TY - JOUR A1 - Hobmeier, K. A1 - Goëss, M. C. A1 - Sehr, C. A1 - Schwaminger, S. A1 - Berensmeier, S. A1 - Kremling, A. A1 - Kunte, Hans-Jörg A1 - Pflüger-Grau, K. A1 - Marin-Sanguino, A. T1 - Anaplerotic Pathways in Halomonas elongata: The Role of the Sodium Gradient N2 - Salt tolerance in the γ-proteobacterium Halomonas elongata is linked to its ability to produce the compatible solute ectoine. The metabolism of ectoine production is of great interest since it can shed light on the biochemical basis of halotolerance as well as pave the way for the improvement of the biotechnological production of such compatible solute. Ectoine belongs to the biosynthetic family of aspartate-derived amino-acids. Aspartate is formed from oxaloacetate, thereby connecting ectoine production to the anaplerotic reactions that refill carbon into the tricarboxylic acid cycle (TCA cycle). This places a high demand on these reactions and creates the need to regulate them not only in response to growth but also in response to extracellular salt concentration. In this work, we combine modeling and experiments to analyze how these different needs shape the anaplerotic reactions in H. elongata. First, the stoichiometric and thermodynamic factors that condition the flux distributions are analyzed, then the optimal patterns of operation for oxaloacetate production are calculated. Finally, the phenotype of two deletion mutants lacking potentially relevant anaplerotic enzymes: phosphoenolpyruvate carboxylase (Ppc) and oxaloacetate decarboxylase (Oad) are experimentally characterized. The results show that the anaplerotic reactions in H. elongata are indeed subject to evolutionary pressures that differ from those faced by other gram-negative bacteria. Ectoine producing halophiles must meet a higher metabolic demand for oxaloacetate and the reliance of many marine bacteria on the Entner-Doudoroff pathway compromises the anaplerotic efficiency of Ppc, which is usually one of the main enzymes fulfilling this role. The anaplerotic flux in H. elongata is contributed not only by Ppc but also by Oad, an enzyme that has not yet been shown to play this role in vivo. Ppc is necessary for H. elongata to grow normally at low salt concentrations but it is not required to achieve near maximal growth rates as long as there is a steep sodium gradient. On the other hand, the lack of Oad presents serious difficulties to grow at high salt concentrations. This points to a shared role of these two enzymes in guaranteeing the supply of oxaloacetate for biosynthetic reactions. KW - Metabolic flux analysis KW - Halophilic bacteria KW - Halomonas elongata KW - Metabolic modeling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513124 DO - https://doi.org/10.3389/fmicb.2020.561800 VL - 11 SP - 561800 AN - OPUS4-51312 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bahrami Eskandari, Ardalan A1 - Nikkhoo, Ali A1 - Hajirasouliha, Iman T1 - Analyzing Vertical Earthquake Vibrations and Moving Vehicle Loads for Structural Health Monitoring and Vibration Suppression in Bridges N2 - The design of bridges often overlooks the vertical component of earthquakes or considers it of secondary importance, despite compelling evidence indicating specific structural damage caused by primary earthquake waves. Conversely, during the operational phase, the combined influence of ground motion and moving loads from vehicles can significantly impact the structural health monitoring (SHM) of bridges. This study aims to evaluate the simultaneous effect of vertical earthquake vibrations and moving vehicle loads on simply supported bridges. The research employs a practical methodology based on the eigenfunction expansion method to analyze change of deflection due to the effect of these concurrent forces under seven different earthquake records. It is shown that within a realistic range of vehicle mass and velocity, the average of changing the maximum deflection at the mid-span of the main beam (denoted as M_n) reaches up to 163% under various scenarios. Subsequently, the seismic parameters influencing this phenomenon are identified through a statistical analysis of set of 100 different earthquake records with unique features. A linear regression equation is presented to predict the M_n based on the earthquake specific properties. Additionally, to control the vertical vibration of bridge systems, a novel vibration suppression system utilizing steel pipe dampers is introduced, and its reliability is examined across a broad spectrum of bridge flexural rigidity. The results indicate that the system's efficiency depends on M_n and the soil type of the bridge construction, enabling a reduction in structural sections (up to 27%) while achieving the same maximum target deflection in the initial state. This efficiency leads to a more economical design solution, emphasizing the potential benefits of the proposed system for practical application. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Bridge structures KW - Vertical earthquakes KW - Health monitoring KW - Moving vehicles KW - Suppressing vibrations PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604893 DO - https://doi.org/10.58286/29746 SP - 1 EP - 10 PB - NDT.net AN - OPUS4-60489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Nirmalananthan-Budau, Nithiya A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute T1 - Analyzing the surface of functional nanomaterials — how to quantify the total and derivatizable number of functional groups and ligands N2 - Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address methodand material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5–10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization. KW - Functional group quantification KW - Surface ligand KW - Nanomaterial KW - Optical detection KW - Electrochemical titration KW - Nanosafety (Safe-by-design) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533597 DO - https://doi.org/10.1007/s00604-021-04960-5 VL - 188 IS - 10 SP - 1 EP - 28 PB - Springer Nature AN - OPUS4-53359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holstein, R. A1 - Müller, Christina T1 - Analyzing the reliability of non-destructive tests using the modular modell - a practical approach N2 - Non-destructive testing is an important tool to guarantee the safety of railway traffic. The infrastructure with tracks, switches and sleepers is regularly tested, the locomotives and wagons with their wheels, bogies and axles as well. Many years of experience and some events lead in Germany to a good practice in testing the railway components. Now, European authorities are drafting a system of common requirements and standards for the European Railway Market. The German practice combines an intensive training of the NDT-personnel including sufficient time for practical exercises with organizational measures of the companies, responsible for rolling stock and infrastructure. Through the example of UT-testing of railway axles it will be shown, how training and organizational measures influence the reliability of such testing. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - Modular model KW - Railway KW - Human factors PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375712 UR - http://www.ndt.net/article/wcndt2016/papers/mo1d4.pdf SP - id 19519, 1 EP - 6 AN - OPUS4-37571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fackeldey, K. A1 - Röhm, J. A1 - Niknejad, A. A1 - Chewle, Surahit A1 - Weber, M. T1 - Analyzing Raman spectral data without separabiliy assumption N2 - Raman spectroscopy is a well established tool for the analysis of vibration spectra, which then allow for the determination of individual substances in a chemical sample, or for their phase transitions. In the time-resolved-Raman-sprectroscopy the vibration spectra of a chemical sample are recorded sequentially over a time interval, such that conclusions for intermediate products (transients) can be drawn within a chemical process. The observed data-matrix M from a Raman spectroscopy can be regarded as a matrix product of two unknown matrices W and H, where the first is representing the contribution of the spectra and the latter represents the chemical spectra. One approach for obtaining W and H is the non-negative matrix factorization. We propose a novel approach, which does not need the commonly used separability assumption. The performance of this approach is shown on a real world chemical example. KW - Non-negative matrix factorization KW - NMF KW - Raman spectra KW - Separability condition KW - PCCA+ PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559051 DO - https://doi.org/10.1007/s10910-020-01201-7 SN - 1572-8897 VL - 59 SP - 575 EP - 596 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-55905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Solberg, S. B. B. A1 - Zimmermann, P. A1 - Wilhelmsen, Ø. A1 - Bock, Robert A1 - Burheim, O. S. T1 - Analytical treatment of ion-exchange permselectivity and transport number measurements for high accuracy N2 - We analyse electromotive force measurements of concentration cells using non-equilibrium thermodynamics, and determine the transference coefficients of ion-exchange membranes in aqueous KCl solutions. By taking advantage of the analytical expression for the permselectivity, we extract transport coefficients with high accuracy. The transport number of K+ and the transference coefficient of water in the Selemion CMVN cationexchange membrane are found to be 100𝑡K+ = 99.59 ± 0.56 and 𝑡𝑤 = 3.69 ± 0.40 respectively, while for the Selemion AMVN anion-exchange membrane they are 100𝑡Cl− = 100.21 ± 0.37 and 𝑡𝑤 = −3.75 ± 0.27. These results suggest that the membranes are perfectly selective to the target ion, and that each ion carries 3-4 water molecules through the membrane, which reduces the membrane permselectivity. In these concentration cells, the electrical potential contribution of the membrane alone was more easily isolated with bare Ag/AgCl electrodes without reference solutions and liquid junction plugs. Additionally, we find a large contribution to the measured concentration cell voltage from concentration gradients across the porous plug of the reference electrode, which cannot be explained by Henderson’s equation alone. For most of the concentration range, the transport number of the porous plug is determined to be 100𝑡K+ = 49.43 ± 0.78 with negligible water transport, similar to literature values for bulk electrolyte. In dilute electrolyte solutions with concentrations below 0.1 mol kg−1, the plug shows anomalous behaviour consistent with an increase in K+ selectivity and water co-transport. KW - Ion-exchange membranes KW - Electrodialysis KW - Non-equilibrium thermodynamics KW - Electroosmosis KW - Transport number PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580654 DO - https://doi.org/10.1016/j.memsci.2023.121904 SN - 1873-3123 VL - 2023 IS - 685 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-58065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Guerra, M.F. A1 - Martinón-Torres, M. A1 - Lemasson, Q. A1 - Moignard, B. A1 - Pacheco, C. A1 - Pichon, L. A1 - Macdonald, L. A1 - Hess, M. A1 - Tissot, I. ED - Guerra, M. F. ED - Martinón-Torres, M. ED - Quirke, S. T1 - Analytical approaches to Egyptian goldwork N2 - The structure and composition of ancient gold objects retain information about their long history of manufacture, from the exploitation of the ore to the finishing touches, as well as evidence of their use, deposition, and degradation. By developing an efficient analytical strategy, it is possible to retrieve that information. This chapter sets the necessary foundation 131to explore fully the analytical results presented in the following chapters of this volume. The techniques employed in the analyses of the Egyptian jewellery are described and the analytical parameters provided. For more established techniques, only brief introductions are presented, while more recent developments are presented in greater detail. KW - Gold KW - Synchrotron KW - D2XRF KW - Egypt PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586039 DO - https://doi.org/10.17863/CAM.99681 SP - 131 EP - 191 AN - OPUS4-58603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agroui, K. A1 - Jaunich, Matthias A1 - Hadj Arab, A. T1 - Analysis techniques of polymeric encapsulant materials for photovoltaic modules: situation and perspectives N2 - The properties of the encapsulant are critical to the long-term performance of photovoltaic (PV) modules under the influence of sunlight including UV, elevated temperature, humidity and diffusion of oxygen. Encapsulation process represents a bout 40% of the whole PV module cost. The introduction of new non-EVA encapsulant material type "Low-Cost, High-Performance" should provide a solution to outdoor yellowing degradation problems. The emerging encapsulant materials exhibit a good compatibility with emerging PV solar cells for long term durability. This new generation of encapsulant materials has the advantage to improve e the PV module performances and long term durability for specific climate like desert regions. This scientific contribution presents an overview of the different encapsulant materials currently on the market, the general requirements of the emerging encapsulant materials and characterizations techniques for degradation, diagnostic and reliability lifetime estimation in the framework of Algerian renewable energy strategy. T2 - Africa-EU Renewable Energy Re search and Innovation Symposium, RERIS 2016 CY - Tlemcen, Algeria DA - 08.03.2016 KW - Solar cell KW - Polymer encapsulant KW - PV module KW - Encapsulation process KW - Analysis technique PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377186 DO - https://doi.org/10.1016/j.egypro.2016.07.171 SN - 1876-6102 VL - 2016 IS - 93 SP - 203 EP - 210 PB - Elsevier Ltd. AN - OPUS4-37718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chakraborty, J. A1 - Wang, Xin A1 - Stolinski, M. T1 - Analysis of Sensitivity of Distance between Embedded Ultrasonic Sensors and Signal Processing on Damage Detectability in Concrete Structures N2 - Damage detection of reinforced concrete (RC) structures is becoming a more attractive domain due to the safety issues arising in the last few decades. The damage in concrete can be caused by excessive exploitation of the structure or environmental effects. The cracks in concrete can be detected by different nondestructive testing methods. However, the available methods used for this purpose have numerous limitations. The technologies available in the market nowadays have difficulties detecting slowly progressive, locally limited damage. In addition, some of These methods cannot be applied, especially in hard-to-reach areas in the superstructures. In order to avoid these deficiencies, an embedded ultrasonic methodology can be used to detect cracks in RC structures. In this study, the methodology of crack detection supported with the advanced Signal processing algorithm was proposed and verified on RC structures of various types, and cracks occurring between embedded sensors can be detected. Moreover, different pairs of ultrasonic sensors located in the considered structures are used for the analysis of the sensitivity of distance between them. It is shown that the ultrasonic sensors placed in the range of 1.5–2 m can detect cracks, even when the other methods failed to detect changes in the structure. The obtained results confirmed that diffuse ultrasonic sensor methodology is able to monitor real structures more effectively than traditional techniques. KW - Ultrasound KW - Coda wave interferometry KW - Structural health monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543624 DO - https://doi.org/10.3390/acoustics4010007 VL - 4 IS - 1 SP - 89 EP - 110 PB - MDPI CY - Basel, Schweiz AN - OPUS4-54362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Pourmand, P. A1 - Wolff, Dietmar A1 - Hedenqvist, M. T1 - Analysis of O-ring seal failure under static conditions and determination of end-of-lifetime criterion N2 - Determining a suitable and reliable end-of-lifetime criterion for O-ring seals is an important issue for long-term seal applications. Therefore, seal failure of ethylene propylene diene rubber (EPDM) and hydrogenated nitrile butadiene rubber (HNBR) O-rings aged in the compressed state at 125 °C and at 150 °C for up to 1.5 years was analyzed and investigated under static conditions, using both non-lubricated and lubricated seals. Changes of the material properties were analyzed with dynamic-mechanical analysis and permeability experiments. Indenter modulus measurements were used to investigate DLO effects. It became clear that O-rings can remain leak-tight under static conditions even when material properties have already degraded considerably, especially when adhesion effects are encountered. As a feasible and reliable end-of-lifetime criterion for O-ring seals under static conditions should include a safety margin for slight dimensional changes, a modified leakage test involving a small and rapid partial decompression of the seal was introduced that enabled determining a more realistic but still conservative end-of-lifetime criterion for an EPDM seal. KW - EPDM KW - HNBR KW - Seal failure KW - Leak-tightness KW - DLO KW - Oxygen permability KW - DMA KW - Indenter modulus PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486125 DO - https://doi.org/10.3390/polym11081251 SN - 2073-4360 VL - 11 IS - 8 SP - 1251, 1 EP - 19 PB - MDPI CY - Basel, CH AN - OPUS4-48612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Analysis of Guided Wave Propagation in an Aluminium-CFRP Plate N2 - Guided waves cover comparably long distances and thus allow for online structural health monitoring of safety relevant components, e.g. lightweight composite overwrapped pressure vessels (COPV) as used for the transportation of pressurised gases. Reliable non-destructive assessment of COPVs’ condition is not available yet due to their complex composite structure comprising a thin metal liner and a fibre reinforced plastics (FRP) overwrap. The conventional overload hydrostatic pressure testing used for the metal vessels is not suitable for the composite vessels, because it may damage the FRP overwrap reducing the service life of the COPV. Therefore, ISO and CEN defined a maximum service life of composite pressure vessels as of 15 to 20 years. To extend the COPVs’ service life and to ensure a safer usage a structural health monitoring system based on guided ultrasonic waves is to be developed. In this contribution first results of guided waves propagation in a flat composite plate consisting of an aluminium layer firmly bonded to a carbon fibre reinforced plastic laminate are presented. Based on experimental results material properties of FRP are reconstructed by means of the Scaled Boundary Finite Element Method (SBFEM). T2 - ECNDT 2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Structural Health Monitoring KW - Pressure tanks KW - Hydrogen storage KW - Natural gas KW - Composites PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452084 SP - 1 EP - 6 AN - OPUS4-45208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Boehm, S. A1 - Kim, K. J. T1 - Analysis of elemental composition of Fe1-xNix and Si1-xGex alloy thin films by electron probe microanalysis and micro-focus X-ray fluorescence N2 - The present study reports on results of analysis of the elemental composition of thin films by electron probe microanalysis with energy dispersive (ED-EPMA) X-ray spectrometry in conjunction with the dedicated thin-film analysis software package Stratagem and by X-ray fluorescence in its version with a micro-focus X-ray fluorescence (μ-XRF) source attached to a scanning electron microscope (SEM). Two thin-film systems have been analyzed: Fe1-xNix on silicon wafer and Si1-xGex on Al2O3 substrate, in both cases the layers being grown to a thickness of about 200 nm by ion beam sputter deposition. Samples of five different atomic fractions have been produced and analyzed for each thin-film system. Moreover, reference samples with certified elemental composition and thickness have been also available. This study is part of an interlaboratory comparison organized in the frame of standardization technical committee ISO/TC 201 “Surface chemical analysis.” Two laboratories have been analyzed by ED-EPMA (one laboratory standardless and one laboratory using both standardless and with standards variants) and one laboratory by μ-XRF (standardless and with standards). All the elemental compositions obtained with different methods are in very good agreement for the complete two sets of five samples each. KW - Thin films KW - Elemental composition KW - FeNi KW - SiGe KW - Electron probe microanalysis KW - X-ray Fluorescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509262 DO - https://doi.org/10.1002/sia.6834 SN - 0142-2421 VL - 52 IS - 12 SP - 929 EP - 932 PB - John Wiley & Sons Ltd AN - OPUS4-50926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Koch, Matthias T1 - Analysis of electrochemical and liver microsomal transformation products of lasalocid by LC/HRMS N2 - Rationale: Lasalocid (LAS), an ionophore, is used in cattle and poultry farming as feed additive for its antibiotic and growth-promoting properties. Literature on transformation products (TP) resulting from LAS degradation is limited. So far, only hydroxylation is found to occur as the metabolic reaction during the LAS degradation. To investigate potential TPs of LAS, we used electrochemistry (EC) and liver microsome (LM) assays to synthesize TPs, which were identified using liquid chromatography high-resolution mass spectrometry (LC/HRMS). Methods: Electrochemically produced TPs were analyzed online by direct coupling of the electrochemical cell to the electrospray ionization (ESI) source of a Sciex Triple-TOF high resolution mass spectrometer. Then, EC-treated LAS solution was collected and analyzed offline using LC/HRMS to confirm stable TPs and improve their annotation with a chemical structure due to informative MS/MS spectra. In a complementary approach, TPs formed by rat and human microsomal incubation were investigated using LC/HRMS. The resulting data were used to investigate LAS modification reactions and elucidate the chemical structure of obtained TPs. Results: The online measurements identified a broad variety of TPs, resulting from modification reactions like (de-)hydrogenation, hydration, methylation, oxidation as well as adduct formation with methanol. We consistently observed different ion complexations of LAS and LAS-TPs (Na+; 2Na+ K+; NaNH4 +; KNH4 +). Two stable methylated EC-TPs were found, structurally annotated, and assigned to a likely modification reaction. Using LM incubation, seven TPs were formed, mostly by oxidation/hydroxylation. After the identification of LM-TPs as Na+-complexes, we identified LM-TPs as K+-complexes. Conclusion: We identified and characterized TPs of LAS using EC- and LM-based methods. Moreover, we found different ion complexes of LAS-based TPs. This knowledge, especially the different ion complexes, may help elucidate the metabolic and environmental degradation pathways of LAS. KW - Mass Spectrometry KW - Electrochemistry KW - ECR KW - Lasalocid KW - Ionophore KW - Transformation products PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553919 DO - https://doi.org/10.1002/rcm.9349 VL - 36 IS - 18 SP - 1 EP - 10 PB - Wiley online library AN - OPUS4-55391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiele, Marc A1 - Pirskawetz, Stephan T1 - Analysis of damage evolution in concrete under fatigue loading by acoustic emission and ultrasonic testing N2 - The fatigue process of concrete under compressive cyclic loading is still not completely explored. The corresponding damage processes within the material structure are especially not entirely investigated. The application of acoustic measurement methods enables a better insight into the processes of the fatigue in concrete. Normal strength concrete was investigated under compressive cyclic loading with regard to the fatigue process by using acoustic methods in combination with other nondestructive measurement methods. Acoustic emission and ultrasonic signal measurements were applied together with measurements of strains, elastic modulus, and static strength. It was possible to determine the anisotropic character of the fatigue damage caused by uniaxial loading based on the ultrasonic measurements. Furthermore, it was observed that the fatigue damage seems to consist not exclusively of load parallel oriented crack structures. Rather, crack structures perpendicular to the load as well as local compacting are likely components of the fatigue damage. Additionally, the ultrasonic velocity appears to be a good indicator for fatigue damage beside the elastic modulus. It can be concluded that acoustic methods allow an observation of the fatigue process in concrete and a better understanding, especially in combination with further measurement methods. KW - Concrete KW - Fatigue KW - Damage evolution KW - Ultrasonic testing KW - Acoustic emission PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541891 DO - https://doi.org/10.3390/ma15010341 SN - 1996-1944 VL - 15 IS - 1 SP - 341 EP - 355 PB - MDPI CY - Basel AN - OPUS4-54189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Behrens, H. A1 - Müller, Ralf T1 - An overview on the effect of dissolved water on the viscosity of soda lime silicate melts N2 - In this review article, the impact of dissolved water on the viscous properties of soda lime silicate melts is addressed against the background of the upcoming switch from natural gas to hydrogen combustion. This change will lead to an increase in the total water content of the glasses by up to 0.4 mol%. In order to better define possible influences of water speciation, water-rich glasses were synthesised under increasing pressure up to the kbar range. It is shown that a distinction must be made between the influence of dissolved OH-groups and H2Omolecules in order to accurately reflect the dependence of isokom temperatures on water content. In addition, an increase of one order of magnitude in the tolerance to higher deformation rates was observed for the range of expected increased water contents during isothermal deformation processes, which is based on the timetemperature superposition principle, i.e. congruent flow curves were determined under isokomal conditions. KW - Water in glass KW - Viscosity KW - Soda lime silicate glass KW - Shear thinning KW - Nydrogen melting PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587276 DO - https://doi.org/10.1016/j.nocx.2023.100195 VL - 19 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-58727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moreno Torres, Benjamí A1 - Völker, Christoph A1 - Munsch, Sarah Mandy A1 - Hanke, T. A1 - Kruschwitz, Sabine ED - Tosti, F. T1 - An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering N2 - Although measurement data from the civil engineering sector are an important basis for scientific analyses in the field of non-destructive testing (NDT), there is still no uniform representation of these data. An analysis of data sets across different test objects or test types is therefore associated with a high manual effort. Ontologies and the semantic web are technologies already used in numerous intelligent systems such as material cyberinfrastructures or research databases. This contribution demonstrates the application of these technologies to the case of the 1H nuclear magnetic resonance relaxometry, which is commonly used to characterize water content and porosity distri-bution in solids. The methodology implemented for this purpose was developed specifically to be applied to materials science (MS) tests. The aim of this paper is to analyze such a methodology from the perspective of data interoperability using ontologies. Three benefits are expected from this ap-proach to the study of the implementation of interoperability in the NDT domain: First, expanding knowledge of how the intrinsic characteristics of the NDT domain determine the application of semantic technologies. Second, to determine which aspects of such an implementation can be improved and in what ways. Finally, the baselines of future research in the field of data integration for NDT are drawn. KW - Ontology Engineering KW - Interoperability KW - Data-integration KW - NMR relaxometry KW - materials informatics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529716 DO - https://doi.org/10.3390/rs13122426 SN - 2072-4292 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. VL - 13 IS - 12 SP - 2426 PB - Multidisciplinary Digital Publishing Institute (MDPI) CY - Basel, Switzerland AN - OPUS4-52971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Olejko, Lydia A1 - Cywinski, P. A1 - Bald, Ilko T1 - An ion-controlled four-color fluorescent telomeric switch on DNA origami structures N2 - The folding of single-stranded telomeric DNA into guanine (G) quadruplexes is a conformational change that plays a major role in sensing and drug targeting. The telomeric DNA can be placed on DNA origami nanostructures to make the folding process extremely selective for K+ ions even in the presence of high Na+ concentrations. Here, we demonstrate that the K+-selective G-quadruplex formation is reversible when using a cryptand to remove K+ from the G-quadruplex. We present a full characterization of the reversible switching between single-stranded telomeric DNA and G-quadruplex structures using Förster resonance energy transfer (FRET) between the dyes fluorescein (FAM) and cyanine3 (Cy3). When attached to the DNA origami platform, the G-quadruplex switch can be incorporated into more complex photonic networks, which is demonstrated for a three-color and a four-color FRET cascade from FAM over Cy3 and Cy5 to IRDye700 with G-quadruplex-Cy3 acting as a switchable transmitter. KW - DNA origami KW - FRET KW - Photonic wire KW - G quadruplex PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-362560 DO - https://doi.org/10.1039/C6NR00119J SN - 2040-3364 SN - 2040-3372 VL - 8 IS - 19 SP - 10339 EP - 10347 PB - Royal Soc Chemistry CY - Cambridge, UK AN - OPUS4-36256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Varadarajan, A. A1 - Allan, R. A1 - Valentin, J. A1 - Castañeda Ocampo, O. A1 - Somerville, V. A1 - Buhmann, M. A1 - West, J. A1 - Skipp, Paul A1 - van der Mei, H. A1 - Ren, Q. A1 - Schreiber, Frank A1 - Webb, J. A1 - Pietsch, Franziska A1 - Ahrens, C. T1 - An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1 N2 - Pseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential Protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms. KW - Biofilms PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515108 DO - https://doi.org/10.1038/s41522-020-00154-8 VL - 6 IS - 1 SP - Article number: 46 PB - Springer Nature CY - Singapore AN - OPUS4-51510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Amano, K. A1 - Hahn, S. A1 - Tschirschwitz, Rico A1 - Rappsilber, Tim A1 - Krause, U. T1 - An Experimental Investigation of Thermal Runaway and Gas Release of NMC Lithium-Ion Pouch Batteries Depending on the State of Charge Level N2 - In this study, 19 experiments were conducted with 25 pouch cells of NMC cathode to investigate thermal runaway and the release of gases from lithium-ion batteries (LIBs). Single cells, double cells, and a four-cell battery stack were forced to undergo thermal runaway inside an air-tight reactor vessel with a volume of 100 dm3 . The study involved two series of tests with two types of ignition sources. In the Series 1 tests, a heating plug was used to initiate thermal runaway in LIBs in the ranges of 80–89% and 90–100% SOC. In the Series 2 tests, a heating plate was used to trigger thermal runaway in LIBs in the ranges of 30–50%, 80–89%, and 90–100% SOC. Thermal runaway started at an onset temperature of 344 ± 5 K and 345 K for the Series 1 tests and from 393 ± 36 K to 487 ± 10 K for the Series 2 tests. Peak reaction temperatures ranged between 642 K and 1184 K, while the maximum pressures observed were between 1.2 bar and 7.28 bar. Thermal runaway induced explosion of the cells and lead to a rate of temperature increase greater than 10 K/s. The amounts of gases released from the LIBs were calculated from pressures and temperatures measured in the reactor. Then, the gas composition was analyzed using a Fourier transform infrared (FTIR) spectrometer. The highest gaseous production was achieved at a range of 90–100% SOC and higher battery capacities 72 L, 1.8 L/Ah (Series 1, battery stack) and 103 L, 3.2 L/Ah (Series 2, 32 Ah cell)). Among the gases analyzed, the concentration of gaseous emissions such as C2H4 , CH4 , and C2H6 increased at a higher cell capacity in both series of tests. The study results revealed characteristic variations of thermal behavior with respect to the type of ignition source used. KW - Lithium-ion batteries KW - Battery KW - Pouch cell KW - NMC Cathode KW - Thermal runaways PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548601 DO - https://doi.org/10.3390/batteries8050041 VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel, Switzerland AN - OPUS4-54860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anzt, H. A1 - Bach, F. A1 - Druskat, S. A1 - Löffler, F. A1 - Loewe, A. A1 - Renard, B. Y. A1 - Seemann, G. A1 - Struck, A. A1 - Achhammer, E. A1 - Aggarwal, P. A1 - Appel, F. A1 - Bader, M. A1 - Brusch, L. A1 - Busse, C. A1 - Chourdakis, G. A1 - Dabrowski, P. W. A1 - Ebert, P. A1 - Flemisch, B. A1 - Friedl, S. A1 - Fritzsch, B. A1 - Funk, M. D. A1 - Gast, V. A1 - Goth, F. A1 - Grad, J. A1 - Hegewald, J. A1 - Hermann, S. A1 - Hohmann, F. A1 - Janosch, S. A1 - Kutra, D. A1 - Linxweiler, J. A1 - Muth, Thilo A1 - Peters-Kottig, W. A1 - Rack, F. A1 - Raters, F. H. C. A1 - Rave, S. A1 - Reina, G. A1 - Reißig, M. A1 - Ropinski, T. A1 - Schaarschmidt, J. A1 - Seibold, H. A1 - Thiele, J. P. A1 - Uekermann, B. A1 - Unger, S. A1 - Weeber, R. T1 - An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action N2 - Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin. KW - Research Software KW - Sustainable Software Development KW - Academic Software KW - Software Infrastructure KW - Software Training KW - Software Licensing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522029 DO - https://doi.org/10.12688/f1000research.23224.2 VL - 9 SP - 1 EP - 35 AN - OPUS4-52202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -