TY - JOUR A1 - Biedermann, P. H. W. A1 - Rohlfs, M. A1 - McMahon, Dino Peter A1 - Meunier, J. T1 - Editorial: Microbial drivers of sociality – From multicellularity to animal societies N2 - While sociality is present in a taxonomically diverse number of species, most animals remain solitary (Bourke, 2011). Over the last centuries, this apparent imbalance in social and non-social animals has led to a great deal of research aimed at shedding light on the biotic and abiotic factors explaining the emergence and maintenance of sociality in nature (West et al., 2015). Among them, microbes were quickly identified as a major problem for the evolution of social life, because frequent contact between group members typically facilitates the transmission of pathogens, high nest fidelity favours the establishment of microbial pathogens close to their social hosts and, finally, because social groups often exhibit limited genetic diversity and thus limited genetic resistance against certain pathogen strains (Schmid-Hempel, 1998; Cremer et al., 2007). However, this long-standing view has changed considerably over the last few years. Recent research indeed revealed that group living may be more effective than solitary living to Limit the risk of infection by pathogenic microbes because group living also allows the development of an additional layer of defence against pathogens in the form of social immunity (Cremer et al., 2007; Cotter and Kilner, 2010). Under strong pressure from pathogens, microbes could therefore promote, rather than hinder, the evolutionary transition from solitary to group Living (Meunier, 2015; Biedermann and Rohlfs, 2017). Moreover, we are increasingly aware that many microbes provide essential benefits to their hosts by performing critical digestive, physiological, and reproductive functions (Engel and Moran, 2013; McFall-Ngai et al., 2013). The need to Access beneficial microbes may thus have played a role in the expression of frequent and tight interactions between conspecifics and ultimately promoted social evolution (Wilson, 1971; Onchuru et al., 2018). Finally, a growing number of studies suggest that microbes could enforce the Aggregation and expression of cooperative behaviours of the hosts to increase their chance of reaching new hosts and may therefore be involved in the evolution of host sociality (Lewin-Epstein et al., 2017) (but see Johnson and Foster, 2018). KW - Microbe KW - Sociality KW - Multicellularity KW - Evolution KW - Symbiosis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538741 DO - https://doi.org/10.3389/fevo.2021.752906 SN - 2296-701X VL - 9 SP - 1 EP - 4 PB - Frontiers Media CY - Lausanne AN - OPUS4-53874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Franchin, G. A1 - Zocca, Andrea A1 - Karl, D. A1 - Yun, H. A1 - Tian, X. T1 - Editorial: Advances in additive manufacturing of ceramics N2 - Recently, additive manufacturing of ceramics has achieved the maturity to be transferred from scientific laboratories to industrial applications. At the same time, research is progressing to expand the boundaries of this field into the territory of novel materials and applications. This feature issue addresses current progress in all aspects of additive manufacturing of ceramics, from parts design to feedstock selection, from technological development to characterization of printed components. KW - Additive manufacturing KW - Ceramic PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549361 DO - https://doi.org/10.1016/j.oceram.2022.100277 SN - 2666-5395 VL - 10 SP - 1 EP - 2 PB - Elsevier CY - Amsterdam AN - OPUS4-54936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Editorial for the special issue "Modern Raman spectroscopy of minerals" N2 - Raman spectroscopy provides vibrational fingerprints of chemical compounds enabling their unambiguous identification. The assignment of Raman spectra to minerals is straightforward, if appropriate reference data is accessible. Modern couplings of Raman spectroscopy with microscopy (Raman microspectroscopy) merge the high structural specificity with down to sub-micrometre spatial resolution. This analytical tool has high potential not only in the identification of minerals from natural sources but also for studying the complex microstructure and mineral distribution of both ancient and modern man-made materials. In addition to the chemical identity of minerals, Raman spectra are affected by crystal orientations (varying relative Raman band intensities); (sub)stoichiometric compositional changes (e.g., in solid solution series), traces of foreign ions, strain (the latter three shifting Raman bands); and crystallinity (changing Raman band widths), enabling a comprehensive physico-chemical characterisation of minerals. Thus, Raman spectroscopy – including its in situ measurement capabilities – provides possibilities to study mineral paragenesis in both, natural and man-made samples at the micrometre scale. While in 1928 the first experimental evidence for inelastic light scattering was provided by C. V. Raman and K. S. Krishnan by using sunlight for excitation, filters for selecting the inelastically scattered light, and their eyes for detection (later, photographic plates for acquisition of spectra were employed), modern Raman spectrometers make use of laser excitation, dispersive spectrographs and charge coupled device (CCD) detection. This Special Issue includes technological developments and applications in the field of modern Raman spectroscopy of minerals in a broad sense, from natural mineral deposits and archaeological objects to inorganic phases in man-made materials. The studied minerals include fossil resins, typical rock-forming minerals (calcite, quartz, forsterite), iron-sulphur species (e.g., mackinawite), a range of sulphates (gypsum, bassanite, anhydrite III, anhydrite II, celestine, barite, ternesite), as well as silicate minerals like garnets (e.g., almandine). KW - Raman spectroscopy KW - Raman microspectroscopy KW - Mineral identification KW - Physico-chemical characterisation of minerals KW - Mineral paragenesis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515041 DO - https://doi.org/10.3390/min10100860 VL - 10 SP - 860 PB - MDPI CY - Basel AN - OPUS4-51504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Van Driessche, A. E. S. T1 - Editorial for special issue "Formation of sulfate minerals in natural and industrial environments" N2 - Sulfate is abundant in the environment and, as a result, sulfate-containing minerals constitute a large and important focus of research. These minerals play an important role in many geochemical and industrial processes, including the sulfur cycle, the construction industry (e.g., plaster of Paris), fault tectonics, acid mine drainage, and even rare biominerals. Important to note are the abundant amounts of sulfate (minerals) located on the surface of Mars, and in meteorites, extending the relevance of this mineral group beyond the realm of our planet. In geological systems, sulfate minerals such as barite are also important for indicating certain sedimentation environments. In this regard, sulfate deposits can be used to evaluate the redox state of ancient oceans during early Earth time periods. KW - Calcium sulfate KW - Sulfates PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546794 DO - https://doi.org/10.3390/min12030299 SN - 2075-163X VL - 12(3) IS - Special issue "Formation of sulfate minerals in natural and industrial environments" SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-54679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pelkner, Matthias A1 - Pohl, Rainer A1 - Erthner, Thomas A1 - Stegemann, Robert A1 - Kreutzbruck, Marc A1 - Sergeeva-Chollet, N. T1 - Eddy current testing with high-spatial resolution probes using MR arrays as receiver N2 - Magneto-resistive (MR) sensor arrays are suited for high resolution eddy current testing (ET) of aerospace components due to two significant advantages compared to conventional coil systems. First, to obtain high spatial resolution they can be manufactured down to the µm-regime without losing their outstanding field sensitivity. Secondly, MR technology has a relatively frequency-independent sensitivity in the range of common ET-frequencies thus providing a benefit for low frequency applications. This paper presents measurements using MR array probes consisting of 32 TMR-elements (tunnel magneto resistance), an ASIC, and subsequent readout components. A source for generating the eddy currents inside the material under test is also implemented onboard of the PCB. These probes were developed in the IMAGIC-project* for detection and imaging of surface breaking defects. The performance of the new sensor system has been investigated for several mock-ups, Aluminum and Titanium plate specimens having small adjacent boreholes with diameter of 0.44 mm and micro notches in the µm-range, respectively. To compare our results we used conventional eddy current probes. The MR sensor elements have a length of around 60 µm leading to a nearly 'point like' measurement. Neighbouring boreholes (depth 0.25 mm) with a separation of 0.6 mm between their centres could be resolved with a good SNR, and more important, the boreholes could be confidently distinguished using the TMR-probes. In case of conventional probes a reliable separation was not possible. In this paper we present the MR-ET-probes of the IMAGIC consortium and a comparison with conventional techniques. *The IMAGIC-project ('Integrated Magnetic imagery based on spIntronics Components', 2011 – 2014, project reference: 288381) was funded by the European Commission, Seventh Framework Programme. Further partners involved in the consortium beside BAM and CEA were INESC-ID and INESC-MN (Portugal), Sensitec GmbH (Germany), Tecnatom S.A. (Spain), and Airbus Group (France). T2 - 7th International symposium on NDT in aerospace CY - Bremen, Germany DA - 16.11.2015 KW - TMR KW - GMR KW - Sensor array KW - Eddy current testing (ET) KW - Aerospace PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-344254 SN - 978-3-940283-76-4 N1 - Serientitel: DGZfP-Proceedings – Series title: DGZfP-Proceedings IS - DGZfP-BB 156 SP - We.5.A.4, 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.v. (DGZfP) AN - OPUS4-34425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröter, Maria-Astrid A1 - Meyer, Susann A1 - Hahn, Marc Benjamin A1 - Solomun, Tihomir A1 - Sturm, Heinz A1 - Kunte, Hans-Jörg T1 - Ectoine protects DNA from damage by ionizing radiation N2 - Ectoine plays an important role in protecting biomolecules and entire cells against environmental stressors such as salinity, freezing, drying and high temperatures. Recent studies revealed that ectoine also provides effective protection for human skin cells from damage caused by UV-A radiation. These protective properties make ectoine a valuable compound and it is applied as an active ingredient in numerous pharmaceutical devices and cosmetics. Interestingly, the underlying mechanism resulting in protecting cells from radiation is not yet fully understood. Here we present a study on ectoine and its protective influence on DNA during electron irradiation. Applying gel electrophoresis and atomic force microscopy, we demonstrate for the first time that ectoine prevents DNA strand breaks caused by ionizing electron radiation. The results presented here point to future applications of ectoine for instance in cancer radiation therapy. KW - Plasmid DNA pUC19 KW - Electron irradiation 30 [kV] KW - Effective irradiation dose 0.2-16 [Gy] KW - Gel electrophoresis KW - AFM intermittent contact KW - Radioprotector ectoine KW - Compatible solute PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-428287 DO - https://doi.org/10.1038/s41598-017-15512-4 SN - 2045-2322 VL - 7 IS - 1 SP - 15272, 1 EP - 15272, 7 PB - Nature AN - OPUS4-42828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Ectoine interaction with DNA: Influence on ultraviolet radiation damage N2 - Ectoine is a small zwitterionic osmolyte and compatible solute, which does not interfere with cell metabolism even at molar concentrations. Plasmid DNA (pUC19) was irradiated with ultraviolet radiation (UV-C at 266 nm) under quasi physiological conditions (PBS) and in pure water in the presence and absence of ectoine (THP(B)) and hydroxyectoine (THP(A)). Different types of UV induced DNA damage were analysed: DNA single-strand breaks (SSBs), abasic sites and cyclobutane pyrimidine dimers (CPDs). A complex interplay between these factors was observed with respect to the nature and occurrence of DNA damage with 266 nm photons. In PBS, the cosolutes showed efficient protection against base damage, whilst in pure water, a dramatic shift from SSB damage to base damage was observed when cosolutes were added. To test whether these effects are caused by ectoine binding to DNA, further experiments were conducted: small-angle X-ray scattering (SAXS), surface-plasmon resonance (SPR) measurements and Raman spectroscopy. The results show, for the first time, a close interaction between ectoine and DNA. This is in stark contrast to the assumption made by preferential exclusion models, which are often used to interpret the behaviour of compatible solutes within cells and with biomolecules. It is tentatively proposed that the alterations of UV damage to DNA are attributed to ectoine influence on nucleobases through the direct interaction between ectoine and DNA. KW - Ectoine KW - DNA KW - Radiation damage KW - Radiation protection KW - SSB KW - DNA damage KW - DNA protection KW - Compatible solute KW - Zwitterion KW - Hydroxyectoine KW - Salt KW - PBS KW - UV absorption KW - DNA strand-break KW - DNA base damage KW - Ectoine UV absorption KW - Ectoine DNA protection KW - Excited states KW - UV irradiation KW - UV-A KW - UV-B KW - UV-C KW - 266nm KW - UV photons KW - Ectoine-DNA binding KW - Raman spectroscopy KW - UV-Vis KW - Radical scavenger KW - OH scavenger KW - Hydroxyl radicals KW - CPD KW - Abasic site KW - Agarose gel electrophorese KW - SYBR gold KW - DNA melting temperature KW - Counterions KW - Preferential exclusion KW - Cancer KW - Therapy KW - UV protection KW - Sunscreen PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505772 DO - https://doi.org/10.1039/d0cp00092b SN - 1463-9076 SN - 1463-9084 VL - 22 IS - 13 SP - 6984 EP - 6992 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-50577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, Susann A1 - Schröter, Maria-Astrid A1 - Hahn, Marc Benjamin A1 - Solumon, Tihomir A1 - Strum, Heinz A1 - Kunte, Hans-Jörg T1 - Ectoine can enhance structural changes in DNA in vitro N2 - Strand breaks and conformational changes of DNA have consequences for the physiological role of DNA. The natural protecting molecule ectoine is beneficial to entire bacterial cells and biomolecules such as proteins by mitigating detrimental effects of environmental stresses. It was postulated that ectoine-like molecules bind to negatively charged spheres that mimic DNA surfaces. We investigated the effect of ectoine on DNA and whether ectoine is able to protect DNA from damages caused by ultraviolet radiation (UV-A). In order to determine different isoforms of DNA, agarose gel electrophoresis and atomic force microscopy experiments were carried out with plasmid pUC19 DNA. Our quantitative results revealed that a prolonged incubation of DNA with ectoine leads to an increase in transitions from supercoiled (undamaged) to open circular (single-strand break) conformation at pH 6.6. The effect is pH dependent and no significant changes were observed at physiological pH of 7.5. After UV-A irradiation in ectoine solution, changes in DNA conformation were even more pronounced and this effect was pH dependent. We hypothesize that ectoine is attracted to the negatively charge surface of DNA at lower pH and therefore fails to act as a stabilizing agent for DNA in our in vitro experiments. KW - Ectoine KW - DNA KW - UV radiation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-413139 DO - https://doi.org/10.1038/s41598-017-07441-z VL - 7 IS - 1 SP - Article 7170, 1 EP - 10 AN - OPUS4-41313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heisterkamp, I. A1 - Ratte, M. A1 - Schoknecht, Ute A1 - Gartiser, S. A1 - Kalbe, Ute A1 - Ilvonen, O. T1 - Ecotoxicological evaluation of construction products: inter-laboratory test with DSLT and percolation test eluates in an aquatic biotest battery N2 - Background A European inter-laboratory test with 29 participating laboratories investigated whether a battery of four ecotoxicological tests is suitable for assessing the environmental compatibility of construction products. For this purpose, a construction product was investigated with the dynamic surface leaching test (DIN CEN/TS 16637-2) and the percolation test (DIN CEN/TS 16637-3). The eluates were produced centrally by one laboratory and were tested by the participants using the following biotests: algae test (ISO 8692), acute daphnia test (ISO 6341), luminescent bacteria test (DIN EN ISO 11348), and fish egg test (DIN EN ISO 15088). As toxicity measures, EC50 and LID values were calculated. Results Toxic effects of the eluates were detected by all four biotests. The bacteria test was by far the most sensitive, followed by the algae test and the daphnia test; the fish egg test was the least sensitive for eluates of both leaching tests. The toxicity level of the eluates was very high in the bacteria, daphnia, and algae test, with lowest ineffective dilution values of LID = 70 to LID = 13,000 and corresponding EC50 values around or even below 1 volume percent. The reproducibility (approximated by interlaboratory variability) of the biotests was good (< 53%) to very good (< 20%), regardless of the toxicity level of the eluates. The reproducibility of the algae test was up to 80%, and thus still acceptable. Conclusion It can be confirmed that the combination of leaching and ecotoxicity tests is suitable to characterize with sufficient reproducibility the environmental impact posed by the release of hazardous substances from construction products. KW - Inter-laboratory test KW - Construction products KW - Leaching tests KW - Ecotoxicity tests KW - Grouts PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529198 DO - https://doi.org/10.1186/s12302-021-00514-x VL - 33 IS - 1 SP - Article number: 75 PB - Springer AN - OPUS4-52919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rasool, Muhammad Hammad A1 - Ahmad, Maqsood A1 - Siddiqui, Numair Ahmed A1 - Junejo, Aisha Zahid T1 - Eco-friendly drilling fluid: Calcium chloride-based natural deep eutectic solvent (NADES) as an all-rounder additive N2 - Designing an effective drilling mud is a critical aspect of the drilling process. A well-designed drilling mud should not only provide efficient mud hydraulics but also fulfill three important functions: enhancing mud rheology, inhibiting hydrate formation in deepwater drilling, and suppressing shale swelling when drilling through shale formations. Achieving these functions often requires the use of various additives, but these additives are often expensive, non-biodegradable, and have significant environmental impacts. To address these concerns, researchers have explored the potential applications of ionic liquids and deep eutectic solvents in drilling mud design, which have shown promising results. However, an even more environmentally friendly alternative has emerged in the form of natural deep eutectic solvents (NADES). This research focuses on an in-house-prepared NADES based on calcium chloride and glycerine, with a ratio of 1:4, prepared at 60 °C, and utilizes it as a drilling mud additive following the API 13 B-1 standards and checks its candidacy as a rheology modifier, hydrates, and shale inhibitor. The findings of the study demonstrate that the NADES-based mud significantly improves the overall yield point to plastic viscosity ratio (YP/PV) of the mud, provides good gel strength, and inhibits hydrate formation by up to 80%. Additionally, it has shown an impressive 62.8% inhibition of shale swelling while allowing for 84.1% improved shale recovery. Moreover, the NADES-based mud exhibits a 28% and 25% reduction in mud filtrate and mud cake thickness, respectively, which is further supported by the results of XRD, zeta potential, and surface tension. Based on these positive outcomes, the calcium chloride–glycerine NADES-based mud is recommended as a versatile drilling mud additive suitable for various industrial applications. Furthermore, it presents a more environmentally friendly option compared to traditional additives, addressing concerns about cost, biodegradability, and environmental impact in the drilling process for an ultimate global impact. KW - NADES KW - Shale swelling KW - Drilling fluid KW - Mud rheology KW - Hydrate inhibition PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623918 DO - https://doi.org/10.3390/en16145533 SN - 1996-1073 VL - 16 IS - 14 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-62391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Recknagel, Sebastian A1 - Prinz, Carsten A1 - Vogel, Kristin A1 - Koch, Matthias A1 - Becker, Roland T1 - eCerto—versatile software for interlaboratory data evaluation and documentation during reference material production N2 - The statistical tool eCerto was developed for the evaluation of measurement data to assign property values and associated uncertainties of reference materials. The analysis is based on collaborative studies of expert laboratories and was implemented using the R software environment. Emphasis was put on comparability of eCerto with SoftCRM, a statistical tool based on the certification strategy of the former Community Bureau of Reference. Additionally, special attention was directed towards easy usability from data collection through processing, archiving, and reporting. While the effects of outlier removal can be flexibly explored, eCerto always retains the original data set and any manipulation such as outlier removal is (graphically and tabularly) documented adequately in the report. As a major reference materials producer, the Bundesanstalt für Materialforschung und -prüfung (BAM) developed and will maintain a tool to meet the needs of modern data processing, documentation requirements, and emerging fields of RM activity. The main features of eCerto are discussed using previously certified reference materials. KW - Reference material KW - Statistics KW - Software KW - Collaborative trial PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591851 DO - https://doi.org/10.1007/s00216-023-05099-3 SP - 1 EP - 9 PB - Springer Science and Business Media LLC AN - OPUS4-59185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Cios, G. A1 - Tokarski, T. A1 - Nolze, Gert A1 - Hielscher, R. A1 - Koziel, T. T1 - EBSD orientation analysis based on experimental Kikuchi reference patterns N2 - Orientation determination does not necessarily require complete knowledge of the local atomic arrangement in a crystalline phase. We present a method for microstructural phase discrimination and orientation analysis of phases for which there is only limited crystallographic information available. In this method, experimental Kikuchi diffraction patterns are utilized to generate a self-consistent master reference for use in the technique of Electron Backscatter Diffraction (EBSD). The experimentally derived master data serves as an application-specific reference in EBSD pattern matching approaches. As application examples, we map the locally varying orientations in samples of icosahedral quasicrystals observed in a Ti40Zr40Ni20 alloy, and we analyse AlNiCo decagonal quasicrystals. KW - EBSD KW - Quasicrystal KW - Crystal orientation KW - Pattern matching PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507611 DO - https://doi.org/10.1016/j.actamat.2020.01.053 VL - 188 SP - 376 EP - 385 PB - Elsevier Ltd. AN - OPUS4-50761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cios, G. A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Tokarski, T. A1 - Jany, B. R. A1 - Bala, P. T1 - EBSD and TKD analyses using inverted contrast Kikuchi diffraction patterns and alternative measurement geometries N2 - Electron backscatter diffraction (EBSD) patterns can exhibit Kikuchi bands with inverted contrast due to anomalous absorption. This can be observed, for example, on samples with nanoscale topography, in case of a low tilt backscattering geometry, or for transmission Kikuchi diffraction (TKD) on thicker samples. Three examples are discussed where contrast-inverted physics-based simulated master patterns have been applied to find the correct crystal orientation. As first EBSD example, self-assembled gold nanostructures made of Au fcc and Au hcp phases on single-crystal germanium were investigated. Gold covered about 12% of the mapped area, with only two thirds being successfully interpreted using standard Hough-based indexing. The remaining third was solved by brute force indexing using a contrast-inverted master pattern. The second EBSD example deals with maps collected at a non-tilted surface instead of the commonly used 70◦ tilted one. As TKD example, a jet-polished foil made of duplex stainless steel 2205 was examined. The thin part close to the hole edge producing normal-contrast patterns were standard indexed. The areas of the foil that become thicker with increasing distance from the edge of the hole produce contrast-inverted patterns. They covered three times the evaluable area and were successfully processed using the contrast-inverted master pattern. In the last example, inverted patterns collected at a non-tiled sample were mathematically inverted to normal contrast, and Hough/Radon-based indexing was successfully applied. KW - EBSD KW - TKD KW - Contrast inversion KW - Topography KW - Kikuchi diffraction PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613862 VL - 267 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-61386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieksmeyer, T. A1 - He, S. A1 - Esparza Mora, Margy Alejandra A1 - Jiang, S. A1 - Petrasiunaite, V. A1 - Kuropka, B. A1 - Banasiak, Ronald A1 - Julseth, M. J. A1 - Weise, C. A1 - Johnston, P. R. A1 - Rodriguez-Rojas, A. A1 - McMahon, Dino Peter T1 - Eating in a losing cause: Limited benefit of modifed macronutrient consumption following infection in the oriental cockroach Blatta orientalis N2 - Background: Host–pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. Results: We fnd that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches signifcantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited efect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on diferent diets, regardless of infection status. Conclusions: We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide signifcant immune protection in B. orientalis, suggesting that the host’s dietary shift might also result from random rather than directed behaviour. The lack of an apparent beneft of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted. KW - Animal immune system KW - A key interface KW - Host and symbiont ecology KW - Behavioural mechanisms KW - Biotic environment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550022 DO - https://doi.org/10.1186/s12862-022-02007-8 SN - 2730-7182 VL - 22 IS - 1 SP - 1 EP - 14 PB - Springer Nature CY - London, UK AN - OPUS4-55002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Yuan, R. A1 - Chakraborty, A. A1 - Ghassemi-Armaki, H. A1 - Zuo, J. M. A1 - Maaß, Robert T1 - Early stages of liquid-metal embrittlement in an advanced high-strength steel N2 - Grain-boundary degradation via liquid-metal embrittlement (LME) is a prominent and long-standing failure process in next generation advanced high-strength steels. Here we reveal, well ahead of the crack tip, the presences of nano-scale grains of intermetallic phases in Zn-infiltrated but uncracked grain boundaries with scanning- and 4D transmission electron microscopy. Instead of the often-reported Znrich Fe-Zn intermetallics, the nano-scale phase in the uncracked infiltrated grain boundaries is identified as the G-phase, and its presence reveals the local enhancement of strain heterogeneities in the grain boundary network. Based on these observations, we argue that intermetallic phase formation is not occurring after cracking and subsequent liquid Zn infiltration but is instead one of the primary nanoscopic drivers for grain-boundary weakening and crack initiation. These findings shift the focus of LME from micro- and meso-scale crack investigations to the very early stages immediately following Zn diffusion, after which secondary phase nucleation and growth emerge as the root-cause for failure. KW - Advanced high strength steels KW - Liquid metal embrittlement KW - Transmission electron microscopy KW - 4-Dimensional scanning transmission KW - electron microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539716 DO - https://doi.org/10.1016/j.mtadv.2021.100196 SN - 2590-0498 VL - 13 IS - 196 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-53971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kratzig, A. A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Menneken, M. A1 - Bäßler, Ralph T1 - Early Stage of Corrosion Formation on Pipeline Steel X70 Under Oxyfuel Atmosphere at Low Temperature N2 - The early stage of corrosion formation on X70 pipeline steel under oxyfuel atmosphere was investigated by applying a simulated gas mixture (CO2 containing 6700 ppmv O2, 100 ppmv NO2, 70 ppmv SO2 and 50 ppmv H2O) for 15 h at 278 K and ambient pressure. Short-term tests (6 h) revealed that the corrosion starts as local spots related to grinding marks progressing by time and moisture until a closed layer was formed. Acid droplets (pH 1.5), generated in the gas atmosphere, containing a mixture of H2SO4 and HNO3, were identified as corrosion starters. After 15 h of exposure, corrosion products were mainly X-ray amorphous and only partially crystalline. In-situ energy-dispersive X-ray diffraction (EDXRD) results showed that the crystalline fractions consist primarily of water-bearing iron sulfates. Applying Raman spectroscopy, water-bearing iron nitrates were detected as subordinated phases. Supplementary long-term tests exhibited a significant increase in the crystalline fraction and formation of additional water-bearing iron sulfates. All phases of the corrosion layer were intergrown in a nanocrystalline network. In addition, numerous globular structures have been detected above the corrosion layer, which were identified as hydrated iron sulphate and hematite. As a type of corrosion, shallow pit formation was identified, and the corrosion rate was about 0.1 mma−1. In addition to in-situ EDXRD, SEM/EDS, TEM, Raman spectroscopy and interferometry were used to chemically and microstructurally analyze the corrosion products. KW - Corrosion KW - CCUS KW - In-situ ED-XRD KW - CO2 pipeline transport KW - Oxyfuel KW - Carbon steel KW - Impurities PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506303 DO - https://doi.org/10.3390/pr8040421 SN - 2227-9717 VL - 8 IS - 4 SP - 421-1 EP - 421-19 PB - MDPI CY - Basel AN - OPUS4-50630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sarif, Raduan A1 - Tiebe, Carlo A1 - Herglotz, Christian T1 - Early Response Prediction for H2 Sensors N2 - Green hydrogen (H2) is essential for the global transition to clean energy; it will significantly reduce emissions from heavy industry and the long-distance transport system. H2 can be used as fuel in fuel cells, storing surplus renewable energy, and as a feedstock in industrial processes. However, H2 faces significant safety challenges during storage and transportation. Accidents due to H2 leakage and explosions raise serious concerns due to its high flammability, rapid diffusion in air, and extremely low ignition energy. To mitigate risks associated with H2 leakages, reliable and automated H2 safety systems are essential for emergency repairs or shutdown. An early response from H2 sensors is crucial for early warning in accidents. The earlier response time of H2 sensors is often constrained by their sensor principle, which is heavily influenced by the sensor material’s properties. This study explores methods for earlier sensor response through predictive algorithms. Specifically, we investigate transient response predictions using a First-Order (FO) model and propose improvements through the First-Order with early response and the First-Order with adapted early response model. Both models can predict the stable value of the H2 sensor response from a small time window, which is 70.89% and 83.72% earlier, respectively, than the time required for the sensor hardware to reach it physically. The model’s performance is evaluated by calculating the fitting error with a 2 % threshold. Our current research lays the groundwork for future advancements in real-time sensor response predictions for hydrogen leakage. T2 - IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications CY - Venice, Italy DA - 06.07.2025 KW - H2 Safety KW - H2 leakage detection KW - First-Order (FO) model KW - H2 Sensor data analysis KW - H2 sensor response predictions PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-640676 UR - https://www.thinkmind.org/articles/iaria_congress_2025_1_250_50159.pdf SN - 978-1-68558-284-5 SP - 1 EP - 8 PB - IARIA Press CY - Wilmington AN - OPUS4-64067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Mohring, Wencke A1 - Hesse, René A1 - Agudo Jácome, Leonardo A1 - Stephan-Scherb, C. T1 - Early material damage in equimolar CrMnFeCoNi in mixed oxidizing/sulfiding hot gas atmosphere N2 - The challenges to use more varied fuels at medium and high temperatures above 500 °C need to be addressed by tuning the materials toward a better resistance against increased corrosion. As a first step the corrosion processes need to be better understood, especially in the case of the unavoidable and highly corrosive sulfur-based gases. Herein, oxidation/sulfidation of an equimolar CrMnFeCoNi high-entropy alloy is studied at an early stage after hot gas exposure at 600 °C for 6 h in 0.5% SO2 and 99.5% Ar. The oxidation process is studied by means of X-ray diffraction, scanning and transmission electron microscopy, and supported by thermodynamic calculations. It is found that the sulfur does not enter the bulk material but interacts mainly with the fast-diffusing manganese at grain boundary triple junctions at the alloy surface. Submicrometer scaled Cr–S–O-rich phases close to the grain boundaries complete the sulfur-based phase formation. The grains are covered in different Fe-, Mn-, and Cr-based spinels and other oxides. KW - High entropy alloy KW - Sulfiding KW - Corrosion KW - Transmission electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543495 DO - https://doi.org/10.1002/adem.202101573 SN - 1527-2648 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertola, N. A1 - Schumacher, T. A1 - Niederleithinger, Ernst A1 - Bruehwiler, E. T1 - Early detection of structural damage in UHPFRC structures through the combination of acoustic emission and ultrasonic stress wave monitoring N2 - Ultra-High-Performance Fiber-Reinforced Cementitious Composite (UHPFRC) offers several advantages compared to concrete, notably due to the strain hardening behavior under tensile actions. Structures made of this composite material are lightweight and highly durable, thanks to the UHPFRC waterproofing quality. Nonetheless, the tensile behavior leads to a different cracking pattern than conventional concrete and is not fully understood yet. This paper presents a combined approach using both passive ultrasonic (US) stress wave (or acoustic emission) and active US stress wave monitoring to localize and quantify damage progression in a full-scale UHPFRC beam during experimental load testing. The proposed monitoring approach involves 24 US transducers that are embedded randomly throughout a 4.2- meter-long laboratory UHPFRC T-beam. Continuous monitoring enabled accurate localization of US stress sources caused by loading-induced cracking as well as from pulses generated by the embedded US transducers. This study shows that it is possible to predict the location and shape of the macro-crack that is linked to structural failure early on, i.e., just after the end of the elastic domain. This combined approach opens new possibilities to monitor the structural behavior and detect damage on UHPFRC structures before they affect the structural behavior in terms of deflection and strain. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 11.6.2024 KW - UHPFRC KW - Acoustic emission KW - Damage detection PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604708 UR - https://www.ndt.net/article/ewshm2024/papers/477_manuscript.pdf DO - https://doi.org/10.58286/29698 SN - 1435-4934 SP - 1 EP - 8 PB - NDT.net AN - OPUS4-60470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -