TY - CONF A1 - Kotschate, Daniel A1 - Gohlke, Dirk A1 - Boehm, Rainer A1 - Perez-Alonso, M. T1 - A comparison between ASTM E588 and SEP 1927 relating resolution limits at determination of the purity grade N2 - With increased usage of highly demanded, modern materials on safety relevant parts (e.g. railway wheel sets, generator shafts, turbine disks, medical implants, etc.) comprehensive analyses regarding the quality of the material are requested. This gives a focus to non-destructive methods using ultrasound immersion tank testing for classifying the degree of purity. Two autonomous standards, ASTM E588 and SEP 1927, have been established for the definition, execution and evaluation for this high resolution ultrasonic measurements on steel products. The propagation of ultrasonic waves and the resulting sound field are strongly dependent on the acoustical properties of the inspected material and the geometry of probes and specimen. The definition of the measurement setup and the evaluation methods appear to differ significantly in the given standards. ASTM E588 and SEP 1927 prescribe the requirement for surface roughness and probe selection, are using threshold based methods for cleanliness detection, but differ in computation for the degree of purity. This has been the motivation for a comparison between both standards with the main focus on amplitude depth dependency and overall spatial resolution taking the influence of different material characteristics, geometry of the specimen and sound fields into account. A performance comparison between the use of non-focusing and focusing probes respective to the threshold based detection will be presented in this contribution. In addition, the usage of complex reconstruction algorithms (e.g. SAFT, echo tomography) is compared with the traditional approaches of inclusion detection and estimation of the degree of purity T2 - 19th World Conference on Non-Destructive Testing 2016 CY - Munich, Germany DA - 13.06.2016 KW - Ultrasonic immersion tank testing KW - Purity grade KW - Material characterisation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-382972 SP - Paper X15, 1 EP - 10 AN - OPUS4-38297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shashev, Yury A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Britzke, Ralf A1 - Bruno, Giovanni A1 - Müller, Bernd R. A1 - Hentschel, M. P. T1 - Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing N2 - Grating interferometric set-ups have been established in the last decade. They are promising candidates to obtain enhanced image contrast from weakly absorbing micro and nano structures. They are based on X-ray refraction and near-field diffraction using the Talbot effect. At the expense of taking multiple images, Talbot-Lau grating interferometry allows separating the absorption, refraction, and scattering contributions by analysing the disturbances of a phase grating interference pattern. Contrary to other refraction enhanced methods, this technique can be applied using conventional X-ray tubes (divergent, polychromatic source). This makes it attractive to solve typical non-destructive testing problems. We investigated the efficiency of phase gratings, i.e. the visibility (the amplitude of oscillations) upon variation of propagation distance and phase grating rotation around an axis parallel to the grid lines. This grating rotation changes the grating shape (i.e. the distributions of phase shifts). This can yield higher visibilities than derived from rectangular shapes. Our study includes experimental results obtained from synchrotron radiation, as well as simulations for monochromatic radiation. The advantages of Talbot-Lau interferometry are demonstrated at the example of glass capillaries. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - Munich, Germany DA - 13.06.2016 KW - Talbot- Lau interferometry KW - Phase grating KW - Non-destructive testing PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-383163 SP - Tu_3_G_2, 1 EP - 9 AN - OPUS4-38316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schukar, Vivien A1 - Köppe, Enrico A1 - Hofmann, Detlef A1 - Westphal, Anja A1 - Sahre, Mario A1 - Gong, Xin A1 - Bartholmai, Matthias A1 - Beck, Uwe T1 - Magnetic field detection with an advanced FBG-based sensor device N2 - A high-performance fiber Bragg grating-based (FBG) sensor device has been developed for the detection of small magnetic fields. Based on a smart multilayer jacket around the fibre over the physical length of the FBG, magnetic fields generated by rotating machine parts, power generators or power cable can be easily detected, analysed and evaluated. Consequently, this innovative, on-line and non-contact inspection method results in an increase in quality and reliability of high-performing machine parts, devices and cables. The basic physical principle is based on a magnetostrictive multilayer system that strains the high-resolution FBG element in presence of magnetic fields. Subsequently, a fixed relationship between induced magnetic field and wavelength change of the FBG element describes the characteristic sensitivity curve. Intensive tests regarding characterisation of this magnetic field FBG sensor have been carried out and its performance has been evaluated. T2 - 30th Eurosensors Conference, EUROSENSORS 2016 CY - Budapest, Hungary DA - 04.09.2016 KW - Fiber Bragg grating KW - Magnetostriction KW - Strain KW - Magnetic field PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-376703 DO - https://doi.org/10.1016/j.proeng.2016.11.445 SN - 1877-7058 VL - 168 SP - 1270 EP - 1274 PB - Elsevier Ltd. AN - OPUS4-37670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Petrat, T. A1 - Graf, B. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Schmidt, M. ED - Vollertsen, F. ED - Arnold, C. B. T1 - Laser metal deposition as repair technology for a gas turbine burner made of Inconel 718 N2 - Maintenance, repair and overhaul of components are of increasing interest for parts of high complexity and expensive manufacturing costs. In this paper a production process for laser metal deposition is presented, and used to repair a gas turbine burner of Inconel 718. Different parameters for defined track geometries were determined to attain a near net shape deposition with consistent build-up rate for changing wall thicknesses over the manufacturing process. Spot diameter, powder feed rate, welding velocity and laser power were changed as main parameters for a different track size. An optimal overlap rate for a constant layer height was used to calculate the best track size for a fitting layer width similar to the part dimension. Deviations in width and height over the whole build-up process were detected and customized build-up strategies for the 3D sequences were designed. The results show the possibility of a near net shape repair by using different track geometries with laser metal deposition. T2 - LANE - 9 International Conference on Photonic Technologies CY - Fürth, Germany DA - 19.09.2016 KW - Laser metal deposition KW - Inconel 718 KW - Additive manufacturing KW - Maintenance KW - Repair and overhaul PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-376723 UR - http://ac.els-cdn.com/S1875389216301857/1-s2.0-S1875389216301857-main.pdf?_tid=ed1d75de-84a2-11e6-af94-00000aab0f6c&acdnat=1474974777_4917d753cb3d316c4b000ba0760778b5 DO - https://doi.org/10.1016/j.phpro.2016.08.078 SN - 1875-3892 VL - 83 SP - 761 EP - 768 PB - Elservier AN - OPUS4-37672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkelmann, Aimo A1 - Nolze, Gert A1 - Voss, M. A1 - Salvat-Pujol, F. A1 - Werner, W. S. M. T1 - Physics-based simulation models for EBSD: advances and challenges N2 - EBSD has evolved into an effective tool for microstructure investigations in the scanning electron microscope. The purpose of this contribution is to give an overview of various simulation approaches for EBSD Kikuchi patterns and to discuss some of the underlying physical mechanisms. T2 - EMAS 2015 - 14th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS CY - Portoroz, Slovenia DA - 03.05.2015 KW - Electron backscatter diffraction KW - Simulation KW - Dynamical theory KW - Kinematic theory PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377469 DO - https://doi.org/10.1088/1757-899X/109/1/012018 VL - 109 SP - 012018-1 EP - 012018-13 AN - OPUS4-37746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Welding with high-power lasers: trends and developments N2 - High-power laser beam welding became new stimuli within the last 10 years due to the availability of a new generation of high brightness multi kilowatt solid state lasers. In the welding research new approaches have been developed to establish reliable and praxis oriented welding processes meeting the demands of modern industrial applications during this time. The paper focuses on some of the current scientific and technological aspects in this research field like hybrid laser arc welding, simulation techniques, utilization of electromagnetic fields or reduced pressure environment for laser beam welding processes, which contributed to the further development of this technology or will play a crucial role in its further industrial implementation. T2 - 9th International Conference on Photonic Technologies - LANE 2016 CY - Fürth, Germany DA - 19.09.2016 KW - High-power Laserbeam Welding KW - Electromagnetic Force KW - Vacuum KW - Simulation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377280 DO - https://doi.org/10.1016/j.phpro.2016.08.003 VL - 83 SP - 15 EP - 25 PB - Elsevier B.V. CY - Berlin, Germany AN - OPUS4-37728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holstein, R. A1 - Müller, Christina T1 - Analyzing the reliability of non-destructive tests using the modular modell - a practical approach N2 - Non-destructive testing is an important tool to guarantee the safety of railway traffic. The infrastructure with tracks, switches and sleepers is regularly tested, the locomotives and wagons with their wheels, bogies and axles as well. Many years of experience and some events lead in Germany to a good practice in testing the railway components. Now, European authorities are drafting a system of common requirements and standards for the European Railway Market. The German practice combines an intensive training of the NDT-personnel including sufficient time for practical exercises with organizational measures of the companies, responsible for rolling stock and infrastructure. Through the example of UT-testing of railway axles it will be shown, how training and organizational measures influence the reliability of such testing. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - Modular model KW - Railway KW - Human factors PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375712 UR - http://www.ndt.net/article/wcndt2016/papers/mo1d4.pdf SP - id 19519, 1 EP - 6 AN - OPUS4-37571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanzler, D. A1 - Müller, Christina T1 - Evaluating RT systems with a new POD approach N2 - The usefulness and purpose of evaluating nondestructive testing (NDT) systems and their capabilities has changed in the last decade. The conventional method of simply applying a familiar statistical algorithm to say whether the system is usable for the tasks is history. Nowadays, multiple parameter methods which describe the probabilities of detection (POD) of different systems or real defects need new characteristics and a broader variety of statistical models to describe the true system behaviour. The appraisal of the NDT system involves diverse departments within a company (engineering, NDT-operators, and statisticians), but is, at the same time, more needed and requested than in the past. In this article, an approach is discussed in which professionals from different fields worked well together, accomplishing cost-intensive metallographic studies in correlation with well-understood physical behaviour of NDT-methods as well as deep-discussed mathematical methods to create a holistic evaluation of the technical reliability for a specific radiographic testing (RT) equipment. The first part of the publication will show the comparison between metallographic grinding and the RT indications. An essential innovation over past evaluation methods was the use of a multi-scale smoothing algorithm, which describes physical parameters, which were not used in evaluation like the POD in this way in the past. In the second part the statistical requirements for the POD take the focus. It can often be hard to make significant statements; especially in the case where only a small amount of data is available. The combination of data and the use of knowledge from simulations are essential. One possible solution will be shown for the RT evaluation. The methodology is used for evaluating the digital RT system for the inspection of electron-beam welds, which was method considered to seal the Finnish copper canisters for the final deposit of spent nuclear fuel. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - POD KW - RT PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375732 UR - http://www.ndt.net/article/wcndt2016/papers/we1d4.pdf SP - id 19535, 1 EP - 8 AN - OPUS4-37573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McGrath, B. A1 - Holstein, R. A1 - Bertovic, Marija T1 - How NDT companies can benefit from human factors knowledge N2 - Ultrasonic phased array is, currently, the technology which is being applied as the solution to a lot of inspection problems. The perceived benefits are seen to be worth the outlay on equipment and specialised personnel. Yet, there is a source of knowledge, freely available, which can also deliver immediate benefits, through more reliable inspection results, and consequently increased client confidence, but which is largely ignored by the greater part of the NDT community. This talk will review the latest Human Factors knowledge and provide practical illustrations of how companies can use it to improve their competitive edge. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - Human factors PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375742 UR - http://www.ndt.net/article/wcndt2016/papers/tu4d3.pdf SP - id 19532, 1 EP - 8 AN - OPUS4-37574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ronneteg, U. A1 - Grybäck, T. A1 - Bertovic, Marija A1 - Müller, Christina A1 - Pavlovic, Mato T1 - Safe for 1 million years – NDT matters! N2 - The General Guidance in the Swedish regulations state that the safety assessment for a final repository for spent nuclear fuel should be 1 million years after closure. SKB developed the KBS-3 method, according to which the spent nuclear fuel is protected by three barriers. It is encapsulated in canisters with a diameter of 1 metre and a length of 5 metres. The canister consists of a cast iron insert surrounded by a 5 centimetre thick shell of copper. The canisters are disposed in the bedrock at a depth of about 500 meters surrounded by bentonite clay. In order to assess the safety over this extremely long period, an extensive quality control programme is applied to the canisters before deposit. In this programme, the use of non-destructive testing (NDT) is vital. The safety assessment of the canister in turn places high demands on the coverage, detectability, and reliability of the applied NDT inspections of the canister parts, i.e. cast iron insert, copper base, tube and lid, and the copper friction stir welds (FSW). This paper presents the extensive full-scale inspection development programme that runs at the Canister Laboratory in Oskarshamn (Sweden). In order to fulfil the high demands, phased array ultrasonic inspection techniques are developed using practical trials aided by ultrasonic modelling. The techniques apply, for example, different frequencies, inspection angles, focus depths, and both longitudinal and shear waves. Increased inspection reliability of the FSW is achieved by applying digital X-ray technique using a 9 MeV linear accelerator and a line detector. To complete the coverage, complementary surface inspections methods, i.e. eddy current array, magnetic flux sensor techniques and magnetic particle inspection, are applied. The canister safety assessment was the driving force to include reliability studies during the NDT development. Initially, the technical reliability was considered, resulting in development of advanced POD models (probability of detection). In combination with human factors studies, these models were implemented as tools in the development of the NDT techniques. Human factors studies were also applied to improve the inspection procedures to be more user-friendly enabling reliable inspections. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - Spent nuclear fuel PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375785 UR - http://www.ndt.net/article/wcndt2016/papers/we4e4.pdf SP - id 19464, 1 EP - 9 AN - OPUS4-37578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Gohlke, Dirk A1 - Heckel, Thomas T1 - Three dimensional examination of directivity pattern in immersion tank testing N2 - High resolution examination of safety-relevant parts in immersion tank testing with focussing probes is forming a main topic of modern non-destructive testing. For the usage of complex reconstruction methods and algorithms, an individual and detailed knowledge about the transmission behaviour of the used probes is essential, as this has a significant influence on the results of data reconstruction. Especially the knowledge about position and diameter of the focal point is needed to achieve the highest possible sensitivity. Through the individual position of the beam axis within the examined volume, a four dimensional metro logical determination of the acoustical pressure (x, y, z, t) is necessary. With the measured data it is possible to draw interferences about the sound field and acoustical pressure distribution. The presented work realized a method of automatic determination of the beam axis, the position of focal point and the focal diameter to support individual testing setups and transducer characterization. T2 - 7th International Symposium on NDT in Aerospace CY - Bremen, Germany DA - 16.11.2015 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-339995 AN - OPUS4-33999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Douma, J. A1 - Niederleithinger, Ernst A1 - Snieder, R. T1 - Improved focusing using deconvolution within a concrete block N2 - Time reversal techniques are used in ocean acoustics, medical imaging and non-destructive evaluation to backpropagate recorded signals to the source of origin. We demonstrate experimentally a technique which improves the temporal focus achieved at the source location. The experiment consists of propagating a signal from a transducer within a concrete block to a single receiver on the surface, and then applying time reversal or deconvolution to focus the energy back at the source location. The results show that we are able to generate a focus in time at the correct location. The proposed method is simple and proven to be robust. Additionally, its costs are negligible due to deconvolution being a preprocessing step to the recorded data. The technique can be applied for detailed investigation of the source mechanisms (e. g. cracks) but also for monitoring purposes. T2 - DGZfP-Jahrestagung 2014 CY - Potsdam, Germany DA - 26.05.2014 KW - Ultrasonics KW - Acoustic emission KW - Time reversal KW - Deconvolution PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-337953 UR - http://www.ndt.net/article/dgzfp2014/papers/di2c2.pdf SN - 978-3-940283-61-0 IS - DGZfP-BB 148 SP - Di.2.C.2, 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-33795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Flohr, Kerstin A1 - Kromm, Arne A1 - Kannengießer, Thomas ED - Holden, T.M. ED - Muránsky, O. ED - Edwards, L. T1 - Multi-axial Analyses of Welding Stresses in High-Strength Steel Welds N2 - Today’s efforts for lightweight design result in a growing application of high-strength structural steels from 960 MPa. In welded structures of these steels increased demands regarding component safety and a high elastic ratio should be considered. Hence, the prevention of an evolution of high weld-induced tensile residual stresses is required. Recent studies showed that component related restraint conditions of welds are able to elevate welding induced stresses to critical values, depending on material characteristics, the welding process and parameters. This work involves multi-axial welding loads as a consequence of the superposition of local residual stresses, global reaction stresses and moments, varying the welding parameters under different restraint conditions. The global welding loads are measured via GMA-weld tests in a special testing facility and via a DIC(Digital Image Correlation)-system in a slot weld. Local transverse residual stresses were analysed by means of X-ray diffraction. The application of a less amount of weld runs due to a modified welding parameters and welds seam configurations revealed as a beneficial approach to reduce welding loads in high-strength steels. T2 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 04.07.2016 KW - High-Strength Steel KW - Welding KW - Reaction Stress KW - X-Ray Diffraction PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-390453 SN - 978-1-9452-9116-6 DO - https://doi.org/10.21741/9781945291173-35 SN - 2474-395X VL - 2 SP - 205 EP - 210 PB - Materials Research Forum LLC. CY - Millersville PA, USA AN - OPUS4-39045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Boin, M. A1 - Kannengießer, Thomas A1 - Gibmeier, J. ED - Olden, T.-M. ED - Muransky, O. Muransky ED - Edwards, L. T1 - Influence of heat control on residual stresses in low transformation temperature (LTT) large scale welds N2 - The current paper presents residual stress analyses of large scale LTT (Low Transformation Temperature) welds. LTT filler materials are specially designed for residual stress engineering by means of an adjusted martensite phase transformation. Controlling the level of mostly detrimental residual stresses already during the welding process would be highly attractive as time and cost consuming post processing may be prevented. In large scale welds the residual stress state is influenced by the heat control (e.g. interpass temperature) during welding. Therefore, welding residual stresses are studied here putting the focus on the influence of welding process parameters while joining heavy steel sections with a thickness of 25 mm. The residual stress state was determined at the top surface using X-ray diffraction as well as in the bulk by neutron diffraction. The results show that control of the interpass temperature is vital for the residual stresses present in the joints. This accounts for the top surface but is most pronounced for the bulk of the welds. While high interpass temperatures are appropriate to induce compressive residual stresses in the weld metal, low interpass temperatures favor unwanted tensile residual stresses instead. T2 - ICRS 2016 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 03.07.2016 KW - LTT KW - Welding residual stress KW - Phase transformation KW - Interpass temperature PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389628 SN - 978-1-94529117-3 SN - 978-1-94529116-6 DO - https://doi.org/10.21741/9781945291173-38 SN - 2474-395X VL - 2 SP - 223 EP - 228 PB - Materials Research Forum LLC CY - Millersville (PA), USA AN - OPUS4-38962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaenisch, Gerd-Rüdiger A1 - Kolkoori, Sanjeevareddy A1 - Deresch, Andreas T1 - Influence of scattered radiation on the efficiency of dual high-energy X-Ray imaging for material characterization N2 - In this contribution, we discuss the influence of scattered radiation on materials’ effective attenuation coefficients at higher X-ray energies. The selected X-ray spectra for the dual-energy experiments correspond to 3 MV and 7.5 MV acceleration potential of the used betatron. Experiments were performed on a test phantom containing step wedges of different low- and high-Z materials. We evaluated the ratio between low- and high-energy X-ray attenuation coefficients quantitatively based on simulated poly-energetic high-energy X-ray source spectra and the detector sensitivity using the “analytical Radiographic Testing inspection simulation tool” (aRTist) developed at BAM. Furthermore, the influence of scattered radiation is evaluated using an efficient Monte-Carlo simulation. The simulation results are compared quantitatively with experimental investigations. Finally, important applications of the proposed technique in the context of aviation security are discussed. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Monte Carlo methods KW - Dual-energy imaging KW - Simulation KW - Experiments PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365925 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 10 PB - DGZfP CY - Berlin, Germany AN - OPUS4-36592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Zhukovskiy, M. A1 - Markov, M. A1 - Podolyako, S. A1 - Uskov, R. A1 - Jaenisch, Gerd-Rüdiger T1 - Supercomputing the cascade processes of radiation transport N2 - Modeling of the photon-electron cascade progress in multicomponent objects of complex geometrical structure by use of hybrid supercomputers is considered. An approach to computing the cascade processes is developed. The approach has three key properties allowing the effective use of heterogeneous structure of computers for solving the tasks of radiation transport in complex multi-scale geometries. Firstly, two different discreet geometrical description of an object being under radiation is used: triangulated model for photon transport and voxel model for electron transport. Secondly, small parameter of the problem is explicitly taking into account for modeling surface effects (for instance, electron emission). Thirdly, the effective calculation decomposition between CPU and GPU is developed for significant increasing the speed of calculations of processes in question. Modeling of experiment on researching the bremsstrahlung generated by electron beam in Ta target is carried out. Comparison of computing and experimental results shows satisfactory consent. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Super somputing KW - Photon-electron transport KW - Monte Carlo methods KW - Modelling PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365932 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 6 PB - DGZfP CY - Berlin, Germany AN - OPUS4-36593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Deresch, Andreas A1 - Jaenisch, Gerd-Rüdiger A1 - Bellon, Carsten T1 - A fast general spectrum model for quantitative radiography simulation N2 - One essential step on the way towards accurate quantitative simulation of radiographic testing is an accurate description of the utilized energy spectrum of X-ray photons. For use in general purpose simulation tools, the spectra of X-ray tubes have to be described by a model covering at least the intended range of applications. This range includes transmission tubes as well as direct beam tubes with varying angles of incidence and emission, for a number of typical target materials. In radiographic testing acceleration voltages frequently reach up to 450 kV for direct beam targets and up to 225 kV for transmission targets, with even higher voltages available or being developed. Currently used models are unable to cover the whole range of configurations. Here a model is presented that employs a unified approach for simulating the photon energy spectra for transmission and direct beam targets composed of arbi-trary homogeneous materials. In order to achieve this, a detailed model of electron transport within the target is employed. The validity of the developed model is shown through comparisons with Monte Carlo simulations as well as measurements for a number of different configurations. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Measurements KW - X-ray spectra KW - Simulation KW - Electron transport PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365959 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 7 PB - DGZfP CY - Berlin, Germany AN - OPUS4-36595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shashev, Yury A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Britzke, Ralf A1 - Bruno, Giovanni A1 - Mueller, Bernd R. A1 - Hentschel, Manfred P. T1 - Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing N2 - Grating interferometric set-ups have been established in the last decade. They are promising candidates to obtain enhanced image contrast from weakly absorbing micro and nano structures. They are based on X-ray refraction and near-field diffraction using the Talbot effect. At the expense of taking multiple images, Talbot-Lau grating interferometry allows separating the absorption, refraction, and scattering contributions by analysing the disturbances of a phase grating interference pattern. Contrary to other refraction enhanced methods, this technique can be applied using conventional X-ray tubes (divergent, polychromatic source). This makes it attractive to solve typical non-destructive testing problems. We investigated the efficiency of phase gratings, i.e. the visibility (the amplitude of oscillations) upon variation of propagation distance and phase grating rotation around an axis parallel to the grid lines. This grating rotation changes the grating shape (i.e. the distributions of phase shifts). This can yield higher visibilities than derived from rectangular shapes. Our study includes experimental results obtained from synchrotron radiation, as well as simulations for monochromatic radiation. The advantages of Talbot-Lau interferometry are demonstrated at the example of glass capillaries. T2 - WCNDT2016 CY - Munich, Germany DA - 13.06.2016 KW - Phase-contrast X-ray imaging KW - Talbot- Lau interferometry KW - Phase grating KW - Visibility KW - Synchrotron radiation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365987 SN - 978-3-940283-78-8 VL - BB 158 SP - Tu.3.G.2., 1 EP - 9 AN - OPUS4-36598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Jaenisch, Gerd-Rüdiger A1 - Deresch, Andreas T1 - Combining analytical and Monte Carlo modelling for industrial radiology N2 - Modelling becomes more and more important in modern NDE. It is increasingly used to optimize techniques for complex applications, to support the preparation of written procedures, and for education purposes. To describe the complete chain of RT, the model includes simulating all necessary properties of X- or Gamma-ray sources, the interaction of photons with material with special attention to scattered radiation, the detection process, and the complete geometrical RT setup handling arbitrary parts or constructions. Depending on the given inspection problem and the influencing factors that should be addressed by the simulation, an appropriate physical model has to be chosen to describe the underlying interaction mechanisms. The simulator aRTist combines analytical and Monte Carlo methods to efficiently model the radiation transport such that transmission as well as scatter techniques can be modelled. In this contribution we Focus on Monte Carlo Simulation of scatter contribution within aRTist. Examples for RT/tomographic applications and back-scatter techniques are presented to demonstrate the usability of the presented simulation tool for a broad range of radiological applications. T2 - 19th Wolrd Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Radiography KW - Computed tomography KW - Simulation KW - Monte Carlo methods PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365856 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 9 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung (DGZfP) CY - Berlin, Germany AN - OPUS4-36585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Holger A1 - Beckmann, Jörg A1 - Boehm, Rainer T1 - THz-ToF techniques for the detection of inherent discontinuities in dielectric materials based on a SAFT – and an optical layer reconstruction algorithm N2 - Electromagnetic waves with frequencies between 0.1 and 10 THz are described as THz-radiation (T-ray). The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. THz-Time Domain Spectroscopy Systems (THz-TDS) are available on the market today which operates with THz-pulses transmitted and received by optically pumped semiconductor antennas. In THz-TDS the travelling time (ToF) and shape of the pulse is changed if it interacts with the dielectric material and its inherent discontinuities. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. Otherwise, planar discontinuities like cracks in plastics or delaminated layers in composites can be abstracted as layers located at any angle in relation to the outer sample surface direction. A tomogram from the scanned sample can then be reconstructed in case the interactions of electromagnetic pulses with the existing inherent interfaces are detectable and a model is assumed which describes the device under the test as multilayer structure composed of thin layers with different dielectric properties. A short description of both the SAFT – and Optical Layer algorithm for the reconstruction of the inherent structure is initially given. Measurements on representative samples with a variety of artificially produced small and large scale. Reconstructed tomograms are presented to discuss and evaluate the benefits and limits of the two different reconstruction approaches. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - Munich, Germany DA - 13.06.2016 KW - THz SAFT Optical layer reconstruction PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365866 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 10 AN - OPUS4-36586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -