TY - JOUR A1 - Ziesche, R. A1 - Robinson, J. A1 - Kok, M. A1 - Markötter, Henning A1 - Kockelmann, W. A1 - Kardjilov, N. A1 - Manke, I. A1 - Brett, D. A1 - Shearing, P. T1 - Editors’ Choice—4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 during Discharge N2 - The understanding of dynamic processes in Li-metal batteries is an important consideration to enable the full capacity of cells to be utilised. These processes, however, are generally not directly observable using X-ray techniques due to the low attenuation of Li; and are challenging to visualise using neutron imaging due to the low temporal resolution of the technique. In this work, complementary X-ray and neutron imaging are combined to track the dynamics of Li within a primary Li/SOCl2 cell. The temporal challenges posed by neutron imaging are overcome using the golden ratio imaging method which enables the identification of Li diffusion in operando. This combination of techniques has enabled an improved understanding of the processes which limit rate performance in Li/SOCl2 cells and may be applied beyond this chemistry to other Li-metal cells. KW - Nneutron imaging KW - X-ray imaging KW - Tomography KW - Primary Battery PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515802 DO - https://doi.org/10.1149/1945-7111/abbbbc SN - 1945-7111 VL - 13 IS - 167 SP - 130545 PB - IOP Publishing AN - OPUS4-51580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Axel A1 - Goedecke, Caroline A1 - Eisentraut, Paul A1 - Piechotta, Christian A1 - Braun, Ulrike T1 - Microplastic analysis using chemical extraction followed by LC‑UV analysis: a straightforward approach to determine PET content in environmental samples N2 - Background: The ubiquitous occurrence of microplastic particles in marine and aquatic ecosystems was intensively investigated in the past decade. However, we know less about the presence, fate, and input paths of microplastic in terrestrial ecosystems. A possible entry path for microplastic into terrestrial ecosystems is the agricultural application of sewage sludge and solid bio-waste as fertilizers. Microplastic contained in sewage sludge also includes Polyethylene terephthalate (PET), which could originate as fiber from textile products or as a fragment from packaging products (foils, bottles, etc.). Information about microplastic content in such environmental samples is limited yet, as most of the used analytical methods are very time-consuming, regarding sample preparation and detection, require sophisticated analytical tools and eventually need high user knowledge. Results: Here, we present a simple, specific tool for the analysis of PET microplastic particles based on alkaline extraction of PET from the environmental matrix and subsequent determination of the monomers, terephthalic acid, using liquid chromatography with UV detection (LC-UV). The applicability of the method is shown for different types of PET in several soil-related, terrestrial environmental samples, e.g., soil, sediment, compost, fermentation residues, but also sewage sludge, suspended particles from urban water management systems, and indoor dust. Recoveries for model samples are between 94.5 and 107.1%. Limit of determination and limit of quantification are absolute masses of 0.031 and 0.121 mg PET, respectively. In order to verify the measured mass contents of the environmental samples, a method comparison with thermal extraction-desorption-gas chromatography–mass spectrometry (TED-GC/MS) was conducted. Both methods deliver similar results and corroborated each other. PET mass contents in environmental samples range from values below LOQ in agriculture soil up to 57,000 mg kg−1 in dust samples. Conclusions: We demonstrate the potential of an integral method based on chemical extraction for the Determination of PET mass contents in solid environmental samples. The method was successfully applied to various matrices and may serve as an analytical tool for further investigations of PET-based microplastic in terrestrial ecosystems. KW - Soil KW - Analysis KW - Microplastic KW - PET KW - LC-UV PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509060 DO - https://doi.org/10.1186/s12302-020-00358-x IS - 32 SP - 85 PB - Springer Open CY - Berlin AN - OPUS4-50906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Solid-State Emissive Aroyl-S,N-Ketene Acetals with Tunable N2 - N-Benzyl aroyl-S,N-ketene acetals can be readily synthesized by condensation of aroyl chlorides and N-Benzyl 2-methyl benzothiazolium salts in good to excellent yields, yielding a library of 35 chromophores with bright solid-state emission and aggregation-induced emission characteristics. Varying the substituent from electron-donating to electronwithdrawing enables the tuning of the solid-state emission Color from deep blue to red. KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509072 DO - https://doi.org/10.1002/anie.201916396 VL - 59 IS - 25 SP - 10037 EP - 10041 PB - Wiley Online Libary AN - OPUS4-50907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezera, Marek A1 - Alamri, S. A1 - Hendriks, W. A. P. M. A1 - Hertwig, Andreas A1 - Elert, Anna Maria A1 - Bonse, Jörn A1 - Kunze, T. A1 - Lasagni, A. F. A1 - Römer, G. R. B. E. T1 - Hierarchical micro-/nano-structures on polycarbonate via UV pulsed laser processing N2 - Hierarchical micro/-nanostructures were produced on polycarbonate polymer surfaces by employing a two-step UV-laser processing strategy based on the combination of Direct Laser Interference Patterning (DLIP) of gratings and pillars on the microscale (3 ns, 266 nm, 2 kHz) and subsequently superimposing Laser-induced Periodic Surface Structures (LIPSS; 7–10 ps, 350 nm, 100 kHz) which adds nanoscale surface features. Particular emphasis was laid on the influence of the direction of the laser beam polarization on the morphology of resulting hierarchical surfaces. Scanning electron and atomic force microscopy methods were used for the characterization of the hybrid surface structures. Finite-difference time-domain (FDTD) calculations of the laser intensity distribution on the DLIP structures allowed to address the specific polarization dependence of the LIPSS formation observed in the second processing step. Complementary chemical analyzes by micro-Raman spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy provided in-depth information on the chemical and structural material modifications and material degradation imposed by the laser processing. It was found that when the linear laser polarization was set perpendicular to the DLIP ridges, LIPSS could be formed on top of various DLIP structures. FDTD calculations showed enhanced optical intensity at the topographic maxima, which can explain the dependency of the morphology of LIPSS on the polarization with respect to the orientation of the DLIP structures. It was also found that the degradation of the polymer was enhanced for increasing accumulated fluence levels. KW - Direct laser interference patterning KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Hierarchical structures KW - Surface functionalization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509101 DO - https://doi.org/10.3390/nano10061184 SN - 2079-4991 VL - 10(6) IS - Special issue "Laser-generated periodic nanostructures" SP - 1184-1 EP - 1184-19 PB - MDPI CY - Basel AN - OPUS4-50910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmed, R. A1 - Vaishampayan, A. A1 - Cuellar-Camacho, J. L. A1 - Wight, D. J. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang A1 - Grohmann, E. A1 - Haag, R. A1 - Wagner, O. T1 - Multivalent Bacteria Binding by Flexible Polycationic Microsheets Matching Their Surface Charge Density N2 - Aiming at the overall negative surface charge of bacteria, a new strategy of antibacterial agents based on large polymer-modified graphene oxide (GO) sheets is assessed. The presented flexible, polycationic Sheets match the size and charge density of the Escherichia coli surface charge density (2 × 1014 cm−2). These matching parameters create an unspecific but very strong bacteria adsorber by multivalent, electrostatic attraction. Their interaction with bacteria is visualized via atomic force and confocal microscopy and shows that they effectively bind and wrap around E. coli cells, and thereby immobilize them. The incubation of Gram-negative and -positive bacteria (E. coli and methicillin-resistant Staphylococcus aureus, MRSA) with these polycationic sheets leads to the inhibition of proliferation and a reduction of the colony forming bacteria over time. This new type of antibacterial agent acts in a different mode of Action than classical biocides and could potentially be employed in medicinal, technical, or agriculture applications. The presented microsheets and their unspecific binding of cell interfaces could further be employed as adsorber material for bacterial filtration or immobilization for imaging, analysis, or sensor technologies. KW - Surface charge KW - Bacteria KW - Graphene oxide KW - Escherichia coli KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509651 DO - https://doi.org/10.1002/admi.201902066 VL - 7 IS - 15 SP - 1902066 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezera, M. A1 - Bonse, Jörn A1 - Römer, G.R.B.E. T1 - Influence of Bulk Temperature on Laser-Induced Periodic Surface Structures on Polycarbonate N2 - In this paper, the influence of the bulk temperature (BT) of Polycarbonate (PC) on the occurrence and growth of Laser-induced Periodic Surface Structures (LIPSS) is studied. Ultrashort UV laser pulses with various laser peak fluence levels F_0 and various numbers of overscans (N_OS) were applied on the surface of pre-heated Polycarbonate at different bulk temperatures. Increased BT leads to a stronger absorption of laser energy by the Polycarbonate. For N_OS < 1000 High Spatial Frequency LIPSS (HSFL), Low Spatial Frequency LIPSS perpendicular (LSFL-I) and parallel (LSFL-II) to the laser polarization were only observed on the rim of the ablated tracks on the surface but not in the center of the tracks. For N_OS ≥ 1000 , it was found that when pre-heating the polymer to a BT close its glass transition temperature (T_g), the laser fluence to achieve similar LIPSS as when processed at room temperature decreases by a factor of two. LSFL types I and II were obtained on PC at a BT close to T_g and their periods and amplitudes were similar to typical values found in the literature. To the best of the author’s knowledge, it is the first time both LSFL types developed simultaneously and consistently on the same sample under equal laser processing parameters. The evolution of LIPSS from HSFL, over LSFL-II to LSFL I, is described, depending on laser peak fluence levels, number of pulses processing the spot and bulk temperature. KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Bulk temperature KW - Ultrashort laser pulses PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498242 UR - https://www.mdpi.com/2073-4360/11/12/1947 DO - https://doi.org/https://doi.org/10.3390/polym11121947 SN - 2073-4360 VL - 11 IS - 12 SP - 1947 PB - MDPI CY - Basel, Switzerland AN - OPUS4-49824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Pfüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Assessing optical and electrical properties of highly active IrOx catalysts for the electrochemical oxygen evolution reaction via spectroscopic ellipsometry N2 - Efficient water electrolysis requires highly active electrodes. The activity of corresponding catalytic coatings strongly depends on material properties such as film thickness, crystallinity, electrical conductivity, and chemical surface speciation. Measuring these properties with high accuracy in vacuum-free and nondestructive methods facilitates the elucidation of structure−activity relationships in realistic environments. Here, we report a novel approach to analyze the optical and electrical properties of highly active oxygen evolution reaction (OER) catalysts via spectroscopic ellipsometry (SE). Using a series of differently calcined, mesoporous, templated iridium oxide films as an example, we assess the film thickness, porosity, electrical resistivity, electron concentration, electron mobility, and interband and intraband transition energies by modeling of the optical spectra. Independently performed analyses using scanning electron microscopy, energy-dispersive X-ray spectroscopy, ellipsometric porosimetry, X-ray reflectometry, and absorption spectroscopy indicate a high accuracy of the deduced material properties. A comparison of the derived analytical data from SE, resonant photoemission spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy with activity measurements of the OER suggests that the intrinsic activity of iridium oxides scales with a shift of the Ir 5d t2g sub-level and an increase of p−d interband transition energies caused by a transition of μ1-OH to μ3-O species. KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive ambient analysis KW - Intrinsic OER activity KW - Complementary methodology and metrology PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516288 DO - https://doi.org/10.1021/acscatal.0c03800 SN - 2155-5435 VL - 10 IS - 23 SP - 14210 EP - 14223 PB - American Chemical Society AN - OPUS4-51628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography N2 - Additive manufacturing offers a range of novel applications. However, the manufacturing process is complex and the production of almost defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal additive manufacturing processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid wavelength infrared camera with those from a short wavelength infrared camera and those from a visual spectrum high-speed camera with band pass filter in the near infrared range. KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - LMD KW - Metal KW - MWIR KW - SWIR KW - NIR PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516318 DO - https://doi.org/10.1080/17686733.2020.1829889 VL - 19 IS - 2 SP - 97 EP - 114 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-51631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García-González, M. A1 - Blasón Gonzalez, Sergio A1 - García-García, I. A1 - Lamela-Rey, M. J. A1 - Fernández-Canteli, A. A1 - Álvarez-Arenal, Á. T1 - Optimized planning and evaluation of dental implant fatigue testing: A specific software application N2 - Mechanical complications in implant-supported fixed dental prostheses are often related to implant and prosthetic design. Although the current ISO 14801 provides a framework for the evaluation of dental implant mechanical reliability, strict adherence to it may be difficult to achieve due to the large number of test specimens which it requires as well as the fact that it does not offer any probabilistic reference for determining the endurance limit. In order to address these issues, a new software program called ProFatigue is presented as a potentially powerful tool to optimize fatigue testing of implant-supported prostheses. The present work provides a brief description of some concepts such as load, fatigue and stress-number of cycles to failure curves (S-N curves), before subsequently describing the current regulatory situation. After analyzing the two most recent versions of the ISO recommendation (from 2008 and 2016), some limitations inherent to the experimental methods which they propose are highlighted. Finally, the main advantages and instructions for the correct implementation of the ProFatigue free software are given. This software will contribute to improving the performance of fatigue testing in a more accurate and optimized way, helping researchers to gain a better understanding of the behavior of dental implants in this type of mechanical test. KW - Dental materials KW - Prostheses KW - Implants KW - Reference standards KW - Software KW - Cyclic loading KW - Fatigue KW - Lifetime KW - S-N curve KW - Staircase method PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516268 DO - https://doi.org/10.3390/biology9110372 SN - 2079-7737 VL - 9 IS - 11 SP - 372-1 EP - 372-12 PB - MDPI CY - Basel AN - OPUS4-51626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Nowakowski, Susanna A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples N2 - Recording the temperature distribution of the layer under construction during laser powder bed fusion (L-PBF) is of utmost interest for a deep process understanding as well as for quality assurance and in situ monitoring means. While having a notable number of thermal monitoring approaches in additive manufacturing (AM), attempts at temperature calibration and emissivity determination are relatively rare. This study aims for the experimental temperature adjustment of an off-axis infrared (IR) thermography setup used for in situ thermal data acquisition in L-PBF processes. The temperature adjustment was conducted by means of the so-called contact method using thermocouples at two different surface conditions and two different materials: AISI 316L L-PBF bulk surface, AISI 316L powder surface, and IN718 powder surface. The apparent emissivity values for the particular setup were determined. For the first time, also corrected, closer to real emissivity values of the bulk or powder surface condition are published. In the temperature region from approximately 150 °C to 580 °C, the corrected emissivity was determined in a range from 0.2 to 0.25 for a 316L L-PBF bulk surface, in a range from 0.37 to 0.45 for 316L powder layer, and in a range from 0.37 to 0.4 for IN718 powder layer. KW - Emisssivity KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring KW - Infrared thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516148 DO - https://doi.org/10.3390/met10111546 VL - 10 IS - 11 SP - 1546 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Johann, Sergej A1 - Bartholmai, Matthias T1 - Smart RFID Sensors Embedded in Building Structures for Early Damage Detection and Long-Term Monitoring N2 - In civil engineering, many structures are made of reinforced concrete. Most Degradation processes relevant to this material, e.g., corrosion, are related to an increased level of material moisture. Therefore, moisture monitoring in reinforced concrete is regarded as a crucial method for structural health monitoring. In this study, passive radio frequency identification (RFID)-based sensors are embedded into the concrete. They are well suited for long-term operation over decades and are well protected against harsh environmental conditions. The energy supply and the data transfer of the humidity sensors are provided by RFID. The sensor casing materials are optimised to withstand the high alkaline environment in concrete, having pH values of more than 12. Membrane materials are also investigated to identify materials capable of enabling water vapour transport from the porous cement matrix to the embedded humidity sensor. By measuring the corresponding relative humidity with embedded passive RFID-based sensors, the cement hydration is monitored for 170 days. Moreover, long-term moisture monitoring is performed for more than 1000 days. The Experiments show that embedded passive RFID-based sensors are highly suitable for long-term structural health monitoring in civil engineering. KW - RFID based sensors KW - Embedded sensors KW - Corresponding relative humidity KW - Porous building materials KW - Reinforced concrete KW - Corrosion KW - Civil engineering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500831 DO - https://doi.org/10.3390/s19245514 VL - 19 IS - 24 SP - 1 EP - 18 PB - MDPI CY - Basel, Swiss AN - OPUS4-50083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM I 42.5 R used for Priority Program DFG SPP 2005 “Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials” N2 - A thorough characterization of starting materials is the precondition for further research, especially for cement, which contains various phases and presents quite a complex material for fundamental scientific investigation. In the paper at hand, the characterization data of the reference cement CEM I 42.5 R used within the priority program 2005 of the German Research Foundation (DFG SPP 2005) are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The data were collected based on tests conducted by nine research groups involved in this cooperative program. For all data received, the mean values and the corresponding errors were calculated. The results shall be used for the ongoing research within the priority program. KW - Portland cement KW - Characterization KW - DFG SPP 2005 PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500849 DO - https://doi.org/10.1016/j.dib.2019.104699 SN - 2352-3409 VL - 27 SP - 104699 PB - Elsevier Inc. AN - OPUS4-50084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gharaati, S. A1 - Wang, Cui A1 - Förster, C. A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Triplet–Triplet Annihilation Upconversion in a MOF with AcceptorFilled Channels N2 - In summary, we report a highly modular solid TTA-UC system comprising of a crystalline, thermally stable PCN222(Pd) MOF with CA-coated MOF channels and with a DPA annihilator embedded in a solution-like environment in the MOF channels. This solid material displays blue upconverted delayed emission with a luminescence lifetime of 373 us, a threshold value of 329 mW*cm-2 and a triplet–triplet energy transfer efficiency of 82%. This optical application adds another facet to the versatile chemistry of PCN-222 MOFs. The design concept is also applicable to other TTA-UC pairs and enables tuning of the UCL color, for example, by replacing DPA with other dyes as exemplarily shown for 2,5,8,11-tetra-tert-butyl-perylene, that yields UCL at 450 nm. Current work aims to reduce the oxygen sensitivity and to increase the retention of the trapped annihilators in organic environments, for example, by tuning the chain length of the carboxylic acid and by coating the MOF surface. In addition, the TTA-UC efficiency will be further enhanced by reducing the reabsorption of the UC emission caused by Pd(TCPP) and by optimizing the sensitizer/annihilator interface. KW - Porphyrin KW - Method KW - MOF KW - Fluorescence KW - Dye KW - Sensor KW - Oxygen sensitive KW - Single molecule KW - DPA KW - Lifetime KW - Upconverstion KW - Quantum yield KW - Triplet-triplet annihilation KW - Sensitization KW - Energy transfer KW - NMR PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500580 DO - https://doi.org/10.1002/chem.201904945 VL - 26 IS - 5 SP - 1003 EP - 1007 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-50058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sebald, M.A. A1 - Gebauer, J. A1 - Sommerfeld, Thomas A1 - Koch, Matthias T1 - First Synthesis of (−)-Altenuene-D3 Suitable as Internal Standard for Isotope Dilution Mass Spectrometry N2 - Metabolites from Alternaria fungi exhibit a variety of biological properties such as phytotoxic, cytotoxic, or antimicrobial activity. Optimization of a literature procedure culminated in an efficient total synthesis of (−)-altenuene as well as a stable isotope-labeled derivative suitable for implementation in a LC-MS/MS method for mycotoxin analysis. KW - Altenuene KW - Alternaria mycotoxins KW - Food safety KW - Isotope-labeled KW - SIDA-LC-MS/MS KW - Suzuki coupling PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500696 DO - https://doi.org/10.3390/molecules24244563 SN - 1420-3049 VL - 24 SP - 4563 PB - MDPI CY - Basel AN - OPUS4-50069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Nielow, Dustin T1 - Fatigue loading of sandwich shell test specimens with simulated production imperfections and in-situ NDT N2 - A shell test bench was developed at BAM 5.3 which allows for static and fatigue testing of curved fiber-reinforced plastic (FRP) structures, during which in-situ the damage state can be non-destructively inspected by thermography and strain-field measurement techniques. Sandwich shell specimens with typical wind turbine blade manufacturing defects were designed and tested. The tested imperfections show a fairly significant reduction (up to 90%) of the shell test specimens‘ lifetime, depending on the type of imperfection. Using the in-situ NDT methods incorporated in the shell test bench, the location and cycle time of the initial defects and the damage evolution was investigated. T2 - 7. International Conference on Fatigue of Composites CY - Vicenza, Italy DA - 04.06.2018 KW - Fatigue of sandwich shell structures KW - Non-destructive testing KW - Wind turbine blades PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-501275 SP - 1 EP - 7 AN - OPUS4-50127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernevic, Bogdan A1 - El-Khatib, Ahmed H. A1 - Jakubowski, Norbert A1 - Weller, Michael G. T1 - Online immunocapture ICP‑MS for the determination of the metalloprotein ceruloplasmin in human serum N2 - The human copper-protein ceruloplasmin (Cp) is the major copper-containing protein in the human body. The accurate determination of Cp is mandatory for the reliable diagnosis of several diseases. However, the analysis of Cp has proven to be difficult. The aim of our work was a proof of concept for the determination of a metalloprotein-based on online immunocapture ICP-MS. The immuno-affinity step is responsible for the enrichment and isolation of the analyte from serum, whereas the compound-independent quantitation with ICP-MS delivers the sensitivity, precision, and large dynamic range. Off-line ELISA (enzyme-linked immunosorbent assay) was used in parallel to confirm the elution profile of the analyte with a structure-selective method. The total protein elution was observed with the 32S mass trace. The ICP-MS signals were normalized on a 59Co signal. The human copper-protein Cp could be selectively determined. This was shown with pure Cp and with a sample of human serum. The good correlation with off-line ELISA shows that Cp could be captured and eluted selectively from the anti-Cp affinity column and subsequently determined by the copper signal of ICP-MS. KW - ELISA KW - Affinity chromatography KW - Affinity extraction KW - IgY KW - Chicken antibodies KW - Immunoaffinity extraction KW - Copper KW - Diagnostics PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446157 UR - https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-018-3324-7 UR - https://static-content.springer.com/esm/art%3A10.1186%2Fs13104-018-3324-7/MediaObjects/13104_2018_3324_MOESM1_ESM.pdf UR - https://static-content.springer.com/esm/art%3A10.1186%2Fs13104-018-3324-7/MediaObjects/13104_2018_3324_MOESM2_ESM.pdf DO - https://doi.org/10.1186/s13104-018-3324-7 SN - 1756-0500 VL - 11 IS - 1 SP - Article 213, 1 EP - 5 PB - Springer Nature CY - Heidelberg AN - OPUS4-44615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yalçin, M. A1 - Taşçioğlu, C. A1 - Plarre, Rüdiger A1 - Akçay, Ç. A1 - Busweiler, Sabine T1 - Investigation of natural durability of some native and exotic wood species against Hylotrupes bajulus (Cerambycidae) and Anobium punctatum (Anobiidae) N2 - Aim of study: In this study, natural durability of some domestic and foreign wood species against Hylotrupes bajulus and Anobium punctatum larvae were tested on laboratory scale Area of study: This study was conducted at Department of Forest Products Engineering in Duzce University, Turkey and Federal Institute for Materials Research and Testing (BAM), Germany. Material and Methods: Scotch pine (Pinus sylvestris), fir (Abies nordmanniana), spruce (Picea orientalis), cedar (Cedrus libani), poplar (Populus tremula) and beech (Fagus orientalis) woods were used to test H. bajulus larvae (EN 46-1). Alder (Alnus glutinosa), oak (Quercus cerris), poplar (Populus tremula), beech (Fagus orientalis), maple (Acer carpinifolium), ash (Fraxinus angustifolia), teak (Tectona grandis), ayous (Triplochiton scleroxylon), movingui (Distemonanthus benthamianus), dahoma (Piptadeniastrum africanum), iroko (Chlorophora excelsa), bubinga (Guibourtia tessmannii) and sapele (Entandrophragma cylindiricum) woods were used for A. punctatum larvae (EN 49-1). At the end of the experiment, the mortality rates of the larvae were determined and the size and weights of the surviving larvae were measured. Main results: F. orientalis and C. libani were found to be the most resistant wood species against H. bajulus larvae while A. nordmanniana was the least resistant. All tropical wood species and oak and maple from domestic wood species showed 100% mortality rate therefore found to be the most resistant against A. punctatum larvae. The most vulnerable wood species was found to be alder with a 35% mortality. Research highlights: while F. orientalis, C. libani, and P. tremula were found the most resistance wood species against H. bajulus, P. sylvestris and A. nordmanniana were determined as most vulnerable. All tropical wood species and two domestic species (Q. cerris and A. carpinifolium) showed the highest mortality rate as 100%. The least durable domestic wood was determined as alder. KW - Hylotrupes bajulus, Anobium punctatum, natural durability, tropical wood, native wood. PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446572 DO - https://doi.org/10.17475/kastorman.311971 SN - 1303-2399 SN - 1309-4181 VL - 18 IS - 1 SP - 83 EP - 91 PB - Kastamonu University CY - Kastamonu AN - OPUS4-44657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thummerer, G. A1 - Mayr, G. A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias A1 - Burgholzer, P. T1 - Photothermal Image Reconstruction in Opaque Media with Virtual Wave Backpropagation N2 - Thermographic reconstruction of defects that lie in the bulk of a sample is a difficult task because entropy production during heat diffusion leads to information loss. To reconstruct defects one has to solve an inverse heat conduction problem. The quality of the reconstruction is closely related to the information content of the observed data set that is reflected by the decreasing ability to spatially resolve a defect with growing defect depth. In this work we show a 2D reconstruction of rectangular slots with different width-to-depth ratios in a metallic sample. For this purpose, we apply the virtual wave concept and incorporate positivity and sparsity as prior information to overcome the diffusion-based information loss partially. The reconstruction is based on simulated and experimental pulse thermography data. In the first reconstruction step, we compute a virtual wave field from the surface temperature data. This allows us, in the second step, to use ultrasonic backpropagation methods for image reconstruction. KW - Virtual wave concept KW - Thermography KW - Photothermal Technique KW - Image reconstruction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506166 DO - https://doi.org/10.1016/j.ndteint.2020.102239 VL - 112 SP - 102239 PB - Elsevier Ltd. CY - Netherlands AN - OPUS4-50616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Ramírez, A. A1 - Crasselt, C. A1 - Schmidt, W. A1 - Resch-Genger, Ute T1 - Utilizing optical spectroscopy and 2',7'-difluorofluorescein to characterize the early stages of cement hydration N2 - The increasingly sophisticated nature of modern, more environmentally friendly cementitious binders requires a better understanding and control particularly of the complex, dynamic processes involved in the early phase of cement hydration. In-situ monitoring of properties of a constantly changing system over a defined period of time calls for simple, sensitive, fast, and preferably also non-invasive methods like optical spectroscopy KW - Flourescence KW - Optical probe KW - Sensor KW - Dye KW - Flourescin KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurance KW - Mechanism KW - Cement KW - Concrete KW - Building material KW - Hydration KW - Process monitoring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537176 DO - https://doi.org/10.1088/2050-6120/ac2da0 SN - 2050-6120 VL - 10 IS - 1 SP - 2 EP - 13 PB - IOP Science AN - OPUS4-53717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Metasurface-Enhanced Photon Upconversion upon 1550 nm Excitation N2 - Photon upconversion upon 1550 nm excitation is of high relevance for applications in the third biological excitation window, for photovoltaics beyond current limitations, and enables appealing options in the field of glass Fiber telecommunications. Trivalent doped erbium ions (Er3+) are the material of choice for 1550 nm excited upconversion, however, they suffer from a low absorption cross-section and a low brightness. Therefore, the ability of Silicon metasurfaces to provide greatly enhanced electrical near-fields is employed to enable efficient photon upconversion even at low external Illumination conditions. Hexagonally shaped β-NaYF4:Er3+ nanoparticles are placed on large-area silicon metasurfaces designed to convert near-infrared (1550 nm) to visible light. More than 2400-fold enhanced photon upconversion luminescence is achieved by using this metasurface instead of a planar substrate. With the aid of optical simulations based on the finite-element method, this result is attributed to the coupling of the excitation source with metasurface resonances at appropriate incident angles. Analysis of the excitation power density dependence of upconversion luminescence and red-to-green-emission ratios enables the estimation of nanoscale near-field enhancement on the metasurface. The findings permit the significant reduction of required external excitation intensities for photon upconversion of 1550 nm light, opening perspectives in biophotonics, telecommunication, and photovoltaics. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Single enhancement KW - SWIR KW - Method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537193 DO - https://doi.org/10.1002/adom.202101285. SN - 2195-1071 VL - 9 IS - 24 SP - 2101285 PB - Wiley-VCH-GmbH AN - OPUS4-53719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -