TY - JOUR A1 - Sözen, H.I. A1 - Ener, S. A1 - Maccari, F. A1 - Fayyazi, B. A1 - Gutfleisch, O. A1 - Neugebauer, J. A1 - Hickel, Tilmann T1 - Combined ab initio and experimental screening of phase stabilities in the Ce-Fe-Ti-X system (X = 3d and 4d metals) N2 - One of the main challenges for the synthesis and application of the promising hard-magnetic compound CeFe11Ti is the formation of Laves phases that are detrimental for their thermodynamic stability and magnetic properties. In this paper, we present an ab initio based approach to modify the stability of these phases in the Ce-Fe-Ti system by additions of 3d and 4d elements. We combine highly accurate free-energy calculations with an efficient screening technique to determine the critical annealing temperature for the formation of Ce(Fe,X)11Ti. The central findings are the dominant role of the formation enthalpy at T = 0 K on chemical trends and the major relevance of partial chemical decompositions. Based on these insights, promising transition metals to promote the stability of the hard-magnetic phase, such as Zn and Tc, were predicted. The comparison with suction casting and reactive crucible melting experiments for Ce-Fe-Ti-X (X = Cu, Ga, Co, and Cr) highlights the relevance of additional phases and quaternary elements. KW - Density functional theory KW - Phase stability KW - Energy materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568850 DO - https://doi.org/10.1103/PhysRevMaterials.7.014410 SN - 2475-9953 VL - 7 SP - 1 EP - 15 AN - OPUS4-56885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heisterkamp, I. A1 - Gartiser, S. A1 - Schoknecht, Ute A1 - Happel, O. A1 - Kalbe, Ute A1 - Kretzschmar, M. A1 - Ilvonen, O. T1 - Investigating the ecotoxicity of construction product eluates as multicomponent mixtures N2 - The release of hazardous compounds from construction products can harm human health and the environment. To improve the sustainability of construction materials, the leaching of substances from construction products and their potential environmental impact should be assessed. Twenty-seven construction products from different product groups were examined with a combination of standardized leaching tests (dynamic surface leaching test and percolation test) and biotests (algae, daphnia, fish egg, luminescent bacteria, umu and Ames fluctuation tests). To identify the released substances, extensive qualitative and quantitative chemical analyses were performed, including gas chromatographic and liquid chromatographic screening techniques. Results: Many of the tested eluates caused signifcant ecotoxic efects. Particularly high ecotoxicities were observed for grouts (lowest ineffective dilution (LID) up to 16384) and cork granules (LID up to 24578). The results of ecotoxicity tests allow the prioritization of the eluates that should be subjected to detailed chemical analyses. Organic screening by different methods and ranking the identifed substances based on recorded hazard classification is a suitable approach to identify the relevant toxic substances. Conclusions: Determining the ecotoxicity of eluates from construction products records the summary effect of all leachable substances. This instrument is especially useful for construction products of complex and largely unknown composition. The ecotoxicological and the chemical–analytical approach complement each other in an ideal way to characterize the potential hazard of eluates from construction products and to identify the environmentally hazardous components in these eluates. Our results confirm that the proposed harmonized methods for testing eluate toxicity are an adequate and applicable procedure to move toward a more sustainable way of building and to reduce toxic effects of construction products in their use phase in the environment. KW - Construction products KW - Building materials KW - Ecotoxicity KW - Biotests KW - Leaching KW - Eluates KW - Chemical analysis KW - Analytical screening techniques KW - Mixture toxicity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568864 DO - https://doi.org/10.1186/s12302-023-00711-w VL - 35 IS - 1 SP - 1 EP - 20 PB - Springer AN - OPUS4-56886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, J. A1 - Gong, M. A1 - Zhang, W. A1 - Mehmood, Asad A1 - Zhang, J. A1 - Ali, G. A1 - Kucernak, A. T1 - Simultaneously incorporating atomically dispersed Co-Nₓ sites with graphitic carbon layer-wrapped Co₉S₈ nanoparticles for oxygen reduction in acidic electrolyte N2 - A facile yet robust synthesis is reported herein to simultaneously incorporate atomically dispersed Co-Nₓ sites with graphitic layer-protected Co₉S₈ nanoparticles (denoted as Co SACs+Co₉S₈) as an efficient electrocatalyst for oxygen reduction in acidic solution. The Co SACs+Co₉S₈ catalyst shows low H₂O₂ selectivity (∼5 %) with high half-wave potential (E1/2) of ∼0.78 V(RHE) in 0.5 M H₂SO₄. The atomic sites of the catalyst were quantified by a nitrite stripping method and the corresponding site density of the catalyst is calculated to be 3.2×10¹⁸ sites g⁻¹. Besides, we also found the presence of a reasonable amount of Co₉S₈ nanoparticles is beneficial for the oxygen electrocatalysis. Finally, the catalyst was assembled into a membrane electrode assembly (MEA) for evaluating its performance under more practical conditions in proton exchange membrane fuel cell (PEMFC) system. KW - Co−N-Cs KW - Fuel cells KW - Single-atom catalysts KW - Oxygen reduction reaction KW - PGM-free catalysts PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575993 DO - https://doi.org/10.1002/celc.202300110 SN - 2196-0216 VL - 10 IS - 12 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Czeskleba, Denis A1 - Nietzke, Jonathan A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Investigation of stress relief crack susceptibility of CrMoV steels coarse grain HAZ via simulation of uniaxial stress conditions during PWHT N2 - Creep-resistant steels such as the 13CrMoV9-10, used in the construction of thick-walled pressure vessels, are most commonly submerged arc welded (SAW). These steels can develop stress relief cracks (SRC) if the mandatory post weld heat treatment (PWHT) is performed improperly. Current PWHT parameters, such as heating rate and holding time at a specific holding temperature, are based on both empirical experience and conventional free shrinking welding experiments to characterize the SRC-susceptibility of the weld. These cannot adequately depict the higher residual stresses caused by the structurally induced stiffness of the surrounding construction. This study discusses the development of a repeatable, precise, and time-efficient methodology to study the effects of different stress levels and heating rates on the SRC susceptibility of the coarse grain heat-affected zone (CGHAZ). For that purpose, samples were thermically treated to simulate a coarse grain heat-affected zone (CGHAZ) and subsequently exposed to representative levels of stress during the heating phase of a PWHT. The recorded stress and heating rate–dependent strains were mathematically analyzed via curve tracing/calculus to identify interdependent effects. This procedure facilitates the measurement of material characteristics such as carbide growth on grain boundaries at the µm-scale via an integrated value over the entire sample volume. The first and second derivatives show a slight, precipitate-dependent, increase in hardness of the sample, depending on the heating rate and applied stress. This new methodology generates an improved assessment of the SRC susceptibility of SAW microstructures of creep-resistant CrMoV steels. KW - Submerged arc welding KW - Creep-resistant steel KW - Stress relief cracking KW - Component-like test KW - Post weld heat treatment PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576007 DO - https://doi.org/10.1007/s40194-023-01539-x SN - 0043-2288 SP - 1 EP - 9 PB - Springer Nature CY - Basel (CH) AN - OPUS4-57600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kinne, Marko A1 - Thöns, Sebastian T1 - Fatigue Reliability Based on Predicted Posterior Stress Ranges Determined from Strain Measurements of Wind Turbine Support Structures N2 - In the present paper, an approach for updating the continuous stress range distribution of a welded connection of a wind turbine support structure with predicted information from strain measurements is presented. Environmental conditions, such as wind or, in offshore fields, waves and currents, in combination with rotor excitations generate cyclic stresses affecting the reliability of welded joints of the support structure over the service life. Using strain measurements, these conditions can be monitored, and the resulting stress ranges, under consideration of measurement, mechanical and material uncertainties, can be reconstructed. These stress ranges can be used as an input for updating the prior probability density function (PDF) of the stress ranges predicted by the overall dynamics and a detailed design analysis. Applying Bayesian probability theory and decision theoretical implications, the predicted posterior probability density of the stress ranges is calculated based on the design information and uncertainties. This approach is exemplified, and it is shown how the predicted stress ranges and the design stress ranges are distributed. The prior and the predicted posterior stress ranges are used for a reliability calculation for potentially entering a pre-posterior decision analysis KW - Strain measurements of wind turbine support structures KW - Bayesian updating of stress ranges KW - Posterior fatigue reliability PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572663 DO - https://doi.org/10.3390/en16052225 VL - 16 IS - 5 SP - 1 EP - 26 PB - MDPI AN - OPUS4-57266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Gornushkin, Igor B. T1 - Investigation of a method for the correction of self-absorption by Planck function in laser induced breakdown spectroscopy N2 - The electron density and temperature of a laser-induced plasma can be determined from the width and intensity of the spectral lines, provided that the corresponding optical transitions are optically thin. However, the lines in laser induced plasma are often self-absorbed. One of the methods of correction of this effect is based on the use of the Planck function and an iterative numerical calculation of the plasma temperature. In this study, the method is further explored and its inherent errors and limitations are evaluated. For this, synthetic spectra are used that fully correspond to the assumed conditions of a homogeneous isothermal plasma at local thermodynamic equilibrium. Based on the error analysis, the advantages and disadvantages of the method are discussed in comparison with other methods of self-absorption correction. KW - LIBS KW - Self-absorption KW - Planck function PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572677 DO - https://doi.org/10.1039/D2JA00352J SN - 0267-9477 SP - 1 EP - 6 PB - Royal Society of Chemistry (RSC) AN - OPUS4-57267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Hensel, J. T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels N2 - Wire arc additive manufacturing (WAAM) enables the efficient production of weight-optimized modern engineering structures. Further increases in efficiency can be achieved by using high-strength structural steels. Commercial welding consumables for WAAM are already available on the market. Lack of knowledge and guidelines regarding welding residual stress and component safety during production and operation leads to severely limited use for industry applications. The sensitive microstructure of high-strength steels carries a high risk of cold cracking; therefore, residual stresses play a crucial role. For this reason, the influences of the material, the WAAM process, and the design on the formation of residual stresses and the risk of cold cracking are being investigated. The material used has a yield strength of over 800 MPa. This strength is adjusted via solid solution strengthening and a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on the residual stresses. The focus of the present investigation is on the additive welding parameters and component design on their influence on hardness and residual stresses, which are analyzed by means of X-ray diffraction (XRD). Reference specimens (hollow cuboids) are welded fully automated with a systematic variation of heat control and design. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. Increased heat input leads to lower tensile residual stresses which causes unfavorable microstructure and mechanical properties. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress. KW - DED-arc KW - Additive manufacturing KW - High-strength steel filler metal KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572698 DO - https://doi.org/10.1007/s40194-023-01503-9 SN - 1878-6669 VL - 67 IS - 4 SP - 987 EP - 996 PB - Springer CY - Berlin AN - OPUS4-57269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan T1 - Richtlinie „Detektion von Spanndrahtbrüchen mit Schallemission“ N2 - Ein großer Teil unserer Brücken wurden in den 1950er bis 1970er Jahren als Spannbetonbrücken gebaut. Mit der damals noch relativ jungen Technologie entstanden elegante, teilweise gewagte Bauwerke mit großen Spannweiten, welche die Vorteile der Materialien Stahl und Beton geschickt kombinieren. Die Standsicherheit einiger dieser Brücken ist heute gefährdet. Die Ursachen liegen in der enorm gewachsenen Belastung durch Schwerverkehr, teilweise ungenügender Wartung und in konstruktiven und Materialschwächen, die der mangelnden Erfahrung mit der Technologie in der Bauzeit geschuldet sind. Ein neuralgischer Punkt der Bauwerke sind die in den Beton integrierten Spannglieder. Infolge von Korrosion und Ermüdung können Elemente der Spannglieder reißen, wodurch die für das Tragwerk notwendige Spannung und somit die Tragfähigkeit reduziert werden. Nicht bei allen Brücken kündigen sichtbare Risse im Beton oder auffällige Verformungen den Tragfähigkeitsverlust bzw. das finale Versagen rechtzeitig an. Die Schallemissionsanalyse ist die derzeit einzige Methode, das Reißen einzelner Spannstähle zuverlässig und mit wirtschaftlich vertretbarem Aufwand zu detektieren. Trotzdem es schon einige Spannbetonbauwerke gibt, die mit Schallemissionsanalyse überwacht werden, ist das Verfahren noch wenig bekannt. Außerdem fehlen technische Richtlinien, was die Ausschreibung und Vergabe von entsprechenden Aufträgen und die Bewertung der Angebote sehr erschwert. Um sowohl Baulastträger als auch Dienstleistungsanbieter in den Vergabeverfahren und im Betrieb der Monitoringsysteme zu unterstützen, hat sich eine Gruppe von Experten aus den Bereichen Bauingenieurwesen und Schallemission zum Entwurf einer Richtlinie „Detektion von Spanndrahtbrüchen mit Schallemission“ zusammengefunden. Mit diesem Beitrag wird die Richtlinie vorgestellt, deren Bearbeitung bis zur SCHALL 23 abgeschlossen sein soll. T2 - SCHALL 23 Entwicklung und Anwendung der Schallemissionsanalyse und Zustandsüberwachung mit geführten Wellen CY - Wetzlar, Germany DA - 21.03.2023 KW - Schallemission KW - Spannbeton KW - Brücke KW - Spannstahlbruch PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573904 SP - 1 EP - 4 PB - DGZfP CY - Berlin AN - OPUS4-57390 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pirskawetz, Stephan A1 - Schmidt, S. T1 - Detection of wire breaks in prestressed concrete bridges by Acoustic Emission analysis N2 - problem. One reason is the sensitivity to stress corrosion cracking of the prestressing steel. Failure of prestressing wires can result in collapse of the entire structure without premature indication by transverse bending cracks or considerable deformation. The response of a structure to significant number of prestressing wire breaks was studied on a bridge in Brandenburg, Germany. Two thirds of the prestressing wires in concentrated tendons of two girders were cut before the bridge was demolished. Acoustic Emission Analysis was used to detect the wire breaks. Thus, the number of wire breaks was correlated with results of other measurement techniques, in particular strain measurements on the girders. In preparation of the measurements, the acoustic properties of the bridge were determined and the suitability of Schmidt hammer impacts as an acoustic reference source was validated. KW - Real scale test KW - Acoustic emission monitoring KW - Structural health monitoring (SHM) KW - Prestressed concrete bridge KW - Stress corrosion cracking KW - Wire break KW - Destructive testing KW - Nondestructive testing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573927 DO - https://doi.org/10.1016/j.dibe.2023.100151 SN - 2666-1659 VL - 14 SP - 1 EP - 10 PB - Elsevier Ltd AN - OPUS4-57392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuner, Maximilian A1 - Lisec, Jan A1 - Mauch, Tatjana A1 - Konetzki, J. A1 - Haase, H. A1 - Koch, Matthias T1 - Quantification of Ergot Alkaloids via Lysergic Acid Hydrazide—Development and Comparison of a Sum Parameter Screening Method N2 - Ergot alkaloids are a group of mycotoxins occurring in products derived from various grasses (e.g., rye) and have been regulated in the EU recently. The new maximum levels refer to the sum of the six most common ergot alkaloids in their two stereoisomeric forms in different food matrices. Typically, these twelve compounds are individually quantified via HPLC-MS/MS or -FLD and subsequently summed up to evaluate food safety in a time-consuming process. Since all these structures share the same ergoline backbone, we developed a novel sum parameter method (SPM) targeting all ergot alkaloids simultaneously via lysergic acid hydrazide. After extraction and clean-up, in analogy to the current European standard method EN 17425 (ESM) for ergot alkaloid quantitation, the samples were derivatized by an optimized hydrazinolysis protocol, which allowed quantitative conversion after 20 min at 100 °C. The new SPM was evaluated against another established HPLC-FLD-based method (LFGB) and the HPLC-MS/MS-based ESM using six naturally contaminated rye and wheat matrix reference materials. While the SPM provided comparable values to the ESM, LFGB showed deviating results. Determined recovery rates, limits of detection and quantification of all three employed methods confirm that the new SPM is a promising alternative to the classical approaches for ergot alkaloid screening in food. KW - Ergot alkaloids KW - Sum Parameter KW - Mycotoxins KW - Derivatization KW - Hydrazinolysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573968 DO - https://doi.org/10.3390/molecules28093701 SN - 0015-2684 VL - 28 IS - 9 SP - 3701 PB - MDPI CY - Basel AN - OPUS4-57396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Andrea ED - Reese, M. ED - Goldhammer, T. ED - Schmalsch, C. ED - Weber, J. ED - Bannick, C. G. T1 - Spectroscopic evidence for adsorption of natural organic matter on microplastics N2 - The interaction of microcroplastics (MP) with dissolved organic matter, especially humic substances, is of great importance in understanding the behavior of microplastics in aquatic ecosystems. Surface modification by humic substances plays an essential role in transport and interaction of MP with abiotic and biotic components. Previous studies on the interaction between MP and humic substances were largely based on a model compound, humic acid (Sigma-Aldrich). In our work, we therefore investigated the interaction of natural organic matter (NOM) sampled from a German surface water with low-density polyethylene particles (LDPE). Highpressure size exclusion chromatography (HPSEC) and UV/vis absorption and fluorescence spectroscopy were used to characterize the incubation solutions after modifications due to the presence of LDPE, and Raman spectroscopy was used to characterize the incubated microplastics. While the studies of the solutions generally showed only very small effects, Raman spectroscopic studies allowed clear evidence of the binding of humic fractions to MP. The comparison of the incubation of NOM and a lignite fulvic acid which also was tested further showed that specific signatures of the humic substances used could be detected by Raman spectroscopy. This provides an elegant opportunity to conduct broader studies on this issue in the future. KW - Humic matter KW - Raman KW - HPSEC KW - Fluorescence KW - MCR PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574519 DO - https://doi.org/10.1002/appl.202200126 SN - 2702-4288 SP - 1 EP - 30 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Hiid, Gundula A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth kinetics of the adsorbed layer of poly(bisphenol A carbonate) and its effect on the glass transition behavior in thin films N2 - The glass transition behavior of thin films of poly(bisphenol A carbonate) (PBAC) was studied employing ellipsometry. The glass transition temperature increases with the reduction of the film thickness. This result is attributed to the formation of an adsorbed layer with a reduced mobility compared to bulk PBAC. Therefore, for the first time, the growth kinetics of the adsorbed layer of PBAC was investigated, prepared by leaching samples from a 200 nm thin film which were annealed for several times at three different temperatures. The thickness of each prepared adsorbed layer was measured by multiple scans using atomic force microscopy (AFM). Additionally, an unannealed sample was measured. Comparison of the measurements of the unannealed and the annealed samples provides proof of a pre-growth regime for all annealing temperatures which was not observed for other polymers. For the lowest annealing temperature after the pre-growth stage only a growth regime with a linear time dependence is observed. For higher annealing temperatures the growth kinetics changes from a linear to a logarithmic growth regime at a critical time. At the longest annealing times the films showed signs of dewetting where segments of the adsorbed film were removed from the substrate (dewetting by desorption). The dependence of the surface roughness of the PBAC surface on annealing time also confirmed that the films annealed at highest temperatures for the longest times desorbed from the substrate. KW - Ultra thin polymer films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574531 DO - https://doi.org/10.1039/D3RA02020G SN - 2046-2069 VL - 13 IS - 21 SP - 14473 EP - 14483 PB - RSC Publishing CY - London AN - OPUS4-57453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas T1 - Application of imaging ellipsometry and white light interference microscopy for detection of defects in epitaxially grown 4H-SiC layers N2 - Critical defects, also known as device killers, in wide bandgap semiconductors significantly affect the performance of power electronic devices. We used the methods imaging ellipsometry (IE) and white light interference microscopy (WLIM) in a hybrid optical metrology study for fast and non-destructive detection, classification, and characterisation of defects in 4H–SiC homoepitaxial layers on 4H–SiC substrates. Ellipsometry measurement results are confirmed by WLIM. They can be successfully applied for wafer characterisation already during production of SiC epilayers and for subsequent industrial quality control. T2 - EOS Annual Meeting (EOSAM 2022) CY - Porto DA - 12.09.2022 KW - Imaging ellipsometry KW - White light interference microscopy KW - 4H–SiC KW - Defects PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574209 DO - https://doi.org/10.1051/jeos/2023018 SN - 1990-2573 VL - 19 IS - 1 SP - 1 EP - 8 PB - EDP Sciences AN - OPUS4-57420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baglo, K. A1 - Sauermoser, M. A1 - Lid, M. A1 - Paschke, T. A1 - Bin Afif, A. A1 - Lunzer, M. A1 - Bock, Robert A1 - Steinert, M. A1 - Flaten, A. A1 - Torgersen, J. T1 - Overcoming the transport limitations of photopolymer-derived architected carbon N2 - Photopolymer derived carbon grows in popularity, yet the range in available feature sizes is limited. Here we focus on expanding the field to low surface to volume ratio (SVR) structures. We describe a high temperature acrylic photopolymerizable precursor with FTIR and DSC and develop a thermal inert-gas treatment for producing architected carbon in the mm scale with SVR of 1.38 x10-3 μm-1. Based on TGA and MS, we distinguish two thermal regimes with activation energies of ~79 and 169 kJ mol-1, which we reason with mechanisms during the polymer’s morphologic conversion between 300 - 500 °C. The temperature range of the major dimensional shrinkage (300-440 °C, 50%) does not match the range of the largest alteration in elemental composition (440-600 °C, O/C 0.25-0.087%). The insights lead to an optimized thermal treatment with an initial ramp (2 °C min-1 to 350 °C), isothermal hold (14h), post hold ramp (0.5 °C min-1 to 440 °C) and final ramp (10 °C min-1 to 1000 °C). The resulting carbon structures are dimensionally stable, non-porous at the μm scale, and comprise an unprecedented variation in feature sizes (from mm to μm scale). The findings shall advance architected carbon to industrially relevant scales. KW - Carbon KW - Photopolymer KW - Transport limitations KW - Porous materials KW - Additive manufacturing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575038 DO - https://doi.org/10.1002/admt.202300092 SN - 2365-709X SP - 2300092 PB - Wiley-VCH GmbH AN - OPUS4-57503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Ebel, Kenny A1 - Heinze, Katja A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby N2 - Photodynamic therapy (PDT) used for treating cancer relies on the generation of highly reactive oxygen species, for example, singlet oxygen 1O2, by light-induced excitation of a photosensitizer (PS) in the presence of molecular oxygen, inducing DNA damage in close proximity of the PS. Although many precious metal complexes have been explored as PS for PDT and received clinical approval, only recently, the potential of photoactive complexes of nonnoble metals as PS has been discovered. Using the DNA origami technology that can absolutely quantify DNA strand break cross sections, we assessed the potential of the luminescent transition metal complex [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) to damage DNA in an air-saturated aqueous environment upon UV/Vis illumination. The quantum yield for strand breakage, that is, the ratio of DNA strand breaks to the number of absorbed photons, was determined to 1–4%, indicating efficient transformation of photons into DNA strand breaks by [Cr(ddpd)2]3+. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - PDT KW - Singlet oxygen KW - DNA KW - Origami KW - Quantum yield PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573631 DO - https://doi.org/10.1002/chem.202203719 SP - 1 EP - 7 AN - OPUS4-57363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Behnke, Thomas A1 - Gienger, J. A1 - Resch-Genger, Ute T1 - Efficiency scale for scatteringluminescent particles linkedto fundamental and measurablespectroscopic properties N2 - Comparing the performance of molecular and nanoscale luminophores and luminescent microand nanoparticles and estimating achievable signal amplitudes and limits of detection requires a standardizable intensity scale. This initiated the development of the relative MESF (number of molecules of equivalent soluble fluorochromes) and ERF (equivalent reference fluorophores) scales for flow cytometry and fluorescence microscopy. Both intensity scales rely on fluorescence intensity values assigned to fluorescent calibration beads by an intensity comparison to spectrally closely matching fluorophore solutions of known concentration using a spectrofluorometer. Alternatively, the luminophore or bead brightness (B) can be determined that equals the product of the absorption cross section (σa) at the excitation wavelength (σa(λex)) and the photoluminescence quantum yield (Φpl). Thereby, an absolute scale based on fundamental and measurable spectroscopic properties can be realized which is independent of particle size, material, and luminophore staining or labeling density and considers the sensitivity of the optical properties of luminophores to their environment. Aiming for establishing such a brightness scale for light-scattering dispersions of luminescent particles with sizes exceeding a few ten nanometers, we demonstrate how the brightness of quasi-monodisperse 25 nm, 100 nm, and 1 μm sized polystyrene particles (PSP), loaded with two different dyes in varying concentrations, can be obtained with a single custom-designed integrating sphere setup that enables the absolute determination of Φpl and transmittance and diffuse reflectance measurements. The resulting Φpl, σa(λex), imaginary parts of the refractive index, and calculated B values of these samples are given in dependence of the number of incorporated dye molecule per particle. Finally, a unitless luminescence efficiency (LE) is defined allowing for the direct comparison of luminescence efficiencies of particles with different sizes. KW - Brightness KW - Quantum yield KW - Cross section KW - Lluminescence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573680 DO - https://doi.org/10.1038/s41598-023-32933-6 VL - 13 IS - 1 SP - 14 PB - Nature AN - OPUS4-57368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matamoros-Veloza, A. A1 - Stawski, Tomasz A1 - Vargas, S. A1 - Neville, A. T1 - Study of a Local Structure at the Interface between Corrosion Films and Carbon Steel Surface in Undersaturated CO2 Environments N2 - Industries transporting CO2 gas-saturated fluids have infrastructures made of carbon steel. This is a good material with great mechanical properties but prone to corrosion and potential failure. Corrosion in sweet environments involves the formation of FeCO3 as a corrosion film, which is recognized to play a protective role under certain conditions. This work on the dissolution of corrosion films in sweet environments, under acidic and undersaturated conditions, demonstrates that the effects on the integrity of steel are far more significant than the damage observed on the surface of the corrosion film. Our results prove that dissolution of FeCO3 involved the presence of an amorphous phase, the intermediate formation of FeCl2 or FeCl+, and the presence of a phase with short distance atom–atom correlations. The amorphous phase was identified as a mixture of retained γ-Fe and Fe3C. Partially broken α-Fe and Fe3C structures were identified to prove the damage on the material, confirming the interface zone without evident damage on the corrosion film. Dissolution affected both the α-Fe and FeCO3, with the lattice [102̅] from the FeCO3 crystalline structure being the fastest to dissolve. The damage of steel at the molecular scale was evident at the macroscale with pit depths of up to 250 μm. The impact on the integrity of steel can be, therefore, more drastic than frequently reported in industrial operations of CO2 transport industries that use cleaning procedures (e.g., acid treatment, pigging) as part of their operational activities. KW - Steel KW - Corrosion KW - Siderite KW - Diffraction KW - Pair distribution function KW - Synchrotron PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572156 DO - https://doi.org/10.1021/acsomega.2c07631 SN - 2470-1343 VL - 8 IS - 9 SP - 8497 EP - 8504 PB - ACS AN - OPUS4-57215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mundra, S. A1 - Samson, G. A1 - Masi, G. A1 - Achenbach, R. A1 - Bastidas, D. M. A1 - Bernal, S. A. A1 - Bignozzi, M. C. A1 - Criado, M. A1 - Cyr, M. A1 - Gartner, N. A1 - von Greve-Dierfeld, S. A1 - Legat, A. A1 - Nikoonasab, Ali A1 - Provis, J. L. A1 - Raupach, M. A1 - Gluth, Gregor T1 - Application of electrochemical methods for studying steel corrosion in alkali-activated materials N2 - Alkali-activated materials (AAMs) are binders that can complement and partially substitute the current use of conventional cement. However, the present knowledge about how AAMs protect steel reinforcement in concrete elements is incomplete, and uncertainties exist regarding the application of electrochemical methods to investigate this issue. The present review by EFC WP11-Task Force ‘Corrosion of steel in alkali-activated materials’ demonstrates that important differences exist between AAMs and Portland cement, and between different classes of AAMs, which are mainly caused by differing pore solution compositions, and which affect the outcomes of electrochemical measurements. The high sulfide concentrations in blast furnace slag-based AAMs lead to distinct anodic polarisation curves, unusually low open circuit potentials, and low polarisation resistances, which might be incorrectly interpreted as indicating active corrosion of steel reinforcement. No systematic study of the influence of the steel–concrete interface on the susceptibility of steel to corrosion in AAMs is available. Less common electrochemical methods present an opportunity for future progress in the field. KW - Alkali-activated materials KW - Reinforcement corrosion KW - Steel corrrosion KW - Electrochemical methods KW - Concrete PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572241 DO - https://doi.org/10.1002/maco.202313743 SN - 1521-4176 VL - 74 IS - 7 SP - 988 EP - 1008 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Barzegar, M. A1 - Pasadas, D. J. A1 - Ribeiro, A. L. A1 - Ramos, H. G. A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis T1 - Polar Coordinate for Damage Imaging of Adhesively Bonded Plates Using Ultrasonic Guided Waves and Laser Doppler Vibrometer Measurements N2 - Wavefield measurements by a scanning laser Doppler vibrometer are generally carried out in a cartesian coordinate. As a piezoelectric transducer generates Lamb waves following radial paths, the use of a polar coordinate can be a suitable alternative to the use of a cartesian coordinate. Therefore, in the proposed method, using a single transducer placed on the center of the specimen, the measured wavefields are transformed into polar coordinates, making several identical radial line inspections from the center in a direction of incident waves. Taking advantage of the properties of the polar coordinates, a signal processing technique is proposed through a frequency-wavenumber filtering process in these coordinates. In this technique, by using proper filters, unwanted wave modes of the incident wave along with all reflected waves are filtered out. In addition, the conventional features of RMS and Euclidean distance are adapted for the polar coordinate system to image the bonded plate. The proposed signal processing and damage imaging are first introduced through a numerical simulation. Then, the performance of the proposed technique is presented by experimental measurements of two specimens including adhesively bonded carbon fiber-reinforced plastic composite plates and bonded aluminum plates. KW - Lamb waves KW - Composites KW - Disbond PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573386 DO - https://doi.org/10.1109/TIM.2023.3267528 SN - 0018-9456 VL - 72 SP - 1 EP - 11 PB - IEEE CY - Piscataway Township, New Jersey, USA AN - OPUS4-57338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feltin, N. A1 - Crouzier, L. A1 - Delvallée, A. A1 - Pellegrino, F A1 - Maurino, V. A1 - Bartczak, D. A1 - Goenaga-Infante, H. A1 - Taché, O. A1 - Marguet, S. A1 - Testard, F. A1 - Artous, S. A1 - Saint-Antonin, F. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Koops, R. A1 - Sebaïhi, N. A1 - Fontanges, R. A1 - Neuwirth, M. A1 - Bergmann, D. A1 - Hüser, D. A1 - Klein, T. A1 - Hodoroaba, Vasile-Dan T1 - Metrological Protocols for Reaching Reliable and SI-Traceable Size Results for Multi-Modal and Complexly Shaped Reference Nanoparticles N2 - The study described in this paper was conducted in the framework of the European nPSize project (EMPIR program) with the main objective of proposing new reference certified nanomaterials for the market in order to improve the reliability and traceability of nanoparticle size measurements. For this purpose, bimodal populations as well as complexly shaped nanoparticles (bipyramids, cubes, and rods) were synthesized. An inter-laboratory comparison was organized for comparing the size measurements of the selected nanoparticle samples performed with electron microscopy (TEM, SEM, and TSEM), scanning probe microscopy (AFM), or small-angle X-ray scattering (SAXS). The results demonstrate good consistency of the measured size by the different techniques in cases where special care was taken for sample preparation, instrument calibration, and the clear definition of the measurand. For each characterization method, the calibration process is described and a semi-quantitative table grouping the main error sources is proposed for estimating the uncertainties associated with the measurements. Regarding microscopy-based techniques applied to complexly shaped nanoparticles, data dispersion can be observed when the size measurements are affected by the orientation of the nanoparticles on the substrate. For the most complex materials, hybrid approaches combining several complementary techniques were tested, with the outcome being that the reliability of the size results was improved. KW - Certified reference nanomaterials KW - Traceable nanoparticle size measurements; KW - Hybrid metrology KW - Scanning probe microscopy KW - Small-angle X-ray scattering KW - Electron microscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571902 DO - https://doi.org/10.3390/nano13060993 SN - 2079-4991 VL - 13 IS - 6 - Special Issue "Identification and Quantification of Nanomaterials" SP - 1 EP - 25 PB - MDPI CY - Basel, CH AN - OPUS4-57190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -