TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Pitters, S. A1 - Ramasetti, Eshwar Kumar A1 - Schneider, Ronald A1 - Wedel, F. A1 - Hindersmann, I. ED - Rogge, Andreas ED - Meng, Birgit T1 - Föderiertes Datenmanagement von Monitoringdaten aus Structural Health Monitoring Anwendungen und daraus gewonnenen Trainingsdaten bei Spannbetonbrücken N2 - Beim Structural Health Monitoring entstehen eine Vielzahl von Daten, Metadaten und Modellen mit hohem Wert für die Beurteilung des Bauwerkszustands und der Prognose von Veränderungen. Kontinuierlich anwachsende Datenbestände müssen nachhaltig geteilt, genutzt und über die Bauwerkslebensdauer archiviert werden. Dabei stellen die Vielfalt der Messaufgaben, die Heterogenität der Daten, die dezentrale Erfassung und z. T. der Umfang eine Herausforderung für die beteiligten Akteure dar. Für den Datentransfer der Monitoringdaten zwischen der Straßenbauverwaltung und den Monitoringausführenden wird ein flexibles Abstimmungsverfahren vorgeschlagen und ein Lösungskonzept für ein föderiertes Datenmanagement skizziert. Eine weitere Herausforderung stellt die bauwerksübergreifende Zusammenstellung von Trainingsdaten für konkrete KI-Anwendungen dar. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Structural Health Monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612902 SN - 978-3-9818564-7-7 SP - 178 EP - 185 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61290 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Pitters, S. A1 - Hindersmann, I. A1 - Schneider, Ronald A1 - Wedel, F. ED - Rogge, Andreas ED - Meng, Birgit T1 - Leitfaden für den strategischen Einsatz von Monitoring an Straßenbrücken N2 - Für die Anwendung von Structural Health Monitoring (SHM) im Rahmen des Managements von Straßenbrü-cken wurde zur Unterstützung von Straßenbauverwaltungen, Ingenieurbüros, Bauunternehmen und weiteren Akteuren die Erstellung eines Leitfadens initiiert. Dieser Leitfaden stellt typische Anwendungsfälle für Monito-ring vor und schlägt für diese bewährte Herangehensweisen vor. Darüber hinaus bietet der Leitfaden Empfeh-lungen für Ausschreibung und Vergabe von Monitoringleistungen, eine Anleitung zur Bewertung des wirt-schaftlichen Nutzens von SHM, Hinweise zur optimal einsetzbaren Messtechnik sowie einen Ansatz für das Datenmanagement zur Integration der Monitoringdaten in das Brückenmanagement. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Leitfaden KW - Monitoring KW - Straßenbrücke PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612931 SN - 978-3-9818564-7-7 SP - 186 EP - 191 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61293 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosenbusch, Sjard Mathis A1 - Balzani, D. A1 - Unger, Jörg F. T1 - Regularization of softening plasticity models for explicit dynamics using a gradient-enhanced modified Johnson–Holmquist model N2 - The behavior of concrete under high strain rates is often described by plasticity models with softening, which is modeled by a reduction of the yield surface as a function of the local equivalent plastic strain. Many of these models are local and therefore produce mesh-dependent results. In this contribution, the gradient-enhancement of such models is investigated to mitigate the mesh-dependency. First, the mesh-dependency of these local formulations based on the analysis with a modified JH2 model as a representative for these constitutive formulations is demonstrated using a one-dimensional benchmark example. In the benchmark, the width of the damaged zone decreases upon mesh-refinement and the dissipated plastic energy tends to zero. It is further shown that a significantly small safety factor for the critical time step is needed in order to achieve accurate results for the benchmark example. The first investigated gradient-enhancement approach replaces the equivalent local plastic strain with its nonlocal counterpart. The enhancement is based on the inclusion of inertia and damping to the additional Helmholtz equation which enables the use of the central difference method as an explicit solver. This method successfully distributes the damage over several elements, however, the local equivalent plastic strain still localizes into one cell. The inclusion of hardening with respect to the local equivalent plastic strain inhibits the localization and the dissipated plastic energy converges with mesh-refinement. This is further confirmed in a two-dimensional wedge-splitting experiment and a four-point bending test where the damage pattern produced by the local model is mesh-dependent as well and the dissipated plastic energy tends to zero with mesh-refinement. The proposed nonlocal model with hardening results in a consistent damage pattern and the dissipated plastic energy converges. Furthermore, the nonlocal model with hardening is less sensitive to time step refinement, such that computational efficiency can be improved compared to the local model. The numerical experiments are implemented using the free open source tool FEniCSx and have been made available on Zenodo. KW - Gradient plasticity KW - Explicit dynamics KW - JH2 model KW - Concrete modeling KW - FEniCS KW - Mesh convergence KW - Time step convergence PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630453 DO - https://doi.org/10.1016/j.ijimpeng.2024.105209 SN - 1879-3509 VL - 198 SP - 1 EP - 18 PB - Elsevier Ltd. CY - Schweiz AN - OPUS4-63045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sittner, Jonathan A1 - Götze, Jens A1 - Müller, Axel A1 - Renno, Axel D. A1 - Ziegenrücker, René A1 - Pan, Yuanming T1 - Trace element analysis and luminescence behavior of quartz in pegmatites of the Tørdal Region, Norway N2 - This publication presents a study on the mineral chemistry and luminescence properties of quartz samples from pegmatites of the Tørdal region in Norway. A total of 12 samples were analyzed using Secondary Ion Mass Spectrometry (SIMS), Electron Paramagnetic Resonance Spectroscopy (EPR), and Cathodoluminescence (CL) to gain insights into their trace element concentration and distribution as well as their luminescence behavior. The samples are characterized by different Cl emissions at 450 nm, 500 nm 650 nm and an additional shoulder at 390 nm, which is only partially visible due to the absorption of the glass optics. Of these luminescence bands, the 500 nm band is the most dominant in most samples and it is characterized by an initial blue-green luminescence, which is not stable under electron irradiation. Moreover, it is characterized by a heterogeneous distribution within the samples. This luminescence can be mostly assigned to [AlO4/M+]0 defects, with charge compensation mostly achieved by Li+. Analyses by EPR spectroscopy prove the dominance of structurally bound Al, Li, and Ti ions in the investigated samples. Further analyses using SIMS mapping demonstrate that Na and K are mainly bound to micro fractures or inclusions, suggesting a limited role in the compensation of the luminescence centers. Additionally, the SIMS mappings show that some samples contain Al-rich clusters of 10 to 20 µm in diameter, whereas other trace elements are characterized by a homogeneous distribution. These clusters correspond to bright luminescence areas in size and shape and could potentially indicate H+ compensated [AlO4/M+]0 defects. KW - Quartz KW - Trace elements KW - SIMS KW - Cathodoluminescence KW - EPR KW - Tørdal KW - Pegmatite PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612529 DO - https://doi.org/10.1016/j.chemgeo.2024.122427 VL - 670 SP - 1 EP - 15 PB - Elsevier BV AN - OPUS4-61252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz A1 - Jeyifous, Olubunmi Anthony A1 - Schönsee, Eric A1 - Strangfeld, Christoph T1 - An assessment of the repeatability of 3D printed concrete structures N2 - Additive manufacturing of concrete structures, also known as 3D concrete printing, is a technology that received a lot of attention over the past decade due to its financial an ecological advantage as sustainable construction technology. Although several techniques and approaches demonstrate these advantages, quality control during printing is highly challenging and rarely applied and harmonized standards are not existing. Due to the continuous mixing process used in 3D concrete printing, it is impossible to exclude variations in the dry mixture or water content, and a single test sample is insufficient to be representative for the whole structure. A defect in one layer during the printing can affect the entire integrity of the whole structure. This study shows the results of an arch designed as framework structure that was printed multiple times under the same boundary conditions using an extrusion-based 3D concrete printer. Each arch was tested for its mechanical strength and load bearing behavior. The results of the mechanical testing of the printed arches are compared with material data obtained by classical tests and discussed regarding their statistical significance. T2 - Digital Concrete 2024 CY - Munich, Germany DA - 04.09.2024 KW - 3D concrete printing KW - Repeatability KW - Monitoring KW - Process control KW - Quality control PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-611012 DO - https://doi.org/10.24355/dbbs.084-202408150641-0 SP - 1 EP - 9 PB - TU Braunschweig AN - OPUS4-61101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mugani, R. A1 - El Khalloufi, F. A1 - Kasada, M. A1 - Redouane, E. M. A1 - Haida, M. A1 - Aba, R. P. A1 - Essadki, Y. A1 - Zerrifi, S. E. A. A1 - Herter, Sven-Oliver A1 - Hejjaj, A. A1 - Aziz, F. A1 - Ouazzani, N. A1 - Azevedo, J. A1 - Campos, A. A1 - Putschew, A. A1 - Grossart, H.-P. A1 - Mandi, L. A1 - Vasconcelos, V. A1 - Oudra, B. T1 - Monitoring of toxic cyanobacterial blooms in Lalla Takerkoust reservoir by satellite imagery and microcystin transfer to surrounding farms N2 - Cyanobacterial harmful algal blooms (CyanoHABs) threaten public health and freshwater ecosystems worldwide. In this study, our main goal was to explore the dynamics of cyanobacterial blooms and how microcystins (MCs) move from the Lalla Takerkoust reservoir to the nearby farms. We used Landsat imagery, molecular analysis, collecting and analyzing physicochemical data, and assessing toxins using HPLC. Our investigation identified two cyanobacterial species responsible for the blooms: Microcystis sp. and Synechococcus sp. Our Microcystis strain produced three MC variants (MC-RR, MC-YR, and MC-LR), with MC-RR exhibiting the highest concentrations in dissolved and intracellular toxins. In contrast, our Synechococcus strain did not produce any detectable toxins. To validate our Normalized Difference Vegetation Index (NDVI) results, we utilized limnological data, including algal cell counts, and quantified MCs in freeze-dried Microcystis bloom samples collected from the reservoir. Our study revealed patterns and trends in cyanobacterial proliferation in the reservoir over 30 years and presented a historical map of the area of cyanobacterial infestation using the NDVI method. The study found that MC-LR accumulates near the water surface due to the buoyancy of Microcystis. The maximum concentration of MC-LR in the reservoir water was 160 μg/L. In contrast, 4 km downstream of the reservoir, the concentration decreased by a factor of 5.39 to 29.63 μg/L, indicating a decrease in MC-LR concentration with increasing distance from the bloom source. Similarly, the MC-YR concentration decreased by a factor of 2.98 for the same distance. Interestingly, the MC distribution varied with depth, with MC-LR dominating at the water surface and MC-YR at the reservoir outlet at a water depth of 10 m. Our findings highlight the impact of nutrient concentrations, environmental factors, and transfer processes on bloom dynamics and MC distribution. We emphasize the need for effective management strategies to minimize toxin transfer and ensure public health and safety. KW - Cyanotoxin KW - HPLC-MS/MS KW - Surface water PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623672 DO - https://doi.org/10.1016/j.hal.2024.102631 SN - 1568-9883 VL - 135 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-62367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Vibration-based system identification of a large steel box girder bridge N2 - The Bundesanstalt für Materialforschung und -prüfung (BAM) collaborates with TNO to develop a software framework for automated calibration of structural models based on monitoring data. The ultimate goal is to include such models in the asset management process of engineering structures. As a basis for developing the framework, a multi-span road bridge consisting of ten simply supported steel box girders was selected as a test case. Our group measured output-only vibration data from one box girder under ambient conditions. From the data, we determined eigenfrequencies and mode shapes. In parallel, we developed a preliminary structural model of the box girder for the purpose of predicting its modal properties. In this contribution, we provide an overview of the measurement campaign, the operational modal analysis, the structural modeling and qualitatively compare the identified with the predicted modes. As an outlook, we discuss the further steps in the calibration process and future applications of the calibrated model. T2 - XII International Conference on Structural Dynamics (EURODYN 2023) CY - Delft, The Netherlands DA - 02.07.2023 KW - Verkehrsinfrastukturen KW - SHM KW - Model updating KW - System identification KW - Operational modal analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605041 DO - https://doi.org/10.1088/1742-6596/2647/18/182039 SN - 1742-6596 VL - 2647 IS - 18 SP - 1 EP - 9 PB - IOP Publishing CY - Bristol AN - OPUS4-60504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schardt, Annika A1 - Schmitt, Johannes A1 - Engelhard, Carsten T1 - Single particle inductively coupled plasma mass spectrometry with nanosecond time resolution N2 - In this proof-of-principle study, we present our contribution to single particle inductively coupled plasma mass spectrometry (spICP-MS) developments with a novel in-house built data acquisition system with nanosecond time resolution (nanoDAQ) and a matching data processing approach. The new system can continuously sample the secondary electron multiplier (SEM) detector signal and enables the detection of gold nanoparticles (AuNP) as small as 7.5 nm with the commercial single quadrupole ICP-MS instrument used in this study. Recording of the SEM signal by the nanoDAQ is performed with a dwell time of approximately 4 ns. A tailored method was developed to process this type of transient data, which is based on determining the temporal distance between detector events that is denoted as event gap (EG). We found that the inverse logarithm of EG is proportional to the particle size and that the number of detector events corresponding to a particle signal distribution can be used to calibrate and determine the particle number concentration (PNC) of a nanoparticle dispersion. Due to the high data acquisition frequency, a statistically significant number of data points can be obtained in 60 s or less and the main time limitation for analyses is merely the sample uptake time and rinsing step between analyte solutions. At this stage, the data processing method provides average information on complete data sets only and will be adapted to enable particle-by-particle analysis with future hardware/software revision. KW - ICP-MS KW - Nanoparticles KW - Nanosecond time resolution KW - Single particle detection PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612706 DO - https://doi.org/10.1039/d3ja00373f SN - 1364-5544 SN - 0267-9477 VL - 39 IS - 2 SP - 389 EP - 400 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-61270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Morgenthal, Guido ED - Cha, Young-Jin T1 - A Bayesian Probabilistic Framework for Building Models for Structural Health Monitoring of Structures Subject to Environmental Variability N2 - Managing aging engineering structures requires damage identification, capacity reassessment, and prediction of remaining service life. Data from structural health monitoring (SHM) systems can be utilized to detect and characterize potential damage. However, environmental and operational variations impair the identification of damages from SHM data. Motivated by this, we introduce a Bayesian probabilistic framework for building models and identifying damage in monitored structures subject to environmental variability. The novelty of our work lies (a) in explicitly considering the effect of environmental influences and potential structural damages in the modeling to enable more accurate damage identification and (b) in proposing a methodological workflow for model‐based structural health monitoring that leverages model class selection for model building and damage identification. The framework is applied to a progressively damaged reinforced concrete beam subject to temperature variations in a climate chamber. Based on deflections and inclinations measured during diagnostic load tests of the undamaged structure, the most appropriate modeling approach for describing the temperature‐dependent behavior of the undamaged beam is identified. In the damaged state, damage is characterized based on the identified model parameters. The location and extent of the identified damage are consistent with the cracks observed in the laboratory. A numerical study with synthetic data is used to validate the parameter identification. The known true parameters lie within the 90% highest density intervals of the posterior distributions of the model parameters, suggesting that this approach is reliable for parameter identification. Our results indicate that the proposed framework can answer the question of damage identification under environmental variations. These findings show a way forward in integrating SHM data into the management of infrastructures. KW - Verkehrsinfrastukturen KW - SHM KW - Model Updating KW - Environmental and Operational Variability KW - Damage Identification KW - Model Building PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605027 DO - https://doi.org/10.1155/2024/4204316 SN - 1545-2255 VL - 2024 IS - 1 SP - 1 EP - 23 PB - Wiley AN - OPUS4-60502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herrmann, Ralf A1 - Ramasetti, Eshwar Kumar A1 - Degener, Sebastian A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A living lab for Structural Health Monitoring at the Nibelungen Bridge Worms for Transfer Learning of Structural Dynamics N2 - The Nibelungen Bridge in Worms, Germany has been selected as a national demonstration structure for advanced non-destructive testing (NDT) and structural health monitoring concepts to extend the lifetime of civil structures and to optimize O&M actions. Parts of the research that involves this bridge as a demonstrator belong to the focus area program SPP100+. In this program, the bridges SHM System has been extended and combined with an additional setup of vibration sensors. The used digital smart sensor with pre-processing functions, the arrangement of the sensors at the structure and additional edge computing capability allows the investigation of transfer learning and other methods directly into the real structure. The living lab with seven triaxial accelerometers can be reconfigured in real-time and adjusted to the needs of AI models for classification. The comparison with the existing conventional SHM sensors has been made possible by hardware synchronization to the existing SHM System and collocating sensors at similar positions, so that a hardware exchange can be an investigated use-case for the transfer learning. During idle times, the system collects vibration data like a conventional SHM system. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam DA - 10.06.2024 KW - Nibelungen Bridge KW - Living Lab KW - Transfer Learning KW - Transfer Structures KW - Modal Analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612810 UR - https://www.ndt.net/search/docs.php3?id=29853 DO - https://doi.org/10.58286/29853 SN - 1435-4934 VL - 29 IS - 7 SP - 1 EP - 8 PB - NDT.net GmbH & Co. KG CY - Mayen AN - OPUS4-61281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Baeßler, Matthias ED - Rogge, Andreas ED - Meng, Birgit T1 - Temperatureinfluss auf Strukturmonitoring – Aktuelle Versuche N2 - Strukturmonitoring kann wertvolle Daten für die Zustandsbewertung und Schadensdetektion von Infrastrukturbauwerken liefern. Umgebungsbedingungen wie die Temperatur beeinflussen die Bauwerke und somit die Messdaten jedoch erheblich. Um Methoden für den Umgang mit Temperatureinflüssen zu entwickeln, wurden an der BAM Versuche an Stahlbeton- und Asphaltbalken unter kontrollierten Temperaturen von -40 °C bis 60 °C und definierten Schädigungen durchgeführt. Die Daten ermöglichen die Erforschung und Validierung neuer, auch unter Temperatureinfluss zuverlässiger Methoden des Strukturmonitorings. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Strukturmonitoring KW - Temperatureinfluss KW - Infrastrukturbauwerke KW - Stahlbeton- und Asphaltbalken PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613289 SN - 978-3-9818564-7-7 SP - 294 EP - 302 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61328 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramasetti, Eshwar Kumar A1 - Herrmann, Ralf A1 - Degener, Sebastian A1 - Baeßler, Matthias T1 - Development of generic AI models to predict the movement of vehicles on bridges N2 - For civil, mechanical, and aerospace structures to extend operation times and to remain in service, structural health monitoring (SHM) is vital. SHM is a method to examining and monitoring the dynamic behavior of essential constructions. Because of its versatility in detecting unfavorable structural changes and enhancing structural dependability and life cycle management, it has been extensively used in many engineering domains, especially in civil bridges. Due to the recent technical developments in sensors, high-speed internet, and cloud computing, data-driven approaches to structural health monitoring are gaining appeal. Since artificial intelligence (AI), especially in SHM, was introduced into civil engineering, these modern and promising methods have attracted significant research attention. In this work, a large dataset of acceleration time series using digital sensors was collected by installing a structural health monitoring (SHM) system on Nibelungen Bridge located in Worms, Germany. In this paper, a deep learning model is developed for accurate classification of different types of vehicle movement on the bridge from the data obtained from accelerometers. The neural network is trained with key features extracted from the acceleration dataset and classification accuracy of 98 % was achieved. KW - Structural Health Monitoring KW - Artifical Intelligence KW - Machine Learning KW - Nibelungen Bridge PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-620289 DO - https://doi.org/10.1016/j.prostr.2024.09.307 VL - 64 SP - 557 EP - 564 PB - Elsevier B.V. AN - OPUS4-62028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asna Ashari, Parsa A1 - Oh, Hyochan A1 - Koch, Claudia T1 - Pathways to the hydrogen economy: A multidimensional analysis of the technological innovation systems of Germany and South Korea N2 - The global trend towards decarbonization and the demand for energy security have put hydrogen energy into the spotlight of industry, politics, and societies. Numerous governments worldwide are adopting policies and strategies to facilitate the transition towards hydrogen-based economies. To assess the determinants of such transition, this study presents a comparative analysis of the technological innovation systems (TISs) for hydrogen technologies in Germany and South Korea, both recognized as global frontrunners in advancing and implementing hydrogen-based solutions. By providing a multidimensional assessment of pathways to the hydrogen economy, our analysis introduces two novel and crucial elements to the TIS analysis: (i) We integrate the concept of ‘quality infrastructure’ given the relevance of safety and quality assurance for technology adoption and social acceptance, and (ii) we emphasize the social perspective within the hydrogen TIS. To this end, we conducted 24 semi-structured expert interviews, applying qualitative open coding to analyze the data. Our results indicate that the hydrogen TISs in both countries have undergone significant developments across various dimensions. However, several barriers still hinder the further realization of a hydrogen economy. Based on our findings, we propose policy implications that can facilitate informed policy decisions for a successful hydrogen transition. KW - Hydrogen economy KW - Technological innovation system KW - Quality infrastructure KW - Multidimensional technology adoption KW - Social acceptance PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593312 DO - https://doi.org/10.1016/j.ijhydene.2023.08.286 IS - Volume 49, Part D SP - 405 EP - 421 PB - Elsevier AN - OPUS4-59331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Swaminathan, Srinivasan A1 - Kumar, S. A1 - Kranzmann, Axel A1 - Hesse, Rene A1 - Goldbeck, Hennig A1 - Fantin, Andrea T1 - Corrosion characteristics of 316L stainless steel in oxide-rich molten solar salt at 600◦C N2 - An attempt has been made in this work, to observe the influence on alloy aging by the sodium oxide (Na2O) in solar salt (60 wt% NaNO3 + 40 wt% KNO3). The accelerated aging was established by adding Na2O (0.005, 0.07, 0.135 and 0.2 wt%) to the solar salt and their effect on corrosion of 316L stainless steel (SS) at 600 ◦C in that oxide-rich solar salts for 168 h in synthetic air was investigated. Corrosion is significantly more in oxide-rich solar salt compared to pure solar salt. Strikingly, the oxide scale-base metal interface is wavy in solar salt containing 0.005 % Na2O clearly shows the oxide addition to salt melt influences Cr-rich inner oxide layer formation and its selective dissolution at early stage that leads to non-uniform corrosion. Interestingly, with increase of Na2O to 0.07 %, steel corrosion proceeded uniformly by accelerated disintegration of Cr-rich inner layer and subsequent dissolution. Severe scale spallation and weight loss in nitrate melt containing 0.2 % Na2O fostering more rapid corrosion, alarming that substantial tolerance of oxide content in solar salt is ≥ 0.135 % for an acceptable corrosion of 316L SS. Despite preferential dissolution of Cr and scale degradation/spallation with increased oxide content in solar salt, the corrosion layer in all cases comprised of sodium ferrite, and Cr-rich Cr-Fe mixed oxides with the Ni enrichment at the scale-metal interface. Competing processes between oxide scale growth, degradation and dissolution or even spallation has been discussed with an emphasis of Na2O addition to solar salt. KW - Molten salt corrosion KW - Solar salt KW - Thermal energy storage KW - Stainless steel KW - Concentrating solar power PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610819 DO - https://doi.org/10.1016/j.solmat.2024.113176 VL - 278 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-61081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimiaei, E. A1 - Farooq, M. A1 - Szymoniak, Paulina A1 - Ahmadi, Shayan A1 - Babaeipour, S. A1 - Schönhals, Andreas A1 - Österberg, M. T1 - The role of lignin as interfacial compatibilizer in designing lignocellulosic-polyester composite films N2 - Advancing nanocomposites requires a deep understanding and careful design of nanoscale interfaces, as interfacial interactions and adhesion significantly influence the physical and mechanical properties of these materials. This study demonstrates the effectiveness of lignin nanoparticles (LNPs) as interfacial compatibilizer between hydrophilic cellulose nanofibrils (CNF) and a hydrophobic polyester, polycaprolactone (PCL). In this context, we conducted a detailed analysis of surface-to-bulk interactions in both wet and dry conditions using advanced techniques such as quartz crystal microbalance with dissipation (QCM-D), atomic force microscopy (AFM), water contact angle (WCA) measurements, broadband dielectric spectroscopy (BDS), and inverse gas chromatography (IGC). QCM-D was employed to quantify the adsorption behavior of LNPs on CNF and PCL surfaces, demonstrating LNPs’ capability to interact with both hydrophilic and hydrophobic phases, thereby enhancing composite material properties. LNPs showed extensive adsorption on a CNF model film (1186 ± 178 ng.cm−2) and a lower but still significant adsorption on a PCL model film (270 ± 64 ng.cm−2). In contrast, CNF adsorption on a PCL model film was the lowest, with a sensed mass of only 136 ± 35 ng.cm−2. These findings were further supported by comparing the morphology and wettability of the films before and after adsorption, using AFM and WCA analyses. Then, to gain insights into the molecular-level interactions and molecular mobility within the composite in dry state, BDS was employed. The BDS results showed that LNPs improved the dispersion of PCL within the CNF network. To further investigate the impact of LNPs on the composites’ interfacial properties, IGC was employed. This analysis showed that the composite films containing LNPs exhibited lower surface energy compared to those composed of only CNF and PCL. The presence of LNPs likely reduced the availability of surface hydroxyl groups, thus modifying the physicochemical properties of the interface. These changes were particularly evident in the heterogeneity of the surface energy profile, indicating that LNPs significantly altered the interfacial characteristics of the composite materials. Overall, these findings emphasize the necessity to control the interfaces between components for next-generation nanocomposite materials across diverse applications. KW - Lignin KW - Nanocomposites PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-615098 DO - https://doi.org/10.1016/j.jcis.2024.10.083 SN - 0021-9797 VL - 679 SP - 263 EP - 275 PB - Elsevier Inc. AN - OPUS4-61509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauhoff, Christian A1 - Degener, Sebastian A1 - Bolender, Artjom A1 - Liehr, Alexander A1 - Hübner, Leoni A1 - Frenck, Johanna-Maria A1 - Molotnikov, Andrey A1 - Niendorf, Thomas T1 - In Situ Synchrotron Diffraction Assessment of Reversibility of the Martensitic Transformation in Single-Crystalline Co–Ni–Ga Shape Memory Alloy Under Torsion N2 - AbstractHeusler-type Co–Ni–Ga shape memory alloys attracted significant attention due to their excellent functional properties in single-crystalline state under both compressive and tensile loading. The present study investigates the superelastic deformation behavior under torsion. Using a newly installed torsion testing setup, in situ synchrotron diffraction was carried out on single-crystalline material in order to investigate the martensitic phase transformation. Incremental deformation experiments reveal a fully reversible martensitic transformation under torsional loading at room temperature, leading to excellent strain recovery after deformation to 6.5% shear strain. Furthermore, relevant aspects towards the analysis of powder diffraction data obtained for single-crystalline material in transmission mode under torsional loading are presented and critically discussed. KW - Shape memory alloy KW - Pseudoelasticity KW - Martensitic transformation KW - Synchrotron diffraction KW - In situ testing KW - Torsion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621872 DO - https://doi.org/10.1007/s40830-024-00496-8 VL - 10 SP - 326 EP - 333 PB - Springer Science and Business Media LLC AN - OPUS4-62187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Runze A1 - Sur, Debashish A1 - Li, Kangming A1 - Witt, Julia A1 - Black, Robert A1 - Whittingham, Alexander A1 - Scully, John R. A1 - Hattrick-Simpers, Jason T1 - Bayesian assessment of commonly used equivalent circuit models for corrosion analysis in electrochemical impedance spectroscopy N2 - Electrochemical Impedance Spectroscopy (EIS) is a crucial technique for assessing corrosion of metallic materials. The analysis of EIS hinges on the selection of an appropriate equivalent circuit model (ECM) that accurately characterizes the system under study. In this work, we systematically examined the applicability of three commonly used ECMs across several typical material degradation scenarios. By applying Bayesian Inference to simulated corrosion EIS data, we assessed the suitability of these ECMs under different corrosion conditions and identified regions where the EIS data lacks sufficient information to statistically substantiate the ECM structure. Additionally, we posit that the traditional approach to EIS analysis, which often requires measurements to very low frequencies, might not be always necessary to correctly model the appropriate ECM. Our study assesses the impact of omitting data from low to medium-frequency ranges on inference results and reveals that a significant portion of low-frequency measurements can be excluded without substantially compromising the accuracy of extracting system parameters. Further, we propose simple checks to the posterior distributions of the ECM components and posterior predictions, which can be used to quantitatively evaluate the suitability of a particular ECM and the minimum frequency required to be measured. This framework points to a pathway for expediting EIS acquisition by intelligently reducing low-frequency data collection and permitting on-the-fly EIS measurements. KW - Electrochemical Impedance Spectroscopy (EIS) KW - MAPz@BAM KW - Bayesian Inference KW - Corrosion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623392 DO - https://doi.org/10.1038/s41529-024-00537-8 VL - 8 SP - 120 PB - Springer Materials AN - OPUS4-62339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brockmann, N. A1 - Sicken, A. A1 - Krüger, Jörg T1 - Effects of laser cleaning on the condition of different silk model samples using varying wavelengths and pulse durations N2 - The cleaning of aged silk fibers poses a common challenge in the conservation of textiles, since traditional cleaning techniques often yield unsatisfactory results or even harm objects. In this regard, cleaning objects with laser radiation is a promising addition to the range of available methods. Due to it being contactless, even brittle and touch-sensitive objects with disfiguring or harmful soiling could potentially be cleaned and therefore made accessible for research and presentation. Examples of treatment have sometimes shown spectacular results. Still there is some skepticism concerning the safety of this treatment for textile materials, which has been strengthened through previous 532 nm wavelength nanosecond laser cleaning studies on silk fibers. Taking these published results into account, the range of examined laser parameters has been extended in this study, from 532 nm nanosecond laser to 1064 nm nanosecond and even 800 nm femtosecond laser, reevaluating the effect of this treatment on the fibers. The physicochemical processes taking place on the silk fibers when cleaning with lasers are complex and still not fully understood. The aim of this project was therefore to bring more clarification about potential effects of those processes on the condition of silk samples treated with a set of different parameters for wavelength, pulse duration, energy density and number of pulses per spot. It also looks at the influence of the presence of soiling on the results. The analysis of potential effects was then carried out using statistical methods and advanced analytics. Scanning electron microscopy, Fourier-transform infrared spectroscopy and colorimetry technology provided the required insights to better assess the effects. Results show that laser cleaning of silk fibers, like most other conventional cleaning techniques, is not completely without risk, but knowing what the possible effects are helps making decisions on whether the benefits of the technique used justify these risks. KW - Laser cleaning KW - Cultural heritage KW - Conservation KW - Silk PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594601 DO - https://doi.org/10.1186/s40494-024-01152-1 SN - 2050-7445 VL - 12 IS - 1 SP - 1 EP - 15 PB - Springer AN - OPUS4-59460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Was, G.S. A1 - Bahn, C.-B. A1 - Busby, J. A1 - Cui, B. A1 - Farkas, D. A1 - Gussev, M. A1 - Rigen He, M. A1 - Hesterberg, J. A1 - Jiao, Z. A1 - Johnson, D. A1 - Kuang, W. A1 - McMurtrey, M. A1 - Robertson, I. A1 - Sinjlawi, A. A1 - Song, M. A1 - Stephenson, K. A1 - Sun, K. A1 - Swaminathan, Srinivasan A1 - Wang, M. A1 - West, E. T1 - How irradiation promotes intergranular stress corrosion crack initiation N2 - Irradiation assisted stress corrosion cracking (IASCC) is a form of intergranular stress corrosion cracking that occurs in irradiated austenitic alloys. It requires an irradiated microstructure along with high temperature water and stress. The process is ubiquitous in that it occurs in a wide range of austenitic alloys and water chemistries, but only when the alloy is irradiated. Despite evidence of this degradation mode that dates back to the 1960s, the mechanism by which it occurs has remained elusive. Here, using high resolution electron backscattering detection to analyze local stress-strain states, high resolution transmission electron microscopy to identify grain boundary phases at crack tips, and decoupling the roles of stress and grain boundary oxidation, we are able to unfold the complexities of the phenomenon to reveal the mechanism by which IASCC occurs. The significance of the findings impacts the mechanical integrity of core components of both current and advanced nuclear reactor designs worldwide. KW - Irradiation KW - Stress corrosion cracking KW - Grain boundaries KW - Oxidation KW - Austenitic alloys PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595748 DO - https://doi.org/10.1016/j.pmatsci.2024.101255 SN - 0079-6425 VL - 143 SP - 1 EP - 15 PB - Elsevier AN - OPUS4-59574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Minenkov, Alexey A1 - Hollweger, Sophia A1 - Duchoslav, Jiri A1 - Erdene-Ochir, Otgonbayar A1 - Weise, Matthias A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Schiek, Manuela T1 - Monitoring the Electrochemical Failure of Indium Tin Oxide Electrodes via Operando Ellipsometry Complemented by Electron Microscopy and Spectroscopy N2 - Transparent conductive oxides such as indium tin oxide (ITO) are standards for thin film electrodes, providing a synergy of high optical transparency and electrical conductivity. In an electrolytic environment, the determination of an inert electrochemical potential window is crucial to maintain a stable material performance during device operation. We introduce operando ellipsometry, combining cyclic voltammetry (CV) with spectroscopic ellipsometry, as a versatile tool to monitor the evolution of both complete optical (i.e., complex refractive index) and electrical properties under wet electrochemical operational conditions. In particular, we trace the degradation of ITO electrodes caused by electrochemical reduction in a pH-neutral, water-based electrolyte environment during electrochemical cycling. With the onset of hydrogen evolution at negative bias voltages, indium and tin are irreversibly reduced to the metallic state, causing an advancing darkening, i.e., a gradual loss of transparency, with every CV cycle, while the conductivity is mostly conserved over multiple CV cycles. Post-operando analysis reveals the reductive (loss of oxygen) formation of metallic nanodroplets on the surface. The reductive disruption of the ITO electrode happens at the solid–liquid interface and proceeds gradually from the surface to the bottom of the layer, which is evidenced by cross-sectional transmission electron microscopy imaging and complemented by energy-dispersive X-ray spectroscopy mapping. As long as a continuous part of the ITO layer remains at the bottom, the conductivity is largely retained, allowing repeated CV cycling. We consider operando ellipsometry a sensitive and nondestructive tool to monitor early stage material and property changes, either by tracing failure points, controlling intentional processes, or for sensing purposes, making it suitable for various research fields involving solid–liquid interfaces and electrochemical activity. KW - General Materials Science PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597625 DO - https://doi.org/10.1021/acsami.3c17923 SN - 1944-8252 VL - 16 IS - 7 SP - 9517 EP - 9531 PB - American Chemical Society (ACS) AN - OPUS4-59762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knapic, D. A1 - Mardare, A. I. A1 - Voss, Heike A1 - Bonse, Jörn A1 - Hassel, A. W. T1 - Corrosion study of picosecond-laser structured and anodized Ti6Al4V for bone screws N2 - A corrosion study is performed on six variations of titanium grade 5 (Ti6Al4V) samples. Samples are prepared in different conditions by variation of preanodization, postanodization, and picosecond-laser (ps-laser) surface treatment, while polished and anodized samples serve as reference. Microcones and nanosized periodic surface features are successfully produced on Ti6Al4V samples. The morphology and topography of the structures are visualized by scanning electron microscopy and white light interference microscopy. Furthermore, the relative electrochemically active surface area (ECSA) is determined for the ps-laser-treated samples. It is determined that the preanodized and laser-treated sample has 3.5 times larger ECSA than a polished sample, and that the laser-treated sample has 4.1 times larger area. Moreover, Tafel analysis is performed to determine the corrosion properties of the samples. It is shown that the corrosion resistance improves for both laser-structured samples after the anodization. To further study the surface of the samples, electrochemical impedance spectroscopy measurements are conducted. The study indicates that the ps-laser-treated and anodized Ti6Al4V is suitable to be used for the fabrication of bone screws and plates due to its improved corrosion resistance as compared to nonanodized samples. KW - Laser-induced periodic surface structures (LIPSS) KW - Anodization KW - Bone screws KW - Implant material KW - Titanium alloys PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597890 DO - https://doi.org/10.1002/pssa.202300609 SN - 1862-6319 VL - 221 SP - 1 EP - 8 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-59789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nawaz, Q. A1 - Blaeß, Carsten A1 - Mueller, Ralf A1 - Boccaccini, A.R. T1 - Processing and cytocompatibility of Cu-doped and undoped fluoride-containing bioactive glasses N2 - Sintered or additive-manufactured bioactive glass (BG) scaffolds are highly interesting for bone replacement applications. However, crystallization often limits the high-temperature processability of bioactive glasses (BGs). Thus, the BG composition must combine high bioactivity and processability. In this study, three BGs with nominal molar (%) compositions 54.6SiO2-1.7P2O3-22.1CaO-6.0Na2O-7.9K2O-7.7MgO (13–93), 44.8SiO2-2.5P2O3-36.5CaO-6.6Na2O-6.6K2O-3.0CaF2 (F3) and 44.8SiO2-2.5P2O3-35.5CaO-6.6Na2O-6.6K2O-3.0CaF2-1.0CuO (F3–Cu) were investigated. The dissolution and ion release kinetics were investigated on milled glass powder and crystallized particles (500–600 μm). All glasses showed the precipitation of hydroxyapatite (HAp) crystals after 7 days of immersion in simulated body fluid. No significant differences in ion release from glass and crystalline samples were detected. The influence of surface roughness on cytocompatibility and growth of preosteoblast cells (MC3T3-E1) was investigated on sintered and polished BG pellets. Results showed that sintered BG pellets were cytocompatible, and cells were seen to be well attached and spread on the surface after 5 days of incubation. The results showed an inverse relation of cell viability with the surface roughness of pellets, and cells were seen to attach and spread along the direction of scratches. KW - Bioactive glass KW - Crystallization KW - Solubility KW - Cytocompatibility KW - Surface roughness PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598257 DO - https://doi.org/10.1016/j.oceram.2024.100586 SN - 2666-5395 VL - 18 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-59825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Falkenhagen, Jana A1 - Wachtendorf, Volker A1 - Brüll, Robert A1 - Simon, Franz-Georg T1 - Investigation on the Durability of a Polypropylene Geotextile under Artificial Aging Scenarios N2 - Geosynthetics are widely used in various civil engineering applications, such as geotextiles in coastal protection, and display a sustainable alternative to natural mineral materials. However, the full benefits of using geosynthetics can only be gained with a long service lifetime of the products. With the use of added stabilizers to the polymers, service lifetimes can be achieved in the range of 100 years. Therefore, accelerated aging methods are needed for the assessment of the long-term performance of geotextiles. In the present study, the behavior of geosynthetic materials made of polypropylene was investigated under artificial aging conditions involving elevated temperatures ranging from 30 to 80 °C, increased oxygen pressures ranging from 10 to 50 bar in water-filled autoclaves, and UV irradiation under atmospheric conditions. ATR-IR spectroscopy was employed to detect the increase in the carbonyl index over various aging durations, indicating the oxidative degradation of the geotextile. The most pronounced increase was observed in the case of aging through UV irradiation, followed by thermal aging. Elevated pressure, on the other hand, had a lower impact on oxidation. High-temperature size exclusion chromatography was utilized to follow the reduction in molar mass under different degradation conditions, and the results were consistent with those obtained from ATR-IR spectroscopy. In polyolefins such as polypropylene, Hindered Amine Stabilizers (HAS) are used to suppress oxidation caused by UV radiation. The quantitative analysis of HAS was carried out using a UV/Vis method and HPLC. The degradation of UV stabilizers during the aging of geotextiles is responsible for the oxidation and the reduction in the molar mass of polypropylene. From the results, it can be concluded that applications of PP geotextile without soil or sand cover might cause the risk of the formation of microplastic particles. Material selection, design, and maintenance of the construction must follow best practices, including the system’s removal or replacement at end-of-life. Otherwise, a sustainable use of geotextiles in civil engineering is not possible. KW - Geotextiles KW - Microplastic KW - Size exclusion chromatography KW - Accelerated aging PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599739 DO - https://doi.org/10.3390/su16093559 SN - 2071-1050 VL - 16 IS - 9 SP - 1 EP - 15 PB - MDPI AG CY - Basel AN - OPUS4-59973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Schilling, Markus A1 - von Hartrott, Philipp A1 - Waitelonis, Jörg T1 - Semantic integration of diverse data in materials science: Assessing Orowan strengthening N2 - AbstractThis study applies Semantic Web technologies to advance Materials Science and Engineering (MSE) through the integration of diverse datasets. Focusing on a 2000 series age-hardenable aluminum alloy, we correlate mechanical and microstructural properties derived from tensile tests and dark-field transmission electron microscopy across varied aging times. An expandable knowledge graph, constructed using the Tensile Test and Precipitate Geometry Ontologies aligned with the PMD Core Ontology, facilitates this integration. This approach adheres to FAIR principles and enables sophisticated analysis via SPARQL queries, revealing correlations consistent with the Orowan mechanism. The study highlights the potential of semantic data integration in MSE, offering a new approach for data-centric research and enhanced analytical capabilities. KW - Semantic Interoperability KW - Knowledge Graph KW - Orowan Mechanism KW - Aluminum Alloy Aging KW - Ontology KW - Semantic Data Integration PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599780 DO - https://doi.org/10.1038/s41597-024-03169-4 VL - 11 IS - 1 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-59978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ratkovac, Mirjana A1 - Gerards-Wünsche, Paul A1 - Thiele, Marc A1 - Brackrock, Daniel A1 - Stamm, Michael T1 - Detection and monitoring of the fatigue crack growth on welds – Application-oriented use of NDT methods N2 - Early detection of fatigue cracks and accurate measurements of the crack growth play an important role in the maintenance and repair strategies of steel structures exposed to cyclic loads during their service life. Observation of welded connections is especially of high relevance due to their higher susceptibility to fatigue damage. The aim of this contribution was to monitor fatigue crack growth in thick welded specimens during fatigue tests as holistically as possible, by implementing multiple NDT methods simultaneously in order to record the crack initiation and propagation until the final fracture. In addition to well-known methods such as strain gauges, thermography, and ultrasound, the crack luminescence method developed at the Bundesanstalt für Materialforschung und -prüfung (BAM), which makes cracks on the surface particularly visible, was also used. For data acquisition, a first data fusion concept was developed and applied in order to synchronize the data of the different methods and to evaluate them to a large extent automatically. The resulting database can ultimately also be used to access, view, and analyze the experimental data for various NDT methods. During the conducted fatigue tests, the simultaneous measurements of the same cracking process enabled a comprehensive comparison of the methods, highlighting their individual strengths and limitations. More importantly, they showed how a synergetic combination of different NDT methods can be beneficial for implementation in large-scale fatigue testing but also in monitoring and inspection programs of in-service structures - such as the support structures of offshore wind turbines. T2 - Fatigue Design 2023 (FatDes 2023) CY - Senlis, France DA - 29.11.2023 KW - Fatigue KW - Welded KW - NDT KW - Crack growth PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600238 DO - https://doi.org/10.1016/j.prostr.2024.03.062 VL - 57 SP - 560 EP - 568 PB - Elsevier B.V. AN - OPUS4-60023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Z. A1 - Raab, A. A1 - Kolmangadi, Mohamed Aejaz A1 - Busch, M. A1 - Grunwald, M. A1 - Demel, F. A1 - Bertram, F. A1 - Kityk, A. V. A1 - Schönhals, Andreas A1 - Laschat, S. A1 - Huber, P. T1 - Self-Assembly of Ionic Superdiscs in Nanopores N2 - Discotic ionic liquid crystals (DILCs) consist of self-assembled superdiscs of cations and anions that spontaneously stack in linear columns with high one-dimensional ionic and electronic charge mobility, making them prominent model systems for functional soft matter. Compared to classical nonionic discotic liquid crystals, many liquid crystalline structures with a combination of electronic and ionic conductivity have been reported, which are of interest for separation membranes, artificial ion/proton conducting membranes, and optoelectronics. Unfortunately, a homogeneous alignment of the DILCs on the macroscale is often not achievable, which significantly limits the applicability of DILCs. Infiltration into nanoporous solid scaffolds can, in principle, overcome this drawback. However, due to the experimental challenges to scrutinize liquid crystalline order in extreme spatial confinement, little is known about the structures of DILCs in nanopores. Here, we present temperaturedependent high-resolution optical birefringence measurement and 3D reciprocal space mapping based on synchrotron X-ray scattering to investigate the thermotropic phase behavior of dopamine-based ionic liquid crystals confined in cylindrical channels of 180 nm diameter in macroscopic anodic aluminum oxide membranes. As a function of the membranes’ hydrophilicity and thus the molecular anchoring to the pore walls (edge-on or face-on) and the variation of the hydrophilic−hydrophobic balance between the aromatic cores and the alkyl side chain motifs of the superdiscs by tailored chemical synthesis, we find a particularly rich phase behavior, which is not present in the bulk state. It is governed by a complex interplay of liquid crystalline elastic energies (bending and splay deformations), polar interactions, and pure geometric confinement and includes textural transitions between radial and axial alignment of the columns with respect to the long nanochannel axis. Furthermore, confinement-induced continuous order formation is observed in contrast to discontinuous first-order phase transitions, which can be quantitatively described by Landau-de Gennes free energy models for liquid crystalline order transitions in confinement. Our observations suggest that the infiltration of DILCs into nanoporous solids allows tailoring their nanoscale texture and ion channel formation and thus their electrical and optical functionalities over an even wider range than in the bulk state in a homogeneous manner on the centimeter scale as controlled by the monolithic nanoporous scaffolds. KW - Ionic Liquid Crystals KW - Nanopropous materials KW - Landau de-Gennes analysis KW - X-ray scattering KW - Optical birefringence PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600797 DO - https://doi.org/10.1021/acsnano.4c01062 SN - 1936-0851 VL - 18 IS - 22 SP - 14414 EP - 14426 PB - ACS AN - OPUS4-60079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grundmann, Jana A1 - Bodermann, Bernd A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Klapetek, Petr A1 - Rafighdoost, Jila A1 - Pereira, Silvania F. T1 - Optical and tactile measurements on SiC sample defects N2 - Abstract. In power electronics, compound semiconductors with large bandgaps, like silicon carbide (SiC), are increasingly being used as material instead of silicon. They have a lot of advantages over silicon but are also intolerant of nanoscale material defects, so that a defect inspection with high accuracy is needed. The different defect types on SiC samples are measured with various measurement methods, including optical and tactile methods. The defect types investigated include carrots, particles, polytype inclusions and threading dislocations, and they are analysed with imaging ellipsometry, coherent Fourier scatterometry (CFS), white light interference microscopy (WLIM) and atomic force microscopy (AFM). These different measurement methods are used to investigate which method is most sensitive for which type of defect to be able to use the measurement methods more effectively. It is important to be able to identify the defects to classify them as critical or non-critical for the functionality of the end product. Once these investigations have been completed, the measurement systems can be optimally distributed to the relevant defects in further work to realize a hybrid analysis of the defects. In addition to the identification and classification of defects, such a future hybrid analysis could also include characterizations, e.g. further evaluation of ellipsometric data by using numerical simulations. KW - Compound semiconductors KW - Hybrid metrology KW - Material defects KW - Spectroscopic ellipsometry KW - Scanning probe microscopy KW - White-light interference microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601220 DO - https://doi.org/10.5194/jsss-13-109-2024 SN - 2194-878X VL - 13 IS - 1 SP - 109 EP - 121 PB - Copernicus Publ. CY - Göttingen AN - OPUS4-60122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hashemi, Seyedreza A1 - Zscherpel, Uwe T1 - Measurement of Focal Spots of X-ray Tubes Using a CT Reconstruction Approach on Edge Images of Large Holes and Comparison to Pinhole Imaging N2 - The first Non-destructive testing (NDT) method which evolved in the industrial age was radiographic testing (RT). Among all NDT methods, RT is no exception, so there are still many issues for optimizations even today. One of them is the measurement of the focal spot of X-ray tubes. The size of the focal spot is critical for imaging, because it determines the spatial resolution in the X-ray image. The classical way to evaluate focal spots of X-ray tubes is by pinhole imaging using a camera obscura. But this method has a natural lower limit, which is defined by the diameter of the pinhole used (today min. 10 µm). Therefore, focal spot sizes lower than 50 µm diameter cannot be imaged and measured correctly. An alternative approach, which permits this, was investigated here using the edge unsharpness of holes much larger than the focal spot size. The results of both methods were compared using 3 different X-ray tubes. KW - Reconstruction method KW - Radiographic testing (RT) using X-rays KW - Focal spot measurement KW - Edge unsharpness KW - X-ray tubes KW - Pinhole imaging KW - Computed Tomography (CT) KW - Focal Spot (FS) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608646 DO - https://doi.org/10.58286/29556 SN - 2941-4989 SP - 1 EP - 9 PB - NDT.net CY - Berlin, Germany AN - OPUS4-60864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - da Costa, P. F. G. M. A1 - Merízio, L. G. A1 - Wolff, N. A1 - Terraschke, H. A1 - de Camargo, Andrea Simone Stucchi T1 - Real-time monitoring of CdTe quantum dots growth in aqueous solution N2 - Quantum dots (QDs) are remarkable semiconductor nanoparticles, whose optical properties are strongly size-dependent. Therefore, the real-time monitoring of crystal growth pathway during synthesis gives an excellent opportunity to a smart design of the QDs luminescence. In this work, we present a new approach for monitoring the formation of QDs in aqueous solution up to 90 °C, through in situ luminescence analysis, using CdTe as a model system. This technique allows a detailed examination of the evolution of their light emission. In contrast to in situ absorbance analysis, the in situ luminescence measurements in reflection geometry are particularly advantageous once they are not hindered by the concentration increase of the colloidal suspension. The synthesized particles were additionally characterized using X-ray diffraction analysis, transition electron microscopy, UV-Vis absorption and infrared spectroscopy. The infrared spectra showed that 3-mercaptopropionic acid (MPA)-based thiols are covalently bound on the surface of QDs and microscopy revealed the formation of CdS. Setting a total of 3 h of reaction time, for instance, the QDs synthesized at 70, 80 and 90 °C exhibit emission maxima centered at 550, 600 and 655 nm. The in situ monitoring approach opens doors for a more precise achievement of the desired emission wavelength of QDs. KW - CdTe quantum dots KW - In situ synthesis KW - Real time growth control PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603596 DO - https://doi.org/10.1038/s41598-024-57810-8 SN - 2045-2322 VL - 14 IS - 1 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-60359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Fengchan A1 - Oiticica, Pedro Ramon Almeida A1 - Abad-Arredondo, Jaime A1 - Arai, Marylyn Setsuko A1 - Oliveira, Osvaldo N. A1 - Jaque, Daniel A1 - Fernandez Dominguez, Antonio I. A1 - de Camargo, Andrea Simone Stucchi A1 - Haro-González, Patricia T1 - Brownian Motion Governs the Plasmonic Enhancement of Colloidal Upconverting Nanoparticles N2 - Upconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization. This study employs optical tweezers for the three-dimensional manipulation of an individual upconverting nanoparticle, enabling the exploration of plasmon-enhanced upconversion luminescence in water. Contrary to expectation, experiments reveal a long-range (micrometer scale) and moderate (20%) enhancement in upconversion luminescence due to the plasmonic resonances of gold nanostructures. Comparison between experiments and numerical simulations evidences the key role of Brownian motion. It is demonstrated how the three-dimensional Brownian fluctuations of the upconverting nanoparticle lead to an “average effect” that explains the magnitude and spatial extension of luminescence enhancement. KW - Upconversion KW - Plasmon enhancement KW - Optical tweezers KW - Brownian motion KW - Nanoparticles PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603551 DO - https://doi.org/10.1021/acs.nanolett.4c00379 VL - 24 IS - 12 SP - 3785 EP - 3792 PB - American Chemical Society (ACS) AN - OPUS4-60355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Held, Mathias A1 - Bulling, Jannis A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Determination of isotropic elastic constants from dispersion images based on ultrasonic guided waves by using neural networks N2 - This article presents a method to use the dispersive behavior of ultrasonic guided waves and neural networks to determine the isotropic elastic constants of plate-like structures through dispersion images. Therefore, two different architectures are compared: one using convolutions and transfer learning based on the EfficientNetB7 and a Vision Transformer-like approach. To accomplish this, simulated and measured dispersion images are generated, where the first is applied to design, train, and validate and the second to test the neural networks. During the training of the neural networks, distinct data augmentation layers are employed to introduce artifacts appearing in measurement data into the simulated data. The neural networks can extrapolate from simulated to measured data using these layers. The trained neural networks are assessed using dispersion images from seven known material samples. Multiple variations of the measured dispersion images are tested to guarantee the prediction stability. The study demonstrates that neural networks can learn to predict the isotropic elastic constants from measured dispersion images using only simulated dispersion images for training and validation without needing an initial guess or manual feature extraction, independent of the measurement setup. Furthermore, the suitability of the different architectures for generating information from dispersion images in general is discussed. KW - Ultrasonic guided waves KW - Dispersion KW - Elastic constants KW - Neural networks KW - Image processing KW - Vision transformer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607090 DO - https://doi.org/10.1016/j.ultras.2024.107403 SN - 0041-624X VL - 143 SP - 1 EP - 48 PB - Elsevier B.V. AN - OPUS4-60709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulrich, A. S. A1 - Kasatikov, S. A1 - König, T. A1 - Fantin, Andrea A1 - Margraf, J. T. A1 - Galetz, M. C. T1 - Decreased Metal Dusting Resistance of Ni-Cu Alloys by Fe and Mn Additions N2 - Ni-Cu alloys are promising for application at temperatures between 400–900 °C and reducing atmospheres with high C-contents. Typically, under such conditions, metallic materials in contact with the C-rich atmosphere are degraded by a mechanism called metal dusting (MD). Ni-Cu-alloys do not form protective oxide scales, but their resistance is attributed to Cu, which catalytically inhibits the C-deposition on the surface. Adding other alloying elements, such as Mn or Fe, was found to enhance the MD attack of Ni-Cu alloys again. In this study, the effect of the Mn and Fe is divided into two affected areas: the surface and the bulk. The MD attack on binary Ni-Cu alloys, model alloys with Fe and Mn additions, and commercial Monel Alloy 400 is experimentally demonstrated. The surface electronic structure causing the adsorption and dissociation of C-containing molecules is investigated for model alloys. Analytical methods such as scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, electron probe microanalysis combined with wavelength-dispersive X-ray spectroscopy, X-ray diffraction analysis, and near-edge X-ray absorption fine structure measurements were used. The results are correlated to CALPHAD calculations and atomistic simulations combining density functional theory calculations and machine learning. It is found that the Cu content plays a significant role in the surface reaction. The effect of Mn and Fe is mainly attributed to oxide formation. A mechanism explaining the enhanced attack by adding both Fe and Mn is proposed. KW - Metal Dusting KW - XANES PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608226 DO - https://doi.org/10.1007/s11085-024-10263-w SN - 2731-8397 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-60822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Ahamadi, Shayan A1 - Hülagü, Deniz A1 - Hidde, Gundula A1 - Hertwig, Andreas A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Investigations of the adsorbed layer of polysulfone: Influence of the thickness of the adsorbed layer on the glass transition of thin films N2 - This work studies the influence of the adsorbed layer on the glass transition of thin films of polysulfone. Therefore, the growth kinetics of the irreversibly adsorbed layer of polysulfone on silicon substrates was first investigated using the solvent leaching approach, and the thickness of the remaining layer was measured with atomic force microscopy. Annealing conditions before leaching were varied in temperature and time (0–336 h). The growth kinetics showed three distinct regions: a pre-growth step where it was assumed that phenyl rings align parallel to the substrate at the shortest annealing times, a linear growth region, and a crossover from linear to logarithmic growth observed at higher temperatures for the longest annealing times. No signs of desorption were observed, pointing to the formation of a strongly adsorbed layer. Second, the glass transition of thin polysulfone films was studied in dependence on the film thickness using spectroscopic ellipsometry. Three annealing conditions were compared: two with only a tightly bound layer formed in the linear growth regime and one with both tightly bound and loosely adsorbed layers formed in the logarithmic growth regime. The onset thickness and increase in the glass transition temperature increases with annealing time and temperature. These differences were attributed to the distinct conformations of the formed adsorbed layers. KW - Glass transition KW - Adsorbed Layer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607701 DO - https://doi.org/10.1063/5.0223415 SN - 0021-9606 VL - 161 IS - 5 SP - 1 EP - 12 PB - AIP Publishing AN - OPUS4-60770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andrés Arcones, Daniel A1 - Weiser, M. A1 - Koutsourelakis, P.-S. A1 - Unger, Jörg F. T1 - Model bias identification for Bayesian calibration of stochastic digital twins of bridges N2 - Simulation-based digital twins must provide accurate, robust, and reliable digital representations of their physical counterparts. Therefore, quantifying the uncertainty in their predictions plays a key role in making better-informed decisions that impact the actual system. The update of the simulation model based on data must then be carefully implemented. When applied to complex structures such as bridges, discrepancies between the computational model and the real system appear as model bias, which hinders the trustworthiness of the digital twin and increases its uncertainty. Classical Bayesian updating approaches aimed at inferring the model parameters often fail to compensate for such model bias, leading to overconfident and unreliable predictions. In this paper, two alternative model bias identification approaches are evaluated in the context of their applicability to digital twins of bridges. A modularized version of Kennedy and O'Hagan's approach and another one based on Orthogonal Gaussian Processes are compared with the classical Bayesian inference framework in a set of representative benchmarks. Additionally, two novel extensions are proposed for these models: the inclusion of noise-aware kernels and the introduction of additional variables not present in the computational model through the bias term. The integration of these approaches into the digital twin corrects the predictions, quantifies their uncertainty, estimates noise from unknown physical sources of error, and provides further insight into the system by including additional pre-existing information without modifying the computational model. KW - Gaussian process KW - KOH KW - Bayesian updating KW - Digital twins KW - Uncertainty quantification PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-615519 DO - https://doi.org/10.1002/asmb.2897 SN - 1526-4025 N1 - This work was supported by “C07 - Data driven model adaptation for identifying stochastic digital twins of bridges” from the Priority Program (SPP) 2388/1 “Hundred plus” of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) - Project number 501811638. VL - 417 IS - 3 SP - 1 EP - 26 PB - Wiley CY - Chichester AN - OPUS4-61551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reuter, T. A1 - Wohlgemuth, F. A1 - Bellon, Carsten A1 - Hausotte, T. T1 - Measurement-based Detector Characteristics for Digital Twins in aRTist 2 N2 - Various software products for the simulation of industrial X-ray radiography have been developed in recent years (e.g., aRTist 2, CIVA CT, Scorpius XLab, SimCT, Wilcore) and their application potential has been shown in numerous works. However, full systematic approaches to characterise a specific CT system for these simulation software products to obtain a truthful digital twin are still missing. In this contribution, we want to present two approaches to obtain realistic grey values in X-ray projections in aRTist 2 simulations based on measured projections. In aRTist 2, the displayed grey value of a pixel is based on the energy density incident on that pixel. The energy density is calculated based on the X-ray tube spectrum, the attenuation between source and detector as well as an energy-dependent sensitivity curve of the detector. The first approach presented in this contribution uses the sensitivity curve as a free modelling parameter. We measured the signal response at different thicknesses of Al EN-AW6082 at different tube voltages (i.e., different tube spectra). We then regarded the grey values displayed by these projections as a data regression respectively an optimisation problem and obtained the sensitivity curve that is best able to reproduce the measured behaviour in aRTist 2. The resulting sensitivity curve does not necessarily hold physical meaning but is able to simulate the real system behaviour in the simulation software. The second approach presented in this contribution is to estimate the sensitivity curve based on assumptions about the characteristics of the scintillation detector (e.g., scintillator material, scintillator thickness and signal processing characteristics). For this approach, a linear response function (linear relationship between the deposited energy per pixel and the resulting grey value) is assumed. If the detector characteristics, which affect the simulated deposited energy, are properly modelled, the slope and offset of the response function to match the measured grey values should be the same for different tube spectra. As the offset is constant and given by the grey values measured at no incident radiation, the slope is the remaining parameter to evaluate the success of the detector modelling. We therefore adapted the detector characteristics by changing the detector setup until the slope was nearly the same for all measured tube spectra. We are aware that the resulting parameters of the scintillator material and thickness might not be the real ones, but with those modelling parameters we are able to simulate realistic grey values in aRTist 2. Both of those approaches could potentially be a step forward to a full systematic approach for a digital twin of a real CT system in aRTist 2. T2 - 20th World Conference on Non-Destructive Testing (WCNDT 2024) CY - Incheon, South Korea DA - 27.05.2024 KW - Digital Twin KW - Computed Tomography KW - Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602046 DO - https://doi.org/10.58286/29910 SP - 1 EP - 10 PB - NDT.net CY - Mayen, Germany AN - OPUS4-60204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam T1 - On the physical processes of mechanochemically induced transformations in molecular solids N2 - Initiating or sustaining physical and chemical transformations with mechanical force – mechanochemistry – provides an opportunity for more sustainable chemical processes, and access to new chemical reactivity. KW - Molecular solids KW - Transformation KW - Destabilisation KW - Instabilities KW - Common phenomenon PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621755 DO - https://doi.org/10.1039/d4cc04062g IS - 99 SP - 1 EP - 12 PB - Royal Society of Chemistry (RSC) AN - OPUS4-62175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Casali, Lucia A1 - Carta, Maria A1 - Michalchuk, Adam A1 - Delogu, Francesco A1 - Emmerling, Franziska T1 - Kinetics of the mechanically induced ibuprofen–nicotinamide co-crystal formation by in situ X-ray diffraction N2 - Mechanochemistry is drawing attention from the pharmaceutical industry given its potential for sustainable material synthesis and manufacture. Scaling mechanochemical processes to industrial level remains a challenge due to an incomplete understanding of their underlying mechanisms. We here show how time-resolved in situ powder X-ray diffraction data, coupled with analytical kinetic modelling, provides a powerful approach to gain mechanistic insight into mechanochemical reactions. By using the ibuprofen–nicotinamide co-crystal mechanosynthesis as a benchmark system, we investigate the behaviour of the solids involved and identify the factors that promote the reaction. As mechanochemical mechanisms become increasingly clear, it promises to become a breakthrough in the industrial preparation of advanced pharmaceuticals. KW - Mechanochemistry KW - Kinetics PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608820 DO - https://doi.org/10.1039/D4CP01457J SN - 1463-9084 VL - 26 SP - 22041 EP - 22048 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Sommerfeld, Thomas A1 - Riedel, Maren A1 - Leube, Peter A1 - Kalbe, Ute A1 - Schoknecht, Ute A1 - Simon, Franz-Georg T1 - Per- and Polyfluoroalkyl Substances (PFAS) in Ski Waxes and Snow from Cross-Country Skiing in Germany - Comparative study of Sum Parameter and Target Analysis N2 - Per- and polyfluoroalkyl substances (PFAS) are often environmentally exposed via discharge through human consumer products, such as ski waxes. In our study we analyzed various ski waxes from the 1980s and 2020s, to determine both the sum parameter values total fluorine (TF), extractable organically bound fluorine (EOF), hydrolysable organically bound fluorine (HOF) as well as targeted PFAS analysis. This showed that modern high-performance waxes contain up to 6 % TF, but also PFAS-free labelled ski waxes contain traces of PFAS with EOF/HOF values in the low mg kg-1 range. With the ban of all fluorine-based waxes with the start of the 2023/2024 winter season this will probably change soon. Moreover, we applied our analysis methods to snow samples from a frequently used cross country ski trail (Kammloipe) in the Ore Mountain region in Germany, assessing the potential PFAS entry/discharge through ski waxes. Melted snow samples from different spots were analyzed by the adsorbable organically bound fluorine (AOF) sum parameter and PFAS target analysis and confirmed the abrasion of the ski waxes into the snow. Moreover, on a PFAS hotspot also soil samples were analyzed, which indicate that PFAS from the ski waxes adsorb after snow melting into the soil. KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Consumer Products PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612760 DO - https://doi.org/10.1016/j.hazadv.2024.100484 VL - 16 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-61276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roesch, Philipp A1 - Schinnen, Andrea A1 - Riedel, Maren A1 - Sommerfeld, Thomas A1 - Sawal, G. A1 - Bandow, N. A1 - Vogel, Christian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Investigation of pH-dependent extraction methods for PFAS in (fluoropolymer-based) consumer products: A comparative study between targeted and sum parameter analysis N2 - Here, we report a comparative study of different sum parameter analysis methods for the extraction of per- and polyfluoroalkyl substances (PFAS) from manufactured consumer products, which can be measured by combustion ion chromatography (CIC). Therefore, a hydrolysis-based extraction method was further developed, which accounts for the addition of hydrolyzable covalently bound polyfluoroalkylated side-chain polymers (SFPs) to the extractable organic fluorine portion of the mass balance proposed as "hydrolyzable organically bound fluorine" (HOF). To test this hypothesis, the method was applied to 39 different consumer products containing fluoropolymers or monomeric PFAS taken from four different categories: outdoor textiles, paper packaging, carpeting, and permanent baking sheets. We also evaluated the method's efficiency by extracting four synthesized fluorotelomer polyacrylate reference compounds. The total fluorine (TF) and extractable organically bound fluorine (EOF) values were measured through CIC using established protocols. The TF values ranged from sub-ppb to %-levels, depending on the compound class. All samples showed results for hydrolyzed organofluorine (HOF) between 0.03 and 76.3 μg/g, while most EOF values were lower (