropy Alloys CrMnFeCoNi and CrCoNi Exposed to a Multi-Oxidant Atmosphere H2O–O2–SO2 N2 - AbstractThe high-temperature corrosion behaviors of the equimolar CrCoNi medium-entropy alloy and CrMnFeCoNi high-entropy alloy were studied in a gas atmosphere consisting of a volumetric mixture of 10% H2O, 2% O2, 0.5% SO2, and 87.5% Ar at 800 °C for up to 96 h. Both alloys were initially single-phase fcc with a mean grain size of ~ 50 μm and a homogeneous chemical composition. The oxide layer thickness of CrMnFeCoNi increased linearly with exposure time while it remained constant at ~ 1 μm for CrCoNi. A Cr2O3 layer and minor amounts of (Co,Ni)Cr2O4 developed on the latter while three oxide layers were detected on the former, i.e., a thin and continuous chromium rich oxide layer at the oxide/alloy interface, a dense (Mn,Cr)3O4 layer in the center and a thick and porous layer of Mn3O4 and MnSO4 at the gas/oxide interface. Additionally, a few metal sulfides were observed in the CrMnFeCoNi matrix. These results were found to be in reasonable agreement with thermodynamic calculations. KW - high entropy alloys KW - corrosion KW - oxidation KW - scanning electron microscopy KW - sulfidation KW - CrMnFeCoNi PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594189 DO - https://doi.org/10.1007/s44210-023-00026-8 SP - 1 EP - 17 PB - Springer Science and Business Media LLC AN - OPUS4-59418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598629 DO - https://doi.org/10.1039/D3MA00476G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Slotyuk, Lyubov A1 - Part, Florian A1 - Schlegel, Moritz-Caspar A1 - Akkerman, Floris T1 - Life Cycle Assessment of the Domestic Micro Heat and Power Generation Proton Exchange Membrane Fuel Cell in Comparison with the Gas Condensing Boiler Plus Electricity from the Grid N2 - The energy demand of private households contributes globally to 36.5% of the total CO2 emissions. To analyze the emissions reduction potential, we conducted a comparative life cycle assessment of a proton exchange membrane fuel cell in a residential application and a conventional system with a stand-alone gas condensing boiler and electricity from a grid mix. The period under review was referred to as the service life of the PEMFC and is assumed to be 10 years (83,038 h of PEMFC). The applicability of this in a single-family house built between 1991 and 2000 under German climatic conditions was investigated. The functional unit is set to the thermal energy demand of 16,244 kWh/a and electricity demand of 4919 kWh/a of a single-family house. The impact assessment method “CML 2001–August 2016” was used in this investigation. The manufacturing phase of the proton exchange membrane fuel cell showed disadvantages, whereby the use phase had significant advantages in most of the environmental impact categories as compared to the conventional energy supply system. Considering the whole life cycle, the advantages from the use phase could outperform the disadvantages from the manufacturing phase in most of the impact categories, except for ADP elements and TETP. KW - Sustainability KW - Circular Economy KW - Comparative life cycle assessment KW - Proton exchange membrane fuel cell KW - Gas condensing boiler KW - Micro heat and power generation KW - Residential application KW - Single-family house energy supply system PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598134 DO - https://doi.org/10.3390/su16062348 VL - 16 IS - 6 SP - 1 EP - 16 PB - MDPI AG AN - OPUS4-59813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - Morell, Daniel A1 - von der Au, Marcus A1 - Wittstock, Gunther A1 - Ozcan, Ozlem A1 - Witt, Julia T1 - Transpassive Metal Dissolution vs. Oxygen Evolution Reaction: Implication for Alloy Stability and Electrocatalysis T1 - Transpassive Metallauflösung vs. Sauerstoffentwicklung: Auswirkungen auf Legierungsstabilität und Elektrokatalyse N2 - Multi-principal element alloys (MPEAs) are gaining interest in corrosion and electrocatalysis research due to their electrochemical stability across a broad pH range and the design flexibility they offer. Using the equimolar CrCoNi alloy, we observe significant metal dissolution in a corrosive electrolyte (0.1 M NaCl, pH 2) concurrently with the oxygen evolution reaction (OER) in the transpassive region despite the absence of hysteresis in polarization curves or other obvious corrosion indicators. We present a characterization scheme to delineate the contribution of OER and alloy dissolution, using scanning electrochemical microscopy (SECM) for OER-onset detection, and quantitative chemical analysis with inductively coupled-mass spectrometry (ICP-MS) and ultraviolet visible light (UV-Vis) spectroscopy to elucidate metal dissolution processes. In-situ electrochemical atomic force microscopy (EC-AFM) revealed that the transpassive metal dissolution on CrCoNi is dominated by intergranular corrosion. These results have significant implications for the stability of MPEAs in corrosion systems, emphasizing the necessity of analytically determining metal ions released from MPEA electrodes into the electrolyte when evaluating Faradaic efficiencies of OER catalysts. The release of transition metal ions not only reduces the Faradaic efficiency of electrolyzers but may also cause poisoning and degradation of membranes in electrochemical reactors. N2 - Multi-Hauptelement-Legierungen (MPEAs) gewinnen in der Korrosions- und Elektrokatalyseforschung aufgrund ihrer elektrochemischen Stabilität über einen breiten pH-Bereich und der Vielfalt der möglichen chemischen Zusammensetzungen zunehmend an Interesse. In unseren Untersuchungen mit der äquimolaren CrCoNi-Legierung in einem sauren Elektrolyten (0.1 M NaCl, pH 2) beobachteten wir eine signifikante Metallauflösung, die mit der Sauerstoffentwicklungsreaktion (OER) im transpassiven Bereich einhergeht, obwohl in zyklischen Polarisationskurven keine Hysterese auftrat oder andere offensichtliche Korrosionsindikatoren vorlagen. In diesem Artikel wird ein Charakterisierungskonzept eingeführt, dass die Beiträge der OER und der Legierungsauflösung differenziert. Hierfür kommt die elektrochemische Rastermikroskopie (SECM) zum Nachweis des Beginns der OER und die quantitative chemische Analyse mit induktiv gekoppelter Massenspektrometrie (ICP-MS) und UV/Vis-Spektrometrie zur Aufklärung der Metallauflösungsprozesse zum Einsatz. Die elektrochemische In situ-Atomkraftmikroskopie (EC-AFM) zeigte, dass die intergranulare Korrosion der dominierende Mechanismus der transpassive Metallauflösung von CrCoNi ist. Diese Ergebnisse besitzen erhebliche Auswirkungen für die Beurteilung der Stabilität von MPEAs in Korrosionssystemen und der Stromausbeute von OER-Katalysatoren auf der Basis von MPEAs. Die Daten unterstreichen die Notwendigkeit der analytischen Bestimmung von Metallionen, die von MPEA-Elektroden freigesetzt werden. Die Freisetzung von Übergangsmetallionen verringert nicht nur die Stromausbeute von Elektrolyseuren, sondern kann zu einer Schädigung von Membranen in elektrochemischen Reaktoren führen. KW - Transpassive dissolution KW - Corrosion KW - Multi-prinicpal element alloys (MPEAs) KW - Passivation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597045 DO - https://doi.org/10.1002/anie.202317058 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-59704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoogendoorn, Levi A1 - Huertas, Mauricio A1 - Nitz, Phillip A1 - Qi, Naiyu A1 - Baller, Johannes A1 - Prinz, Carsten A1 - Graeber, Gustav T1 - Sustainable, Low‐Cost Sorbents Based on Calcium Chloride‐Loaded Polyacrylamide Hydrogels N2 - AbstractSorbents are promising materials for applications in atmospheric water harvesting, thermal energy storage, and passive cooling, thereby addressing central challenges related to water scarcity and the global energy transition. Recently, hygroscopic hydrogel composites have emerged as high‐performance sorbents. However, many of these systems are fabricated with unsustainable and costly sorbent materials, which hinders their wide deployment. Here, the synthesis of high‐performance, cost‐efficient polyacrylamide hydrogels loaded with unprecedented amounts of calcium chloride is demonstrated. To this end, the swelling procedure of polyacrylamide hydrogels in aqueous calcium chloride solutions is optimized. The achievable salt loading in the hydrogel is characterized as a function of temperature, calcium chloride concentration in the swelling solution, and the hydrogel preparation conditions. The obtained hydrogel‐salt composites are shown to be stable under repeated sorption‐desorption cycling and enable water uptakes of 0.92 and 2.38 grams of water per gram of dry materials at 30% and 70% relative humidity, respectively. The resulting cost‐performance ratio substantially exceeds lithium chloride‐based systems. Further, the mechanistic insights on hydrogel salt interactions can guide the design of sustainable and low‐cost sorbent materials for future applications in water and energy. KW - Electrochemistry KW - Condensed Matter Physics KW - Biomaterials KW - Electronic, Optical and Magnetic Materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598366 DO - https://doi.org/10.1002/adfm.202314680 SN - 1616-301X SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-59836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seifert, Lando A1 - Grunewald, Andreas A1 - Müller, Thoralf A1 - Ebell, Gino T1 - Stress corrosion tests for prestressing steels—Part 1: The influence of surface condition and test solution composition on hydrogen charging N2 - Tests for assessing prestressing steels' susceptibility to hydrogen‐induced stress corrosion cracking are essential for approvals, in‐house monitoring, and third‐party material testing. According to ISO 15630‐3, the time to brittle fracture by constant load under corrosive conditions in thiocyanate test solutions (A or B) at 50°C is measured. In the literature, a high scattering in stress corrosion tests is reported, which questions the integrity of the test procedure. This paper shows the results of studies about the influence of solution composition on hydrogen charging in electrochemical and permeation measurements. Electrochemical experiments show that polished steel surfaces without common drawing layers have more consistent free corrosion currents, polarization resistances, and B‐values in solution A with low scattering compared to the solution B experiments. The influence of temperature at 50°C and an ambient temperature of 22°C was also tested. KW - Drawing layers KW - Hydrogen‐induced stress corrosion cracking KW - Permeation measurements KW - Prestressing steels KW - Stress corrosion tests KW - Surface conditions KW - Test solutions PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598738 DO - https://doi.org/10.1002/maco.202313948 SP - 1 EP - 13 PB - Wiley‐VCH GmbH AN - OPUS4-59873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böttcher, Nils A1 - Dayani, Shahabeddin A1 - Markötter, Henning A1 - Bau, Alexander A1 - Setzchen, Max A1 - Schmidt, Anita A1 - Kowal, Julia A1 - Krug von Nidda, Jonas T1 - High Precision Nail‐Penetration Setup for the Controlled Thermal Runaway Initiation of Lithium‐Ion Cells at Very Low Temperatures N2 - A high precision nail‐penetration (NP) tool for characterizing the mechanically induced thermal‐runaway (TR) of lithium‐ion battery (LIB) cells in a defined range of temperatures down to −140 °C was developed. To understand the cell specific behavior at low temperatures aiming at the determination of safe handling conditions, different scenarios are analyzed. First, accuracy tests of the NP‐tool regarding motion and penetration depth are conducted with cylindrical cells at different temperatures. Thus, postmortem computer tomographic (CT) images are compared to the data measured with the newly integrated 3‐axis force sensor which is further combined with a high‐resolution position sensor. The herein developed setup allows evaluation of the NP‐metrics at an accuracy of ±1 pierced electrode layer without CT‐scans. Further NP examinations at 20 °C of fully charged cylindrical lithium nickel manganese cobalt oxide cells reveal a reproducible minimum damage as a reliable TR‐trigger. Moreover, NP‐tests at low temperature disclose a relation of the short circuit conductivity and TR‐reactions during subsequent rethermalization to room temperature. Finally, the implementation of a novel fixture for a controlled very fast cooling of LIB‐cells during critical damage opens the way to investigate the individual steps during a TR and, thus, to gain important information of the specific TR‐mechanism of different LIB‐cells. KW - Battery Safety KW - High-precision nail penetration KW - Lithium-ion batteries KW - Abuse testing KW - Thermal runaway PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598127 DO - https://doi.org/10.1002/ente.202301379 SN - 2194-4288 SP - 1 EP - 13 PB - Wiley VHC-Verlag AN - OPUS4-59812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Groschke, Matthias A1 - Becker, Roland T1 - Comparison of carrier gases for the separation and quantification of mineral oil hydrocarbon (MOH) fractions using online coupled high performance liquid chromatography-gas chromatography-flame ionisation detection N2 - On-line coupled high performance liquid chromatography-gas chromatography-flame ionisation detection (HPLC-GC-FID) was used to compare the effect of hydrogen, helium and nitrogen as carrier gases on the chromatographic characteristics for the quantification of mineral oil hydrocarbon (MOH) traces in food related matrices. After optimisation of chromatographic parameters nitrogen carrier gas exhibited characteristics equivalent to hydrogen and helium regarding requirements set by current guidelines and standardisation such as linear range, quantification limit and carry over. Though nitrogen expectedly led to greater peak widths, all required separations of standard compounds were sufficient and humps of saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) were appropriate to enable quantitation similar to situations where hydrogen or helium had been used. Slightly increased peak widths of individual hump components did not affect shapes and widths of the MOSH and MOAH humps were not significantly affected by the use of nitrogen as carrier gas. Notably, nitrogen carrier gas led to less solvent peak tailing and smaller baseline offset. Overall, nitrogen may be regarded as viable alternative to hydrogen or helium and may even extend the range of quantifiable compounds to highly volatile hydrocarbon eluting directly after the solvent peak. KW - Mineral oil hydrocarobons KW - Food KW - Liquid chromatography KW - Gas chromatography KW - MOSH/MOAH PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601450 DO - https://doi.org/10.1016/j.chroma.2024.464946 SN - 0021-9673 VL - 1726 SP - 1 EP - 7 PB - Elsevier CY - New York, NY AN - OPUS4-60145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Iglesias, C. A1 - Markovina, A. A1 - Nirmalananthan-Budau, N. A1 - Resch-Genger, Ute A1 - Klinger, D. T1 - Optically monitoring the microenvironment of a hydrophobic cargo in amphiphilic nanogels: influence of network composition on loading and release N2 - Amphiphilic nanogels (ANGs) are promising carriers for hydrophobic cargos such as drugs, dyes, and catalysts. Loading content and release kinetics of these compounds are controlled by type and number of hydrophobic groups in the amphiphilic copolymer network. Thus, understanding the interactions between cargo and colloidal carrier is mandatory for a tailor-made and cargo-specific ANG design. To systematically explore the influence of the network composition on these interactions, we prepared a set of ANGs of different amphiphilicity and loaded these ANGs with varying concentrations of the solvatochromic dye Nile Red (NR). Here, NR acts as a hydrophobic model cargo to optically probe the polarity of its microenvironment. Analysis of the NR emission spectra as well as measurements of the fluorescence quantum yields and decay kinetics revealed a decrease in the polarity of the NR microenvironment with increasing hydrophobicity of the hydrophobic groups in the ANG network and dye–dye interactions at higher loading concentrations. At low NR concentrations, the hydrophobic cargo NR is encapsulated in the hydrophobic domains. Increasing NR concentrations resulted in probe molecules located in a more hydrophilic environment, i.e., at the nanodomain border, and favored dye–dye interactions and NR aggregation. These results correlate well with release experiments, indicating first NR release from more hydrophilic network locations. Overall, our findings demonstrate the importance to understand carrier–drug interactions for efficient loading and controlled release profiles in amphiphilic nanogels. KW - Particle KW - Energy transfer KW - Limit of detection KW - Polymer KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Dye KW - Probe KW - Sensor KW - Nile Red PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601603 DO - https://doi.org/10.1039/d4nr00051j SN - 2040-3364 IS - 16 SP - 9525 EP - 9535 PB - The Royal Society of Chemistry AN - OPUS4-60160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Lisec, Jan A1 - Koch, Matthias T1 - Changes in Black Truffle (Tuber melanosporum) Aroma during Storage under Different Conditions N2 - The enticing aroma of truffles is a key factor for their culinary value. Although all truffle species tend to be pricy, the most intensely aromatic species are the most sought after. Research into the aroma of truffles encompasses various disciplines including chemistry, biology, and sensory science. This study focusses on the chemical composition of the aroma of black truffles (Tuber melanosporum) and the changes occurring under different storage conditions. For this, truffle samples were stored under different treatments, at different temperatures, and measured over a total storage time of 12 days. Measurements of the truffle aroma profiles were taken with SPME/GC–MS at regular intervals. To handle the ample data collected, a systematic approach utilizing multivariate data analysis techniques was taken. This approach led to a vast amount of data which we made publicly available for future exploration. Results reveal the complexity of aroma changes, with 695 compounds identified, highlighting the need for a comprehensive understanding. Principal component analyses offer initial insights into truffle composition, while individual compounds may serve as markers for age (formic acid, 1-methylpropyl ester), freshness (2-Methyl-1-propanal; 1-(methylthio)-propane), freezing (tetrahydrofuran), salt treatment (1-chloropentane), or heat exposure (4-hydroxy-3-methyl-2-butanone). This research suggests that heat treatment or salt contact significantly affects truffle aroma, while freezing and cutting have less pronounced effects in comparison. The enrichment of compounds showing significant changes during storage was investigated with a metabolomic pathway analysis. The involvement of some of the enriched compounds on the pyruvate/glycolysis and sulfur pathways was shown. KW - Mass Spectrometry KW - Metabolomics KW - Tuber melanosporum KW - Truffle Aroma PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601731 DO - https://doi.org/10.3390/jof10050354 VL - 10 IS - 5 SP - 1 EP - 22 PB - MDPI AN - OPUS4-60173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bauer, L.J. A1 - Wieder, Frank A1 - Truong, V. A1 - Förste, F. A1 - Wagener, Y. A1 - Jonas, A. A1 - Praetz, S: A1 - Schlesiger, C. A1 - Kupsch, Andreas A1 - Müller, B.R. A1 - Kanngießer, B. A1 - Zaslansky, P. A1 - Mantouvalou, I. T1 - Absorption Correction for 3D Elemental Distributions of Dental Composite Materials Using Laboratory Confocal Micro-X-ray Fluorescence Spectroscopy N2 - Confocal micro-X-ray fluorescence (micro-XRF) spectroscopy facilitates three-dimensional (3D) elemental imaging of heterogeneous samples in the micrometer range. Laboratory setups using X-ray tube excitation render the method accessible for diverse research fields but interpretation of results and quantification remain challenging. The attenuation of X-rays in composites depends on the photon energy as well as on the composition and density of the material. For confocal micro-XRF, attenuation severely impacts elemental distribution information, as the signal from deeper layers is distorted by superficial layers. Absorption correction and quantification of fluorescence measurements in heterogeneous composite samples have so far not been reported. Here, an absorption correction approach for confocal micro-XRF combining density information from microcomputed tomography (micro-CT) data with laboratory X-ray absorption spectroscopy (XAS) and synchrotron transmission measurements is presented. The energy dependency of the probing volume is considered during the correction. The methodology is demonstrated on a model composite sample consisting of a bovine tooth with a clinically used restoration material. KW - Micro X-ray fluorescence spectroscopy KW - Dental composite materials KW - Computed tomography KW - Absorption correction PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601630 DO - https://doi.org/10.1021/acs.analchem.4c00116 SN - 0003-2700 SN - 1520-6882 VL - 96 IS - 21 SP - 8441 EP - 8449 PB - American Chemical Society Publications CY - Washington, DC AN - OPUS4-60163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Marschall, Niklas A1 - Meinel, Dietmar A1 - Böhning, Martin T1 - Relation of craze to crack length during slow crack growth phenomena in high‐density polyethylene N2 - The craze‐crack mechanism occurring in high‐density polyethylene (HDPE) causing slow crack growth and environmental stress cracking is investigated in detail with respect to the relation of crack length and the related craze zone. This is essential for the understanding of the resulting features of the formed fracture surface and their interpretation in the context of the transition from crack propagation to ductile shear deformation. It turns out that an already formed craze zone does not inevitably result in formation of a propagating crack, but could also undergo ductile failure. For the examination, the full notch creep test (FNCT) was employed with a subsequent advanced fracture surface analysis that was performed using various imaging techniques: light microscopy, laser scanning microscopy, scanning electron microscopy, and X‐ray micro computed tomography scan. FNCT specimens were progressively damaged for increasing durations under standard test conditions applying Arkopal, the standard surfactant solution, and biodiesel as test media were used to analyze the stepwise growth of cracks and crazes. From considerations based on well‐established fracture mechanics approaches, a theoretical correlation between the length of the actual crack and the length of the preceding craze zone was established that could be evidenced and affirmed by FNCT fracture surface analysis. Moreover, the yield strength of a HDPE material exposed to a certain medium as detected by a classic tensile test was found to be the crucial value of true stress to induce the transition from crack propagation due to the craze‐crack mechanism to shear deformation during FNCT measurements. Highlights - Progress of crack formation in high‐density polyethylene is analyzed by different imaging techniques - Determined growth rates depend on distinction between craze zone and crack - The ratio of the present crack to the anteceding craze zone is validated theoretically - The transition from crack propagation to ductile shear deformation is identified - An already formed craze zone may still fail by ductile mechanisms KW - Craze-crack mechanism KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Laser scanning microscopy (LSM) KW - Slow crack growth (SCG) KW - X-ray computed tomography (CT) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601831 DO - https://doi.org/10.1002/pen.26698 SN - 1548-2634 VL - 64 IS - 6 SP - 2387 EP - 2403 PB - Wiley AN - OPUS4-60183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -