TY - JOUR A1 - Huang, J. A1 - Tarábek, J. A1 - Kulkarni, R. A1 - Wang, Cui A1 - Dračínský, M. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Resch-Genger, Ute A1 - Bojdys, M. J. T1 - A π-conjugated, covalent phosphinine framework N2 - Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si and S have found their way into their building blocks so far. Here, we expand the toolbox available to polymer and materials chemists by one additional nonmetal, phosphorus. Starting with a building block that contains a λ⁵‐phosphinine (C₅P) moiety, we evaluate a number of polymerisation protocols, finally obtaining a π‐conjugated, covalent phosphinine‐based framework (CPF‐1) via Suzuki‐Miyaura coupling. CPF‐1 is a weakly porous polymer glass (72.4 m2 g‐1 N2 BET at 77 K) with green fluorescence (λmax 546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co‐catalyst at a rate of 33.3 μmol h‐¹ g‐¹. Our results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine‐based frameworks show promising electronic and optical properties that might spark future interest in their applications in light‐emitting devices and heterogeneous catalysis. KW - Phosphinine KW - Fully aromatic frameworks KW - Suzuki-Miyaura coupling KW - Polymers KW - Fluorescence KW - Small-angle scattering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485330 DO - https://doi.org/10.1002/chem.201900281 SP - 2 EP - 10 PB - Wiley VCH-Verlag CY - Weinheim AN - OPUS4-48533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schürmann, Robin A1 - Ebel, Kenny A1 - Nicolas, C. A1 - Milosavljevic, A. R. A1 - Bald, Ilko T1 - Role of valence band states and plasmonic enhancement in electron-transfer-induced transformation of nitrothiophenol N2 - Hot-electron-induced reactions are more and more recognized as a critical and ubiquitous reaction in heterogeneous catalysis. However, the kinetics of these reactions is still poorly understood, which is also due to the complexity of plasmonic nanostructures. We determined the reaction rates of the hot-electron-mediated reaction of 4-nitrothiophenol (NTP) on gold nanoparticles (AuNPs) using fractal kinetics as a function of the laser wavelength and compared them with the plasmonic enhancement of the system. The reaction rates can be only partially explained by the plasmonic response of the NPs. Hence, synchrotron X-ray photoelectron spectroscopy (XPS) measurements of isolated NTP-capped AuNP clusters have been performed for the first time. In this way, it was possible to determine the work function and the accessible valence band states of the NP systems. The results show that besides the plasmonic enhancement, the reaction rates are strongly influenced by the local density of the available electronic states of the system. KW - Photocatalytic reduction KW - Raman-spectroscopy KW - Hot-electrons KW - Work function KW - Surface KW - Nanaoparticles KW - Scattering KW - Molecule KW - Carriers KW - Layers PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486464 DO - https://doi.org/10.1021/acs.jpclett.9b00848 SN - 1948-7185 VL - 10 IS - 11 SP - 3153 EP - 3158 PB - American Chemical Society CY - Washington, DC AN - OPUS4-48646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, Christian A1 - Kanehira, Y. A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures N2 - Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates. KW - Amorphous carbon KW - DNA origami KW - SERS KW - Nanoparticle dimers KW - Nanolenses PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486484 DO - https://doi.org/10.3390/molecules24122324 SN - 1420-3049 VL - 24 IS - 12 SP - Article Number: 2324-1 EP - 10 PB - MDPI AN - OPUS4-48648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegmann, Marc A1 - Jochum, T. A1 - Somma, V. A1 - Sowa, M. A1 - Scholz, J. A1 - Fröhlich, E. A1 - Hoffmann, Katrin A1 - Niehaus, J. A1 - Roggenbuck, D. A1 - Resch-Genger, Ute T1 - An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots N2 - The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials. KW - Nanomaterial KW - Genotoxicity testing KW - γ-H2AX assay KW - Quantum dot PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486318 DO - https://doi.org/10.1039/C9NR01021A SN - 2040-3372 SN - 2040-3364 VL - 11 IS - 28 SP - 13458 EP - 13468 PB - The Royal Society of Chemistry AN - OPUS4-48631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Prediction of transformation products of monensin by electrochemistry compared to microsomal assay and hydrolysis N2 - The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation. KW - Transformation products KW - Monensin KW - Veterinary drugs KW - Electrochemistry KW - Hydrolysis KW - LC/HRMS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485689 DO - https://doi.org/10.3390/molecules24152732 SN - 1420-3049 VL - 24 IS - 15 SP - 2732, 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-48568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Brunet, G. A1 - Marin, R. A1 - Monk, Melissa-Jane A1 - Galico, D. A. A1 - Sigoli, F. A. A1 - Suturina, E. A. A1 - Hemmer, E. A1 - Murugesu, M. T1 - Exploring the dual functionality of an Ytterbium complex for luminescence thermometry and slow magnetic relaxation† N2 - We present a comprehensive investigation of the magnetic and optical properties of an ytterbium complex, which combines two desirable and practical features into a single molecular system. Based upon YbIII Ions that promote near-infrared optical activity and a chemical backbone that is ideal for an in-depth understanding of the magnetic behaviour, we have designed a multifunctional opto-magnetic species that operates as a luminescent thermometer and as a single-molecule magnet (SMM). Our magnetic investigations, in conjunction with ab initio calculations, reveal one of the highest energy barriers reported for an YbIII-based complex. Moreover, we correlate this anisotropic barrier with the Emission spectrum of the compound, wherein we provide a complete assignment of the energetic profile of the complex. Such studies lay the foundation for the design of exciting multi-faceted materials that are able to retain information at the single-molecule level and possess built-in thermal self-monitoring capabilities. KW - Magnetic KW - Fluorescence KW - NIR KW - Temperature KW - Dual sensing KW - Sensor KW - Yb(III) complex KW - Lanthanide KW - Quantum yield KW - Quality assurance PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486659 DO - https://doi.org/10.1039/c9sc00343f VL - 10 IS - 28 SP - 6799 EP - 6808 PB - Royal Society of Chemistry AN - OPUS4-48665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Raman Microspectroscopic Imaging of Binder Remnants in Historical Mortars Reveals Processing Conditions N2 - Binder remnants in historical mortars represent a record of the connection between the raw materials that enter the kiln, the process parameters, and the end product of the calcination. Raman microspectroscopy combines high structural sensitivity with micrometre to sub-micrometre spatial resolution and compatibility with conventional thin-sectional samples in an almost unique fashion, making it an interesting complementary extension of the existing methodological arsenal for mortar analysis. Raman spectra are vibrational fingerprints of crystalline and amorphous compounds, and contain marker bands that are specific for minerals and their polymorphic forms. Relative intensities of bands that are related to the same crystalline species change according to crystal orientations, and band shifts can be caused by the incorporation of foreign ions into crystal lattices, as well as stoichiometric changes within solid solution series. Finally, variations in crystallinity affect band widths. These effects are demonstrated based on the analysis of three historical mortar samples: micrometric distribution maps of phases and polymorphs, crystal orientations, and compositional variations of solid solution series of unreacted clinker grains in the Portland cement mortars of two 19th century castings, and the crystallinities of thermal anhydrite clusters in a high-fired medieval gypsum mortar as a measure for the applied burning temperature were successfully acquired. KW - Cement clinker remnants KW - High-fired gypsum KW - Thermal anhydrite KW - Spectroscopic imaging KW - Raman microscopy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515038 DO - https://doi.org/10.3390/heritage2020102 VL - 2 IS - 2 SP - 1662 EP - 1683 PB - MDPI CY - Basel AN - OPUS4-51503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Editorial for the special issue "Modern Raman spectroscopy of minerals" N2 - Raman spectroscopy provides vibrational fingerprints of chemical compounds enabling their unambiguous identification. The assignment of Raman spectra to minerals is straightforward, if appropriate reference data is accessible. Modern couplings of Raman spectroscopy with microscopy (Raman microspectroscopy) merge the high structural specificity with down to sub-micrometre spatial resolution. This analytical tool has high potential not only in the identification of minerals from natural sources but also for studying the complex microstructure and mineral distribution of both ancient and modern man-made materials. In addition to the chemical identity of minerals, Raman spectra are affected by crystal orientations (varying relative Raman band intensities); (sub)stoichiometric compositional changes (e.g., in solid solution series), traces of foreign ions, strain (the latter three shifting Raman bands); and crystallinity (changing Raman band widths), enabling a comprehensive physico-chemical characterisation of minerals. Thus, Raman spectroscopy – including its in situ measurement capabilities – provides possibilities to study mineral paragenesis in both, natural and man-made samples at the micrometre scale. While in 1928 the first experimental evidence for inelastic light scattering was provided by C. V. Raman and K. S. Krishnan by using sunlight for excitation, filters for selecting the inelastically scattered light, and their eyes for detection (later, photographic plates for acquisition of spectra were employed), modern Raman spectrometers make use of laser excitation, dispersive spectrographs and charge coupled device (CCD) detection. This Special Issue includes technological developments and applications in the field of modern Raman spectroscopy of minerals in a broad sense, from natural mineral deposits and archaeological objects to inorganic phases in man-made materials. The studied minerals include fossil resins, typical rock-forming minerals (calcite, quartz, forsterite), iron-sulphur species (e.g., mackinawite), a range of sulphates (gypsum, bassanite, anhydrite III, anhydrite II, celestine, barite, ternesite), as well as silicate minerals like garnets (e.g., almandine). KW - Raman spectroscopy KW - Raman microspectroscopy KW - Mineral identification KW - Physico-chemical characterisation of minerals KW - Mineral paragenesis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515041 DO - https://doi.org/10.3390/min10100860 VL - 10 SP - 860 PB - MDPI CY - Basel AN - OPUS4-51504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietsch, P. A1 - Sobottka, S. A1 - Hoffmann, K. A1 - Popov, A. A. A1 - Hildebrandt, P. A1 - Sarkar, B. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - Between Aromatic and Quinoid Structure: A Symmetrical UV to Vis/NIR Benzothiadiazole Redox Switch N2 - Reversibly switching the light absorption of organic molecules by redox processes is of interest for applications in sensors, light harvesting, smart materials, and medical diagnostics. This work presents a symmetrical benzothiadiazole (BTD) derivative with a high fluorescence quantum yield in solution and in the crystalline state and shows by spectroelectrochemical analysis that reversible switching of UV absorption in the neutral state, to broadband Vis/NIR absorption in the 1st oxidized state, to sharp band Vis absorption in the 2nd oxidized state, is possible. For the one-electron oxidized species, formation of a delocalized radical is confirmed by electron paramagnetic resonance spectroelectrochemistry. Furthermore, our results reveal an increasing quinoidal distortion upon the 1st and 2nd oxidation, which can be used as the leitmotif for the development of BTD based redox switches. KW - Dye KW - Electrochemistry KW - Switch KW - Redox KW - Sensor KW - Photophysics KW - Quantum yield KW - photoluminescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517222 DO - https://doi.org/10.1002/chem.202004009 VL - 26 IS - 72 SP - 17361 EP - 17365 PB - Wiley-VCH GmbH AN - OPUS4-51722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Carl, F. A1 - Grauel, Bettina A1 - Pons, Monica A1 - Würth, Christian A1 - Haase, M. T1 - LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with luminescence decay times similar to YLF laser crystals and the upconversion quantum yield of the Yb,Er doped nanocrystals N2 - We developed a procedure to prepare luminescent LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with a size of approximately 40 nm revealing luminescence decay times of the dopant ions that approach those of high-quality laser crystals of LiYF4:Yb (Yb:YLF) and LiYF4:Yb,Er (Yb,Er:YLF) with identical doping concentrations. As the luminescence decay times of Yb3+ and Er3+ are known to be very sensitive to the presence of quenchers, the long decay times of the core/shell nanocrystals indicate a very low number of defects in the core particles and at the core/shell interfaces. This improvement in the performance was achieved by introducing two important modifications in the commonly used oleic acid based synthesis. First, the shell was prepared via anewly developed method characterized by a very low nucleation rate for particles of pure LiYF4 shell material. Second, anhydrous acetates were used as precursors and additional drying steps were applied to reduce the incorporation of OH− in the crystal lattice, known to quench the emission of Yb3+ ions. Excitation power density (P)-dependent absolute measurements of the upconversion luminescence quantum yield (Φ,UC) of LiYF4:Yb,Er/LiYF4 core/shell particles reveal a maximum value of 1.25% at P of 180 W·cm−2. Although lower than the values reported for NaYF4:18%Yb,2%Er core/shell nanocrystals with comparable sizes, these Φ, UC values are the highest reported so far for LiYF4:18%Yb,2%Er/LiYF4 nanocrystals without additional dopants. Further improvements May nevertheless be possible by optimizing the dopant concentrations in the LiYF4 nanocrystals. KW - Nano KW - Crystal KW - Quantum yield KW - LiYF4 KW - Synthesis KW - Lifetime KW - Fluorescence KW - NIR KW - Photoluminescence KW - Lanthanide KW - Upconversion nanoparticle KW - Nanomaterial PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515395 DO - https://doi.org/10.1007/s12274-020-3116-y SN - 1998-0124 VL - 14 IS - 3 SP - 797 EP - 806 PB - Springer AN - OPUS4-51539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Borcherding, H. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Lifetime encoding in flow cytometry for bead‑based sensing of biomolecular interaction N2 - To demonstrate the potential of time-resolved flow cytometry (FCM) for bioanalysis, clinical diagnostics, and optically encoded bead-based assays, we performed a proof-of-principle study to detect biomolecular interactions utilizing fluorescence lifetime (LT)-encoded micron-sized polymer beads bearing target-specific bioligands and a recently developed prototype lifetime flow cytometer (LT-FCM setup). This instrument is equipped with a single excitation light source and different fluorescence detectors, one operated in the photon-counting mode for time-resolved measurements of fluorescence decays and three detectors for conventional intensity measurements in different spectral windows. First, discrimination of bead-bound biomolecules was demonstrated in the time domain exemplarily for two targets, Streptavidin (SAv) and the tumor marker human chorionic gonadotropin (HCG). In a second step, the determination of biomolecule concentration levels was addressed representatively for the inflammation-related biomarker tumor necrosis factor (TNF-α) utilizing fluorescence intensity measurements in a second channel of the LT-FCM instrument. Our results underline the applicability of LT-FCM in the time domain for measurements of biomolecular interactions in suspension assays. In the future, the combination of spectral and LT encoding and multiplexing and the expansion of the time scale from the lower nanosecond range to the longer nanosecond and the microsecond region is expected to provide many distinguishable codes. This enables an increasing degree of multiplexing which could be attractive for high throughput screening applications. KW - Fluorescence KW - Sensor KW - Assay KW - Protein KW - Multiplexing KW - Flow cytometry KW - Barcoding KW - Lifetime KW - Dye KW - Bead KW - Bead-based assay KW - Method KW - Quantification PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516007 DO - https://doi.org/10.1038/s41598-020-76150-x VL - 10 IS - 1 SP - 19477 PB - Nature AN - OPUS4-51600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, A. M. A1 - von der Au, Marcus A1 - Regnery, J. A1 - Schmid, M. A1 - Meermann, Björn A1 - Reifferscheid, G. A1 - Ternes, T. A1 - Buchinger, S. T1 - Does galvanic cathodic protection by aluminum anodes impact marine organisms? N2 - Background: Cathodic protection by sacrifcial anodes composed of aluminum-zinc-indium alloys is often applied to protect ofshore support structures of wind turbines from corrosion. Given the considerable growth of renewable energies and thus ofshore wind farms in Germany over the last decade, increasing levels of aluminum, Indium and zinc are released to the marine environment. Although these metals are ecotoxicologically well-studied, data regarding their impact on marine organisms, especially sediment-dwelling species, as well as possible ecotoxicological efects of galvanic anodes are scarce. To investigate possible ecotoxicological efects to the marine environment, the diatom Phaedactylum tricornutum, the bacterium Aliivibrio fscheri and the amphipod Corophium volutator were exposed to dissolved galvanic anodes and solutions of aluminum and zinc, respectively, in standardized laboratory tests using natural seawater. In addition to acute toxicological efects, the uptake of these elements by C. volutator was investigated. Results: The investigated anode material caused no acute toxicity to the tested bacteria and only weak but signifcant efects on algal growth. In case of the amphipods, the single elements Al and Zn showed signifcant efects only at the highest tested concentrations. Moreover, an accumulation of Al and In was observed in the crustacea species. Conclusions: Overall, the fndings of this study indicated no direct environmental impact on the tested marine organisms by the use of galvanic anodes for cathodic protection. However, the accumulation of metals in, e.g., crustaceans might enhance their trophic transfer within the marine food web. KW - Galvanic anodes KW - Metal toxicity KW - Metal uptake KW - Corophium volutator KW - Seawater PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520769 DO - https://doi.org/10.1186/s12302-020-00441-3 VL - 32 IS - 1 SP - Article number 157 AN - OPUS4-52076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietsch, P. A1 - Sobottka, S. A1 - Hoffmann, Katrin A1 - Hildebrandt, P. A1 - Sarkar, B. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - Identification of the Irreversible Redox Behavior of Highly Fluorescent Benzothiadiazoles N2 - Redox switches are applied in various fields of research, including molecular lifts, electronic devices and sensors. Switching the absorbance between UV and Vis/NIR by redox processes is of interest for applications in light harvesting or biomedicine. Here, we present a series of push-pull benzothiadiazole derivatives with high fluorescence quantum yields in solution and in the crystalline solid state. Spectroelectrochemical analysis reveals the switching of UV-absorption in the neutral state to Vis/NIR absorption in the reduced state. We identify the partial irreversibility of the switching process, which appears to be reversible on the cyclic voltammetry timescale. KW - Redox switch KW - Electrochemistry KW - Dye KW - Fluorescence KW - Absorption KW - Sensor KW - Benzothiadiazole PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520865 DO - https://doi.org/10.1002/cptc.202000050 SN - 2367-0932 VL - 4 IS - 9 SP - 668 EP - 673 PB - Wiley Online Library AN - OPUS4-52086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treiling, S. A1 - Wang, Cui A1 - Förster, C. A1 - Reichenauer, F. A1 - Kalmbach, J. A1 - Boden, P. A1 - Harris, J. P. A1 - Carrella, L. M. A1 - Rentschler, E. A1 - Resch-Genger, Ute A1 - Reber, C. A1 - Seitz, M. A1 - Gerhards, M. A1 - Heinze, K. T1 - Luminescence and Light-Driven Energy and Electron Transfer from an Exceptionally Long-Lived Excited State of a Non-Innocent Chromium(III) Complex N2 - Photoactive metal complexes employing Earth‐abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non‐innocence to tune the luminescence and photochemistry of the excited state of the [CrN6] chromophore [Cr(tpe)2]3+ with close to octahedral symmetry (tpe=1,1,1‐tris(pyrid‐2‐yl)ethane). [Cr(tpe)2]3+ exhibits the longest luminescence lifetime (τ=4500 μs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2]3+ are redox non‐innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2]3+ surpass those of the classical photosensitizer [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n‐butyl)amine). KW - Quantum yield KW - Cr(III) complex KW - Longst luminescence lifetime KW - Electron transfer PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494870 DO - https://doi.org/10.1002/anie.201909325 VL - 58 SP - 2 EP - 13 PB - Wiley-VCH AN - OPUS4-49487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Geißler, Daniel A1 - Moser, Marko A1 - Kläber, Christopher A1 - Schäfer, A. A1 - Resch-Genger, Ute T1 - Multimodal cleavable reporters for quantifying carboxy and amino groups on organic and inorganic nanoparticles N2 - Organic and inorganic nanoparticles (NPs) are increasingly used as drug carriers, fluorescent sensors, and multimodal labels in the life and material sciences. These applications require knowledge of the chemical nature, total number of surface groups, and the number of groups accessible for subsequent coupling of e.g., antifouling ligands, targeting bioligands, or sensor molecules. To establish the concept of catch-and-release assays, cleavable probes were rationally designed from a quantitatively cleavable disulfide moiety and the optically detectable reporter 2-thiopyridone (2-TP). For quantifying surface groups on nanomaterials, first, a set of monodisperse carboxy-and amino-functionalized, 100 nm-sized polymer and silica NPs with different surface group densities was synthesized. Subsequently, the accessible functional groups (FGs) were quantified via optical spectroscopy of the cleaved off reporter after its release in solution. Method validation was done with inductively coupled plasma optical emission spectroscopy (ICP-OES) utilizing the sulfur atom of the cleavable probe. This comparison underlined the reliability and versatility of our probes, which can be used for surface group quantification on all types of transparent, scattering, absorbing and/or fluorescent particles. The correlation between the total and accessible number of FGs quantified by conductometric titration, qNMR, and with our cleavable probes, together with the comparison to results of conjugation studies with differently sized biomolecules reveal the potential of catch-and-release reporters for surface analysis. Our findings also underline the importance of quantifying particularly the accessible amount of FGs for many applications of NPs in the life sciences. KW - Advanced Materials KW - Surface Chemistry KW - Organic–inorganic nanostructures KW - Funtional Groups KW - Quantitative Analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499081 DO - https://doi.org/10.1038/s41598-019-53773-3 VL - 9 SP - 17577-1 EP - 17577-11 PB - Springer Nature CY - London AN - OPUS4-49908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büchele, Dominique A1 - Chao, Madlen A1 - Ostermann, Markus A1 - Leenen, M. A1 - Bald, Ilko T1 - Multivariate chemometrics as a key tool for prediction of K and Fe in a diverse German agricultural soil-set using EDXRF N2 - Within the framework of precision agriculture, the determination of various soil properties is moving into focus, especially the demand for sensors suitable for in-situ measurements. Energy-dispersive X-ray fluorescence (EDXRF) can be a powerful tool for this purpose. In this study a huge diverse soil set (n = 598) from 12 different study sites in Germany was analysed with EDXRF. First, a principal component analysis (PCA) was performed to identify possible similarities among the sample set. Clustering was observed within the four texture classes clay, loam, silt and sand, as clay samples contain high and sandy soils low iron mass fractions. Furthermore, the potential of uni- and multivariate data evaluation with partial least squares regression (PLSR) was assessed for accurate Determination of nutrients in German agricultural samples using two calibration sample sets. Potassium and iron were chosen for testing the performance of both models. Prediction of these nutrients in 598 German soil samples with EDXRF was more accurate using PLSR which is confirmed by a better overall averaged deviation and PLSR should therefore be preferred. KW - XRF KW - Chemometrics KW - Soil KW - Agriculture KW - Multivariate PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498671 DO - https://doi.org/10.1038/s41598-019-53426-5 VL - 9 SP - 17588 PB - Nature AN - OPUS4-49867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, H. A1 - Song, W. A1 - Gröninger, Delia A1 - Zhang, L. A1 - Lu, Y. A1 - Chan, K. S. A1 - Zhou, Z. A1 - Rurack, Knut A1 - Shen, Z. T1 - Real-time monitoring of newly acidified organelles during autophagy enabled by reaction-based BODIPY dyes N2 - Real-time monitoring of newly acidified organelles during autophagy in living cells is highly desirable for a better understanding of intracellular degradative processes. Herein, we describe a reaction-based boron dipyrromethene (BODIPY) dye containing strongly electron-withdrawing diethyl 2-cyanoacrylate groups at the α-positions. The probe exhibits intense red fluorescence in acidic organelles or the acidified cytosol while negligible fluorescence in other regions of the cell. The underlying mechanism is a nucleophilic reaction at the central meso-carbon of the indacene core, resulting in the loss of π-conjugation entailed by dramatic spectroscopic changes of more than 200 nm between its colorless, non-fluorescent leuco-BODIPY form and its red and brightly emitting form. The reversible transformation between red fluorescent BODIPY and leuco-BODIPY along with negligible cytotoxicity qualifies such dyes for rapid and direct intracellular lysosome imaging and cytosolic acidosis detection simultaneously without any washing step, enabling the real-time monitoring of newly acidified organelles during autophagy. KW - Autophagy KW - BODIPY KW - Fluorescence KW - Lysosome KW - Real-time imaging PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498358 UR - https://www.nature.com/articles/s42003-019-0682-1 DO - https://doi.org/10.1038/s42003-019-0682-1 SN - 23993642 VL - 2 SP - 442 PB - Nature Research CY - London AN - OPUS4-49835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Silke A1 - Roethke, A. A1 - Rienitz, O. A1 - Matschat, Ralf A1 - Schiel, D. A1 - Jaehrling, R. A1 - Goerlitz, V. A1 - Kipphardt, Heinrich T1 - SI-traceable monoelemental solutions on the highest level of accuracy: 25 years from the foundation of CCQM to recent advances in the development of measurement methods N2 - Within the Working Group on Inorganic Analysis (IAWG) of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM) international key comparisons and pilot studies related to inorganic analysis are carried to ensure consistency in this field at the highest level. Some of these comparisons deal directly with the preparation and characterization of monoelemental solutions or with topics, closely related. The importance of monoelemental solutions lies in the fact that almost every measurement in inorganic analysis relies on the comparison with either a reference material, or references in form of solutions, usually (mono)elemental solutions. All quantitative measurement approaches, e.g. isotope dilution or standard addition, need an accurate reference solution made from a well characterized reference material, prepared under full gravimetric control. These primary (monoelemental) solutions do not only serve as arbitrary references/calibration solutions, but they also link up measurement results to the International System of units (SI), this way establishing the so-called metrological traceability to a measurement unit of the SI. Without such solutions on the highest possible level of accuracy and with the smallest possible associated uncertainties (for e.g. element content and/or impurities), an analysis itself can never be as good as it could be with appropriate reference solutions. This article highlights select key comparisons and pilot studies dealing with monoelemental solution related topics within the IAWG from the foundation of CCQM – 25 years ago – up to latest achievements in the field of inorganic analysis. KW - Metrology KW - SI Traceability KW - CCQM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-496080 DO - https://doi.org/10.1088/1681-7575/ab5636 SN - 0026-1394 SN - 1681-7575 SP - 1 EP - 23 PB - IOP CY - Bristol AN - OPUS4-49608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Dariz, P. ED - Ziemann, M. T1 - Raman band widths of anhydrite II reveal the burning history of high-fired medieval gypsum mortars N2 - The use of high-fired gypsum as binder for masonry and joint mortars or stuccowork in Central Europe in the Early and High Middle Ages was a regional specific as it depended on local gypsum deposits. The calcination technology possible at the time resulted in an assemblage of calcium sulphate phases dehydrated to different degrees and partly thermally damaged accessory minerals of the raw gypsum. Because of the absence of medieval textbooks, the observation of high-temperature, low-pressure mineral transformations and the correlation of phases coexisting in not hydrated binder relicts in the gypsum matrix to the mineralogy of the raw material and the burning conditions constitute the only source to the historical technological know-how. The CaSO4–H2O system consists of five crystalline phases, which can be discriminated by structural analysis methods, such as Raman spectroscopy, due to obvious differences in their spectroscopic data: gypsum (CaSO4 ⋅ 2 H2O), bassanite (hemihydrate, CaSO4 ⋅ ½ H2O), anhydrite III (CaSO4), anhydrite II (CaSO4), and anhydrite I (CaSO4). Only recently, it was possible to demonstrate that small spectroscopic variations exist also within the relatively large stability range of anhydrite II from approx. 180°C to 1180°C: all Raman bands narrow with increasing burning temperature applied in the synthesis from gypsum powder. The determination of band widths of down to 3 cm-1 and differences between them of a few tenths of a wavenumber is not a trivial task. Thus, this contribution discusses peak fitting and strategies for correction of instrument-dependent band broadening. Raman maps of polished thin sections of gypsum mortars provide access to the burning histories of individual remnant thermal anhydrite grains and enable the discrimination of natural anhydrite originating from the gypsum deposit. This novel analytical method was applied to samples from medieval South Tyrolean stucco decorations and sculptures. Beyond that, Raman microspectroscopy was employed for following pyrometamorphic reactions in natural impurities of the raw material. In the presented examples mineral thermometry indicates process temperatures above 800°C: the breakdown of magnesium-rich chlorite led to the formation of forsterite Mg2SiO4, while the thermal decomposition of dolomite CaMg(CO3)2 yielded – after hydration and carbonation – magnesite MgCO3, CaCO3 polymorphs and magnesian calcite. Lower burning temperatures, which leave the accessory minerals in their pristine form, can be traced by measuring the spectra of anhydrite crystalites in grains of firing products and evaluating Raman band widths. Throughout the applications of this analytical method so far, calcination temperatures ranging from approx. 600°C to 900°C were determined. T2 - 10th International Congress on the Application of Raman Spectroscopy in Art and Archaeology CY - Potsdam, Germany DA - 03.09.2019 KW - Raman microspectroscopy KW - High-fired medieval gypsum mortars KW - Raman band width KW - Gypsum dehydration KW - Thermal anhydrite PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-496204 SP - 36 EP - 37 PB - University of Potsdam CY - Potsdam AN - OPUS4-49620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Descalzo, Ana B. A1 - Ashokkumar, Pichandi A1 - Shen, Z. A1 - Rurack, Knut T1 - On the Aggregation Behaviour and Spectroscopic Properties of Alkylated and Annelated BoronDipyrromethene (BODIPY) Dyes in Aqueous Solution N2 - The tendency of boron-dipyrromethene (BODIPY) dyes to associate in water is well known, and usually a cause for inferior fluorescence properties. Synthetic efforts to chemically improve BODIPYs’ water solubility and minimize this problem have been numerous in the past. However, a deeper understanding of the phenomena responsible for fluorescence quenching is still required. Commonly, the spectroscopic behaviour in aqueous media has been attributed to aggregate or excimer formation, with such works often centring on a single BODIPY family. Herein, we provide an integrating discussion including very diverse types of BODIPY dyes. Our studies revealed that even subtle structural changes can distinctly affect the association behaviour of the fluorophores in water, involving different photophysical processes. The palette of behaviour found ranges from unperturbed emission, to the formation of H or J aggregates and excimers, to the involvement of tightly bound, preformed excimers. These results are a first step to a more generalized understanding of spectroscopic properties vs. structure, facilitating future molecular design of BODIPYs, especially as probes for biological applications. KW - Aggregates KW - BODIPY KW - Excimers KW - Fluorescence KW - Photophysics PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497771 DO - https://doi.org/10.1002/cptc.201900235 SN - 2367-0932 VL - 4 IS - 2 SP - 120 EP - 131 PB - WILEY-VCH CY - Weinheim AN - OPUS4-49777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -