TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Rapid solidification during welding of duplex stainless steels – in situ measurement of the chemical concentration by Laser-Induced Breakdown Spectroscopy (LIBS) N2 - Duplex stainless steels (DSS) are frequently used, especially in applications requiring high strength combined with high corrosion resistance in aggressive media. Examples include power plant components and maritime structures. During welding of these steels, local variations in chemical composition can occur. This results in ferritization of the material and negatively affects the mechanical properties of the components. In this work, tungsten inert gas (TIG) welding experiments were performed with DSS. Chemical composition analysis was realized in situ by using Laser Induced Breakdown Spectroscopy (LIBS). The aim of the work is to quantitatively measure the chemical composition in the weld seam of various DSS and to identify possible influences of welding parameters on the microstructure of the material. The chemical concentrations of the main alloying elements Cr, Ni, Mn on the surface of the sample during the welding process and the cooling process were measured. Mn and Ni are austenite stabilizers and their content increases during welding by using certain high alloyed filler material. Spectra were recorded every 1.3 s at a spacing of approximately 2 mm. During the cooling process the location of the measurement was not changed. The LIBS method is proofed to be suitable for the quantitative representation of the chemical compositions during the welding process. T2 - ICASP-6 CY - Le Bischenberg, France DA - 20.06.2022 KW - LIBS KW - In situ measurement KW - Duplex stainless steel KW - TIG welding KW - Evaporation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571308 DO - https://doi.org/10.1088/1757-899X/1274/1/012018 VL - 1274 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-57130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Stolpe, Heiko A1 - Wiehle, Philipp T1 - Moisture diffusion affected by the Knudsen effect in temporal changing pore networks N2 - Almost all building materials in civil engineering have an open porosity and interact with or are affected by the environmental conditions. Structures might suffer from effects such as moisture adsorption, carbonation, corrosion, penetration of salt ions and chemical substances, etc. In the hygroscopic range, these processes are mostly driven by diffusion. Due to the confinement of small pores (< 1 µm), the Knudsen effect reduces the molecular diffusion. This reduction can become more significant in case of temporal changing pore systems because of physisorption of water vapor, carbonation, or chemisorption. In this study, unstabilised earth blocks and earth masonry are investigated. In a first step, the pore size distribution of the blocks is measured and sorption isotherms are recorded in experiments. Besides the ordinary physisorption, the involved clay minerals undergo swelling or shrinking due to chemisorption. The following two effects must be considered: first, the reduction of the available pore space by the adsorbed water layer. For this, the Hillerborg sorption theory is used, which is a combination of the well-known Brunauer-Emmett-Teller sorption theory and the Kelvin equation. This allows the computation of adsorbed water layers even in curved pore geometries. Second, the variation of the initial pore size distribution due to chemisorption needs to be modelled. Based on these two models, the effective diffusion coefficient can be predicted. For validation, arrays of relative humidity sensors were embedded into a free-standing earth masonry wall. This monitoring was carried out over more than a year to have a broad variety of environmental conditions and was located in Berlin, Germany. The prediction of the effective diffusion coefficient can also be transferred to other processes and allows the investigation of materials having temporarily changing pore systems. Examples are the carbonation of cementitious materials, alkali silica reaction, calcium leaching of long-lasting structures, etc. This effect becomes most prominent in the meso-pore range and might alter the effective diffusion coefficient by more than 100 %. T2 - 4th International Congress on Materials & Structural Stability CY - Rabat, Morocco DA - 08.03.2023 KW - Earth masonry KW - Material moisture KW - Molecular diffusion KW - Chemisoprtion KW - Knudsen effect KW - Physisorption PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571391 SP - 1 EP - 8 PB - RILEM CY - Champs-sur-Marne AN - OPUS4-57139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sauermoser-Yri, M. A1 - Veldurthi, N. A1 - Wölfle, C. H. A1 - Svartvatn, P. J. A1 - Flo Hoem, S. O. A1 - Lid, M. J. A1 - Bock, Robert A1 - Palko, J. A1 - Torgersen, J. T1 - On the porosity-dependent permeability and conductivity of triply periodic minimal surface based porous media N2 - With the fast development in the field of additive manufacturing, triply periodic minimal surface (TPMS) based porous media have recently found many uses in mechanical property tuning. However, there is still a lack of understanding in their porosity-dependent permeability and electrical as well as thermal conductivity. Here, we perform finite volume simulations on the solid and void domains of the Schoen gyroid (SG), Schwarz primitive (SP) and Schwarz primitive beam (SPB) TPMS with porosities between 63% and 88% in Ansys Fluent. A simple cubic lattice (CL) of equivalent porosity served as reference. The SPB and CL showed up to one order of magnitude higher permeabilities than the SG and SP. However, SG and SP have about 1.3 and 2.6 times the electrical and thermal conductivity of SPB and CL, respectively. Furthermore, the properties of SPB and CL are largely affected by the surface area density, whereas tortuosity variation does not impact permeability and conductivity to a major extent. Finally, empirical relations are adapted to describe the presented data and thus, they may enable future designers of TPMS based porous structures to fine-tune the geometries according to the requirements on permeability and electrical as well as thermal conductivity. KW - Metals and Alloys KW - Surfaces, Coatings and Films KW - Biomaterials KW - Ceramics and Composites PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585250 DO - https://doi.org/10.1016/j.jmrt.2023.09.242 SN - 2238-7854 VL - 27 SP - 585 EP - 599 PB - Elsevier B.V. AN - OPUS4-58525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abel, Andreas A1 - Rosalie, Julian M. A1 - Reinsch, Stefan A1 - Zapala, Pawel A1 - Michels, Heiner A1 - Skrotzki, Birgit T1 - Influence of Mo and B additions in intermetallic near-Fe3Al alloys on microstructure and mechanical properties N2 - Iron aluminides, already reported in the late 19th century, did not cease to attract the interest of scientists and engineers ever since. Besides good oxidation resistance, low density and resource availability, potentials for hightemperature strengths that compete with high-alloy steels were unlocked by low alloy contents. Still, research on alloy design continues, as alloying usually comes at the price of brittleness in low-temperature regimes. A potential candidate is the quinary Fe–Al–Mo–Ti–B system which is strengthened by solid solution and eutectic borides. It was shown to have good strength and outstanding creep resistance under compressive loading up to elevated temperatures. Although the individual effect of alloy additions is well understood in iron aluminides, little is known about the combined effects of alloying concentrations on microstructure, phase stability and mechanical properties. Therefore a systematic study of two Ti-doped near-Fe3Al alloys with varying contents of Mo (2–4 at.%) and B (0.5–1 at.%) was conducted. In total eight different alloys were fabricated by investment casting into ceramic shell molds. Alloys were characterized and compared by grain size, phase transitions, microstructure evolution as well as elemental compositions and volume fractions of phases. For mechanical characterization, macrohardness and microhardness tests as well as tensile tests at ambient and high tempera tures were conducted. Independent of alloy additions, alloys with 24–25 at.% Al exhibit superior proof strength due to a higher matrix hardness. Decreasing B content generally decreases strength by lower secondary phase fractions which contribute via particle hardening. Reducing Mo content decreases both the solute concentration in the matrix and secondary phase fractions. Surprisingly, strength is similar or even superior to alloys with higher Mo content. Strength relations are discussed with a focus on solid-solution hardening theory and other competing strengthening mechanisms. KW - Materials Chemistry KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials KW - General Chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585284 DO - https://doi.org/10.1016/j.intermet.2023.108074 VL - 163 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-58528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nourinejhad Zarghani, Shaheen A1 - Ehlers, Jens A1 - Monavari, Mehran A1 - von Bargen, Susanne A1 - Hamacher, Joachim A1 - Büttner, Carmen A1 - Bandte, Martina T1 - Applicability of Different Methods for Quantifying Virucidal Efficacy Using MENNO Florades and Tomato Brown Rugose Fruit Virus as an Example N2 - After entry of a quarantine/regulated pathogen, infected plants shall be destroyed, and the cultivated area (e.g., greenhouse) shall be disinfected. Therefore, the selection of an effective disinfectant plays an important role. With the availability of different methods for virus quantification, we investigated the application of quantitative ELISA (qELISA), RT-qPCR (reverse transcription-quantitative polymerase chain reaction), and bioassays for the quantification of disinfectant efficacy. Therefore, we estimated the titer reduction in tomato brown rugose fruit virus (ToBRFV), a regulated pathogen, in plant sap and on germ carriers after treatment with MENNO Florades 4% for 16 h. The virus load before and after the treatment was measured with the mentioned methods. The RT-qPCR and qELISA methods showed very low efficacy in the presence of the disinfectant. Although bioassays are time-consuming, need purified particles for establishing the quantification models, and are less sensitive than RT-qPCR, they were able to quantify the differences in virus titer in the presence/absence of disinfectant. Interestingly, the bioassays reached at least the lower limit sensitivity of a qELISA. By being less sensitive to the presence of the disinfectant, bioassays proved to be the only technique for the determination of the disinfectant efficacy against ToBRFV on different germ carriers as well as on virus-infected plant sap. KW - Plant Science KW - Ecology KW - Evolution KW - Behavior and Systematics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585497 DO - https://doi.org/10.3390/plants12040894 VL - 12 IS - 4 SP - 1 EP - 18 PB - MDPI AG AN - OPUS4-58549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Bednarz, Marius A1 - Braun, Ulrike A1 - Bannick, Claus Gerhard A1 - Ricking, Mathias A1 - Altmann, Korinna T1 - A promising approach to monitor microplastic masses in composts N2 - Inputs of plastic impurities into the environment via the application of fertilizers are regulated in Germany and the EU by means of ordinances. Robust and fast analytical methods are the basis of legal regulations. Currently, only macro- and large microplastic contents (>1 mm) are measured. Microplastics (1–1,000 µm), are not yet monitored. Thermal analytical methods are suitable for this purpose, which can determine the mass content and can also be operated fully automatically in routine mode. Thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) allows the identification of polymers and the determination of mass contents in solid samples from natural environments. In accordance with the German or European Commission (EC) Fertiliser Ordinance, composting plants should be monitored for microplastic particles with this method in the future. In this context a compost plant was sampled. At the end of the rotting process, the compost was sieved and separated in a coarse (>1 mm) and a fine fraction (<1 mm). The fine fraction was processed using density separation comparing NaCl and NaI as possible salt alternative and screened for microplastic masses by TED-GC/MS with additional validation and quality assurance experiments. With TED-GC/MS total microplastics mass contents of 1.1–3.0 μg/mg in finished compost could be detected with polyethylene mainly. What differs much to the total mass of plastics in the coarse fraction with up to 60 μg/mg, which were visually searched, identified via ATR-FTIR and gravimetrically weighted. KW - Microplastics KW - TED-GC/MS KW - Compost KW - Monitoring KW - Soil PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586688 DO - https://doi.org/10.3389/fenvc.2023.1281558 SN - 2673-4486 VL - 4 SP - 1 EP - 12 PB - Frontiers Media CY - Lausanne AN - OPUS4-58668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hering, Marcus A1 - Sievers, Jürgen A1 - Curbach, Manfred A1 - Beckmann, Birgit T1 - An Approach to Predicting the Ballistic Limit of Thin Textile-Reinforced Concrete Plates Based on Experimental Results N2 - In this article, a partial selection of experiments on enhancing the impact resistance of structural components with non-metallic, textile-reinforced concrete is discussed. The focus is on the experimental investigations in which the impact resistance of thin, textile-reinforced concrete plates is characterized. The article discusses the materials, fabrics and test setup used. For the experimental work, a drop tower from the Otto Mohr Laboratory, which belongs to the Technische Universtät Dresden, was used. Furthermore, the experimental results are presented and evaluated using different methods. Based on the collected data, a suitable approach to determining the perforation velocity of an impactor through the investigated thin, textile-reinforced concrete plates is shown. KW - Building and Construction KW - Civil and Structural Engineering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586692 DO - https://doi.org/10.3390/buildings13092234 VL - 13 IS - 9 SP - 1 EP - 14 PB - MDPI AN - OPUS4-58669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drexler, A.-K. A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Hodžić, E. A1 - Pastore, S. A1 - Domitner, J. A1 - Rhode, Michael A1 - Sommitsch, C. A1 - Böllinghaus, Thomas T1 - Effect of Tensile Loading and Temperature on the Hydrogen Solubility of Steels at High Gas Pressure N2 - The hydrogen solubility in ferritic and martensitic steels is affected by hydrostatic stress, pressure, and temperature. In general, compressive stresses decrease but tensile stresses increase the hydrogen solubility. This important aspect must be considered when qualifying materials for high‐pressure hydrogen applications (e.g., for pipelines or tanks) by using autoclave systems. In this work, a pressure equivalent for compensating the effect of compressive stresses on the hydrogen solubility inside of closed autoclaves is proposed to achieve solubilities that are equivalent to those in pipelines and tanks subjected to tensile stresses. Moreover, it is shown that the temperature effect becomes critical at low temperatures (e.g., under cryogenic conditions for storing liquid hydrogen). Trapping of hydrogen in the microstructure can increase the hydrogen solubility with decreasing temperature, having a solubility minimum at about room temperature. To demonstrate this effect, the generalized law of the hydrogen solubility is parameterized for different steels using measured contents of gaseous hydrogen. The constant parameter sets are verified and critically discussed with respect to the high‐pressure hydrogen experiments. KW - Hydrogen KW - Solubility KW - Temperature KW - Tensile loading KW - Analytical calculation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586701 DO - https://doi.org/10.1002/srin.202300493 SN - 1611-3683 SP - 1 EP - 9 PB - Wiley AN - OPUS4-58670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pienkoß, Fabian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Nassmechanische Aufbereitung von Bauschutt‐Brechsand mit der Setztechnik – ein Schritt auf dem Weg zum Ersatzbaustoff T1 - Wet-Mechanical Processing of Crushed-Sand from Construction-Waste - A First Step Towards a Circular Building Material N2 - Das Recycling von gemischten Baustoffen führt neben der Herstellung von Gesteinskörnungen parallel zu einem stärker schadstoffbelasteten Stoffstrom, der circa ein Drittel der ursprünglichen Masse ausmacht. Dieser sogenannte Brechsand endet derzeit in der Deponierung und wird somit der Kreislaufwirtschaft entzogen. Der vorliegende Beitrag untersucht nun die Aufbereitung dieses Materials unter Verwendung einer Setzmaschine im Pilotmaßstab. Hierbei wird die Eignung dieser Technik evaluiert und das Aufbereitungsprodukt als möglicher Ersatzbaustoff untersucht. N2 - Besides the generation of aggregates, recycling of mixed construction and demolition waste leads to a more polluted side stream accounting for up to one third of the input materials. This so-called crushed sand often ends up in landfills and is hence lost for a circular economy. This article reports about the processing of this material using a pilot plant jig. The suitability of jigging technology is evaluated, and the product is analyzed as possible circular building material. KW - Aufbereitung KW - Ersatzbaustoff KW - Kreislaufwirtschaft KW - Setzmaschine KW - Umweltverträglichkeit PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585978 DO - https://doi.org/10.1002/cite.202300019 SN - 0009-286X VL - 95 IS - 12 SP - 1916 EP - 1924 PB - Wiley VHC-Verlag AN - OPUS4-58597 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ginés-Palomares, Juan Carlos A1 - Fateri, Miranda A1 - Kalhöfer, Eckhard A1 - Schubert, Tim A1 - Meyer, Lena A1 - Kolsch, Nico A1 - Brandic Lipinska, Monica A1 - Davenport, Robert A1 - Imhof, Barbara A1 - Waclavicek, René A1 - Sperl, Matthias A1 - Makaya, Advenit A1 - Günster, Jens T1 - Laser melting manufacturing of large elements of lunar regolith simulant for paving on the Moon N2 - The next steps for the expansion of the human presence in the solar system will be taken on the Moon. However, due to the low lunar gravity, the suspended dust generated when lunar rovers move across the lunar soil is a significant risk for lunar missions as it can affect the systems of the exploration vehicles. One solution to mitigate this problem is the construction of roads and landing pads on the Moon. In addition, to increase the sustainability of future lunar missions, in-situ resource utilization (ISRU) techniques must be developed. In this paper, the use of concentrated light for paving on the Moon by melting the lunar regolith is investigated. As a substitute of the concentrated sunlight, a high-power CO2 laser is used in the experiments. With this set-up, a maximum laser spot diameter of 100 mm can be achieved, which translates in high thicknesses of the consolidated layers. Furthermore, the lunar regolith simulant EAC-1A is used as a substitute of the actual lunar soil. At the end of the study, large samples (approximately 250 × 250 mm) with interlocking capabilities were fabricated by melting the lunar simulant with the laser directly on the powder bed. Large areas of lunar soil can be covered with these samples and serve as roads and landing pads, decreasing the propagation of lunar dust. These manufactured samples were analysed regarding their ineralogical composition, internal structure and mechanical properties. KW - Regolith KW - ISRU KW - Moon KW - Laser KW - Additive manufacturing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585985 DO - https://doi.org/10.1038/s41598-023-42008-1 SN - 2045-2322 VL - 13 SP - 1 EP - 10 PB - Springer AN - OPUS4-58598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The dynamic train-track interaction on a bridge and in a tunnel compared with the simultaneous vehicle, track, and ground vibration measurements at a surface line N2 - The vehicle–track interaction generates forces and consequently vibrations in the environment. The interaction has been analysed by the simultaneous measurements of vehicle, track and ground vibrations during test runs with varied train speeds. The special effects of the passage over a bridge and through a tunnel are studied and compared with the measurements on a conventional ballasted surface line. The maximum amplitudes, narrow band and one-third octave band spectra are presented for the axle-box accelerations and for the track, bridge and ground vibrations. The different frequencies and frequency bands are related to wheel out-of-roundness, track alignment errors, the sleeper passage and the wheelset–track resonance. An axle impulse component has been observed at the track, at the near-field soil and as a scattered version in the far field. Specific results can be found for the bridge track, where clearly speed-dependent bridge resonances occur due to the axle sequence of the train, and for the tunnel track where soft rail pads are responsible for a strong amplification around the wheelset–track resonance. On the other hand, the axle impulses are strongly reduced by the tunnel track, and the scattered axle impulse component is not as relevant as for the surface track. As a consequence, a strong mid-frequency amplitude reduction of the tunnel compared to the surface line has been measured for low and high train speeds by the Federal Institute of Material Research and Testing (BAM) and by other institutes. KW - Vehicle–track interaction KW - Ground vibration KW - Tunnel-to-surface reduction KW - Bridge resonance KW - Axle sequence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585139 DO - https://doi.org/10.3390/app131910992 VL - 13 IS - 19 SP - 1 EP - 23 PB - MDPI CY - Basel, Schweiz AN - OPUS4-58513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprachmann, J. A1 - Grabicki, N. A1 - Möckel, Anna A1 - Maltitz, J. A1 - del Refugio Monroy Gómez, J. A1 - Smales, Glen Jacob A1 - Dumele, O. T1 - Substituted Benzophenone Imines for COF Synthesis via Formal Transimination N2 - Covalent organic frameworks (COFs) are a prominent class of organic materials constructed from versatile building blocks via reversible reactions. The quality of imine-linked COFs can be improved by using amine monomers protected with benzophenone forming benzophenone imines. Here, we present a study on substituted benzophenones in COF synthesis via formal transimination. 12 para-substituted N-aryl benzophenone imines, with a range of electron-rich to electron-poor substituents, were prepared and their hydrolysis kinetics were studied spectroscopically. All substituted benzophenone imines can be employed in COF synthesis and lead to COFs with high crystallinity and high porosity. The substituents act innocent to COF formation as the substituted benzophenones are cleaved off. Imines can be tailored to their synthetic demands and utilized in COF formation. This concept can make access to previously unattainable, synthetically complex COF monomers feasible. KW - Materials Chemistry KW - Metals and Alloys KW - Surfaces, Coatings and Films KW - General Chemistry KW - Ceramics and Composites KW - Electronic, Optical and Magnetic Materials KW - Catalysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586449 DO - https://doi.org/10.1039/D3CC03735E SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - On the limitations of small cubes as test coupons for process parameter optimization in laser powder bed fusion of metals N2 - The capability to produce complexly and individually shaped metallic parts is one of the main advantages of the laser powder bed fusion (PBF LB/M) process. Development of material and machine specific process parameters is commonly based on results acquired from small cubic test coupons of about 10 mm edge length. Such cubes are usually used to conduct an optimization of process parameters to produce dense material. The parameters are then taken as the basis for the manufacturing of real part geometries. However, complex geometries go along with complex thermal histories during the manufacturing process, which can significantly differ from thermal conditions prevalent during the production of simply shaped test coupons. This may lead to unexpected and unpredicted local inhomogeneities of the microstructure and defect distribution in the final part and it is a root cause of reservations against the use of additive manufacturing for the production of safety relevant parts. In this study, the influence of changing thermal conditions on the resulting melt pool depth of 316L stainless steel specimens is demonstrated. A variation of thermo-graphically measured intrinsic preheating temperatures was triggered by an alteration of inter layer times and a variation of cross section areas of specimens for three distinct sets of process parameters. Correlations between the preheating temperature, the melt pool depth, and occurring defects were analyzed. The limited expressiveness of the results of small density cubes is revealed throughout the systematic investigation. Finally, a clear recommendation to consider thermal conditions in future process parameter optimizations is given. T2 - Icaleo 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Representative specimens KW - Thermography PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586558 DO - https://doi.org/10.2351/7.0001080 SN - 1042-346X VL - 35 IS - 4 SP - 1 EP - 10 AN - OPUS4-58655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jamro, R. A1 - Mente, Tobias A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Al-Falahat, Ala'A. M. A1 - Woracek, R. A1 - Manke, I. A1 - Griesche, Axel T1 - Temperature distribution during welding measured by neutron imaging N2 - This study was carried out to investigate the neutron transmission signal as a function of sample temperature during a welding process. A theoretical description that includes the Debye-Waller factor was used to describe the temperature influence on the neutron crosssections. Neutron imaging using a monochromatic beam helps to observe transmission variations related to the material temperature. In-situ neutron imaging of welding experiments show the distribution of the temperature in bulk steel samples. The performed finite element modelling of expected temperature distributions shows good agreement with the obtained experimental data. KW - Neutron imaging KW - Debye-Waller-Faktor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586268 DO - https://doi.org/10.1088/1742-6596/2605/1/012026 VL - 2605 SP - 1 EP - 10 PB - IOP Publishing Ltd. AN - OPUS4-58626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, Jana A1 - Taubert, Andreas A1 - Thünemann, Andreas T1 - Synthesis and Characterization of Ultra‐Small Gold Nanoparticles in the Ionic Liquid 1‐Ethyl‐3‐methylimidazolium Dicyanamide, [Emim][DCA] N2 - AbstractWe report on gold clusters with around 62 gold atoms and a diameter of 1.15±0.10 nm. Dispersions of the clusters are long‐term stable for two years at ambient conditions. The synthesis was performed by mixing tetrachloroauric acid (HAuCl4 ⋅ 3 H2O) with the ionic liquid 1‐ethyl‐3‐methylimidazolium dicyanamide ([Emim][DCA]) at temperatures of 20 to 80 °C. Characterization was performed with small‐angle X‐ray scattering (SAXS), UV‐Vis spectroscopy, and MALDI‐TOF mass spectrometry. A three‐stage model is proposed for the formation of the clusters, in which cluster growth from gold nuclei takes place according to the Lifshitz‐Slyozov‐Wagner (LSW) model followed by oriented attachment to form colloidal stable clusters. KW - Reference materials KW - SAXS KW - Gold KW - Nanoparticle KW - Small-angle X-ray scattering KW - Ionic liquid PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588203 DO - https://doi.org/10.1002/open.202300106 SN - 2191-1363 VL - 44 SP - 1 EP - 19 PB - Wiley AN - OPUS4-58820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pérez Blanes, H. A1 - Ghiasi, Pouria A1 - Sandkühler, J. A1 - Yesilcicek, Yasemin A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Prinz, Carsten A1 - Al-Sabbagh, Dominik A1 - Thünemann, Andreas A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - High CO2 reduction activity on AlCrCoCuFeNi multi-principal element alloy nanoparticle electrocatalysts prepared by means of pulsed laser ablation N2 - Noble metal-free nanoparticles (NPs) based on multi-principal element alloys (MPEAs) were synthesized using a one-step pulsed laser ablation in liquids (PLALs) method for the electrochemical reduction of CO2. Laser ablation was performed in pure water or poly-(diallyldimethylammonium chloride) (PDADMAC)-containing an aqueous solution of Al8Cr17Co17Cu8Fe17Ni33 MPEA targets. Transmission electron microscopy (TEM) measurements combined with energy dispersive X-ray (EDX) mapping were used to characterize the structure and composition of the laser-generated MPEA nanoparticles (MPEA-NPs). These results confirmed the presence of a characteristic elemental distribution of a core-shell phase structure as the predominant NP species. The electrocatalytic performance of the laser-generated MPEA-NPs was characterized by linear sweep voltammetry (LSV) demonstrating an enhanced electrocatalytic CO2 activity for PDADMAC-stabilized NPs. The findings of these investigations indicate that MPEAs have great potential to replace conventional, expensive noble metal electrocatalysts. KW - Metals and Alloys KW - Surfaces KW - Biomaterials KW - Ceramics and Composites KW - Coatings and Films PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588218 DO - https://doi.org/10.1016/j.jmrt.2023.05.143 SN - 2238-7854 VL - 24 SP - 9434 EP - 9440 PB - Elsevier B.V. AN - OPUS4-58821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Protasov, E A1 - Noah, J O A1 - Kästle Silva, J O A1 - Mies, U S A1 - Hervé, V A1 - Dietrich, C A1 - Lang, K A1 - Mikulski, L A1 - Platt, K A1 - Poehlein, A A1 - Köhler-Ramm, T A1 - Miambi, E A1 - Boga, H I A1 - Feldewert, C A1 - Ngugi, G K A1 - Plarre, Rüdiger A1 - Sillam-Dussès, D A1 - Šobotník, J A1 - Daniel, R A1 - Brune, A T1 - Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods N2 - Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to nonmethanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods,suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological nichesprovided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages. KW - Nitrososphaerales KW - Archaea KW - Methanogens KW - Gut microbiota KW - Termites KW - Cockroaches KW - Millipedes KW - Bathyarchaeia PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588230 DO - https://doi.org/10.3389/fmicb.2023.1281628 SN - 1664-302X VL - 14 SP - 1 EP - 21 PB - Frontiers AN - OPUS4-58823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwibbert, Karin A1 - Richter, Anja M. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Laser-Textured Surfaces: A Way to Control Biofilm Formation? N2 - Bacterial biofilms pose serious problems in medical and industrial settings. One of the major societal challenges lies in the increasing resistance of bacteria against biocides used in antimicrobial treatments, e.g., via overabundant use in medicine, industry, and agriculture or cleaning and disinfection in private households. Hence, new efficient bacteria-repellent strategies avoiding the use of biocides are strongly desired. One promising route to achieve bacteria-repellent surfaces lies in the contactless and aseptic large-area laser-processing of technical surfaces. Tailored surface textures, enabled by different laser-processing strategies that result in topographic scales ranging from nanometers to micrometers may provide a solution to this challenge. This article presents a current state-of-the-art review of laser-surface subtractive texturing approaches for controlling the biofilm formation for different bacterial strains and in different environments. Based on specific properties of bacteria and laser-processed surfaces, the challenges of anti-microbial surface designs are discussed, and future directions will be outlined. KW - Antibacterial surfaces KW - Biofilms KW - Laser processing KW - Laser-induced periodic surface structures (LIPSS) KW - Microbial adhesions PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588260 DO - https://doi.org/10.1002/lpor.202300753 SN - 1863-8899 SP - 1 EP - 41 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-58826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruyle, B. A1 - Pickard, H. A1 - Schultes, L. A1 - Fredriksson, F. A1 - Heffernan, A. A1 - Knappe, D. A1 - Lord, H. A1 - Meng, P. A1 - Mills, M. A1 - Ndungu, K. A1 - Roesch, Philipp A1 - Rundberget, J.T. A1 - Tettenhorst, D. A1 - Van Buren, J. A1 - Vogel, Christian A1 - Westerman, D. A1 - Yeung, L. A1 - Sunderland, E. T1 - Interlaboratory Comparison of Extractable Organofluorine Measurements in Groundwater and Eel (Anguilla rostrata): Recommendations for Methods Standardization N2 - Research on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison. Seven laboratories representing academia, government, and the private sector measured paired EOF and PFAS concentrations in groundwater and eel (Anguilla rostrata) from a site contaminated by aqueous film-forming foam. Among all laboratories, targeted PFAS could not explain all EOF in groundwater but accounted for most EOF in eel. EOF results from all laboratories for at least one replicate extract fell within one standard deviation of the interlaboratory mean for groundwater and five out of seven laboratories for eel. PFAS spike mixture recoveries for EOF measurements in groundwater and eel were close to the criterion (±30%) for standardized targeted PFAS methods. Instrumental operation of the CIC such as replicate sample injections was a major source of measurement uncertainty. Blank contamination and incomplete inorganic fluorine removal may introduce additional uncertainties. To elucidate the presence of unknown organofluorine using paired EOF and PFAS measurements, we recommend that analysts carefully consider confounding methodological uncertainties such as differences in precision between measurements, data processing steps such as blank subtraction and replicate analyses, and the relative recoveries of PFAS and other fluorine compounds. KW - Extractable organic fluorine KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Combustion ion chromatography (CIC) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587726 DO - https://doi.org/10.1021/acs.est.3c04560 SN - 0013-936X VL - 57 IS - 48 SP - 20159 EP - 20168 PB - American Chemical Society (ACS) AN - OPUS4-58772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, J. A1 - Zhu, G. A1 - Dong, K. A1 - Osenberg, M. A1 - Hilger, A. A1 - Markötter, Henning A1 - Ju, J. A1 - Sun, F. A1 - Manke, I. A1 - Cui, G. T1 - Progress and Perspective of Controlling Li Dendrites Growth in All-Solid-State Li Metal Batteries via External Physical Fields N2 - Li dendrites penetration through solid electrolytes (SEs) challenges the development of solid-state Li batteries (SSLBs). To date, significant efforts are devoted to understand the mechanistic dynamics of Li dendrites nucleation, growth, and propagation in SEs, and various strategies that aim to alleviate and even inhibit Li dendrite formation have been proposed. Nevertheless, most of these conventional strategies require either additional material processing steps or new materials/layers that eventually increase battery cost and complexity. In contrast, using external fields, such as mechanical force, temperature physical field, electric field, pulse current, and even magnetic field to regulate Li dendrites penetration through SEs, seems to be one of the most cost-effective strategies. This review focuses on the current research progress of utilizing external physical fields in regulating Li dendrites growth in SSLBs. For this purpose, the mechanical properties of Li and SEs, as well as the experimental results that visually track Li penetration dynamics, are reviewed. Finally, the review ends with remaining open questions in future studies of Li dendrites growth and penetration in SEs. It is hoped this review can shed some light on understanding the complex Li dendrite issues in SSLBs and potentially guide their rational design for further development. KW - Li dendrites KW - Li dendrites penetration mechanisms KW - Solid electrolytes KW - Solid-state batteries PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588331 DO - https://doi.org/10.1002/aesr.202300165 SN - 2699-9412 SP - 1 EP - 44 PB - Wiley-VCH CY - Weinheim AN - OPUS4-58833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Schwentenwein, Martin A1 - Bermejo, Raúl A1 - Günster, Jens T1 - Hybridizing Lithography-Based Ceramic Additive Manufacturing with Two-Photon-Polymerization N2 - Stereolithography processes such as lithography-based ceramic manufacturing (LCM) are technologies that can produce centimeter-sized structures in a reasonable time frame. However, for some parts specifications, they lack resolution. Two-photon-polymerization (2PP) ensures the highest geometric accuracy in additive manufacturing so far. Nevertheless, building up parts in sizes as large as a few millimeters or even centimeters is a time-consuming process, which makes the production of 2PP printed parts very costly. Regarding feedstock specification, the requirements for 2PP are different to those for LCM, and generally, feedstocks are designed to meet requirements for only one of these manufacturing technologies. In an attempt to fabricate highly precise ceramic components of a rather large size, it is necessary to develop a feedstock that suits both light-based technologies, taking advantage of LCM’s higher productivity and 2PP’s accuracy. Hybridization should bring the desired precision to the region of interest on reasonably large parts without escalating printing time and costs. In this study, specimens gained from a transparent feedstock with yttria stabilized zirconia (YSZ) particles of 5 nm at 70 wt% were presented. The resin was originally designed to suit 2PP, while being also printable with LCM. This work demonstrates how hybrid parts can be sintered into full YSZ ceramics. KW - Additive Manufacturing KW - Transparent ceramic KW - Nano-powder PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584541 DO - https://doi.org/10.3390/app13063974 SN - 2076-3417 VL - 13 IS - 6 SP - 1 EP - 9 PB - MDPI CY - Basel AN - OPUS4-58454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knabe, C. A1 - Stiller, M. A1 - Kampschulte, M. A1 - Wilbig, Janka A1 - Peleska, B. A1 - Günster, Jens A1 - Gildenhaar, R. A1 - Berger, G. A1 - Rack, A. A1 - Linow, U. A1 - Heiland, M. A1 - Rendenbach, C. A1 - Koerdt, S. A1 - Steffen, C. A1 - Houshmand, A. A1 - Xiang-Tischhauser, L. A1 - Adel-Khattab, D. T1 - A tissue engineered 3D printed calcium alkali phosphate bioceramic bone graft enables vascularization and regeneration of critical-size discontinuity bony defects in vivo N2 - Recently, efforts towards the development of patient-specific 3D printed scaffolds for bone tissue engineering from bioactive ceramics have continuously intensified. For reconstruction of segmental defects after subtotal mandibulectomy a suitable tissue engineered bioceramic bone graft needs to be endowed with homogenously distributed osteoblasts in order to mimic the advantageous features of vascularized autologous fibula grafts, which represent the standard of care, contain osteogenic cells and are transplanted with the respective blood vessel. Consequently, inducing vascularization early on is pivotal for bone tissue engineering. The current study explored an advanced bone tissue engineering approach combining an advanced 3D printing technique for bioactive resorbable ceramic scaffolds with a perfusion cell culture technique for pre-colonization with mesenchymal stem cells, and with an intrinsic angiogenesis technique for regenerating critical size, segmental discontinuity defects in vivo applying a rat model. To this end, the effect of differing Si-CAOP (silica containing calcium alkali orthophosphate) scaffold microarchitecture arising from 3D powder bed printing (RP) or the Schwarzwalder Somers (SSM) replica fabrication technique on vascularization and bone regeneration was analyzed in vivo. In 80 rats 6-mm segmental discontinuity defects were created in the left femur. KW - Additive Manufacturing KW - Bio active ceramic KW - In-vivo KW - Alcium alkali phosphate PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584555 DO - https://doi.org/10.3389/fbioe.2023.1221314 SN - 2296-4185 VL - 11 SP - 1 EP - 20 PB - Frontiers SA CY - Lausanne AN - OPUS4-58455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Koch, Matthias T1 - On-Site Detection of Volatile Organic Compounds (VOCs) N2 - Volatile organic compounds (VOCs) are of interest in many different fields. Among them are food and fragrance analysis, environmental and atmospheric research, industrial applications, security or medical and life science. In the past, the characterization of these compounds was mostly performed via sample collection and off-site analysis with gas chromatography coupled to mass spectrometry (GC-MS) as the gold standard. While powerful, this method also has several drawbacks such as being slow, expensive, and demanding on the user. For decades, intense research has been dedicated to find methods for fast VOC analysis on-site with time and spatial resolution. We present the working principles of the most important, utilized, and researched technologies for this purpose and highlight important publications from the last five years. In this overview, non-selective gas sensors, electronic noses, spectroscopic methods, miniaturized gas chromatography, ion mobility spectrometry and direct injection mass spectrometry are covered. The advantages and limitations of the different methods are compared. Finally, we give our outlook into the future progression of this field of research. KW - Volatile organic compounds KW - On-site detection KW - Mobile analytics KW - Sensors PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570885 DO - https://doi.org/10.3390/molecules28041598 VL - 28 IS - 4 SP - 1 EP - 19 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huo, W. A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Wolter, K. T1 - Strain Prediction Using Deep Learning during Solidification Crack Initiation and Growth in Laser Beam Welding of Thin Metal Sheets N2 - The strain field can reflect the initiation time of solidification cracks during the welding process. The traditional strain measurement is to first obtain the displacement field through digital image correlation (DIC) or optical flow and then calculate the strain field. The main disadvantage is that the calculation takes a long time, limiting its suitability to real-time applications. Recently, convolutional neural networks (CNNs) have made impressive achievements in computer vision. To build a good prediction model, the network structure and dataset are two key factors. In this paper, we first create the training and test sets containing welding cracks using the controlled tensile weldability (CTW) test and obtain the real strain fields through the Lucas–Kanade algorithm. Then, two new networks using ResNet and DenseNet as encoders are developed for strain prediction, called StrainNetR and StrainNetD. The results show that the average endpoint error (AEE) of the two networks on our test set is about 0.04, close to the real strain value. The computation time could be reduced to the millisecond level, which would greatly improve efficiency. KW - Convolutional neural network KW - Strain fields prediction KW - Laser beam welding KW - Solidification cracking PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570565 DO - https://doi.org/10.3390/app13052930 VL - 13 IS - 5 SP - 1 EP - 15 PB - MDPI AN - OPUS4-57056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krankenhagen, Rainer T1 - Influence of Moisture in Concrete on the Photothermal Response—A New Approach for a Measurement Method? N2 - Recently, the photothermal determination of the thermophysical properties of concrete under lab conditions was reported. Their values are mainly needed to look at the energy consumption of buildings. Additionally, changes in their values in relation to the initial state might also be a good indicator for material quality or for moisture. The present contribution explains the photothermal method in a more general way to indicate the potential for on-site application. Secondly, a special application case is regarded: the detection of moisture in concrete. Two concrete samples were soaked with water, followed by a drying period, to obtain different levels of water penetration. The water contents were determined by weighing, and the photothermal response was measured. The results show a large influence on the measured temperature transients, which is larger than expected from the original simple model. They clearly provide two points: the photothermal method is suited to detect moisture in concrete, but the magnitude of the actual measurement effect is not yet understood. KW - Thermal effusivity KW - Thermal conductivity KW - Moisture KW - Reflectivity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570439 DO - https://doi.org/10.3390/app13052768 VL - 13 IS - 5 SP - 1 EP - 18 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rüdenauer, I. A1 - Quack, D. A1 - Schlegel, Moritz-Caspar T1 - kWh versus Euro – What is the most effective way to inform about efficient products? N2 - Energy efficient products often have a higher purchase price than less efficient alternatives. However, the life cycle costs are often lower due to the lower operating costs. From a purely economic point of view, efficient appliances are not only more ecological but often also more economical and, accordingly, should be purchased more frequently than less efficient appliances. However, this is not always the case. Information deficits are one of the major reasons of this discrepancy: the purchase price is visible during the purchasing process, but the follow-up costs are not, at least not in their exact amount. The EU Energy Label can be considered as a solution to close this gap. During the past decades, there has been a discussion on whether it would be better to communicate the monetary costs associated with energy consumption, since their calculation by the consumer is difficult or needs a high level of cognitive effort. In this study, experiments and field studies on a total of 19 product groups were evaluated with regard to the question of whether the indication of costs instead of physical units affects the decision-making process of the consumer. It has been assessed under which circumstances it might positively influence the purchase decision of the customer, i.e. helping him or her to arrive at a more “energy efficient” decision. Overall, the results indicate that monetary claims possibly exceed the effect of claims on a physical basis when the costs or the differences between the alternatives available seem “relevant” to the consumer. T2 - EEDAL’21 CY - Toulouse, France DA - 01.06.2021 KW - Energy Labelling KW - Ecodesign PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570454 SN - 978-92-76-99908-9 DO - https://doi.org/10.2760/356891 SP - 358 EP - 367 AN - OPUS4-57045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Veh, G. A1 - Lützow, N. A1 - Tamm, J. A1 - Luna, L. V. A1 - Hugonnet, R. A1 - Vogel, Kristin A1 - Geertsema, M. A1 - Clague, J. J. A1 - Korup, O. T1 - Less extreme and earlier outbursts of ice-dammed lakes since 1900 N2 - Episodic failures of ice-dammed lakes have produced some of the largest floods in history, with disastrous consequences for communities in high mountains. Yet, estimating changes in the activity of ice-dam failures through time remains controversial because of inconsistent regional flood databases. Here, by collating 1,569 ice-dam failures in six major mountain regions, we systematically assess trends in peak discharge, volume, annual timing and source elevation between 1900 and 2021. We show that extreme peak flows and volumes (10 per cent highest) have declined by about an order of magnitude over this period in five of the six regions, whereas median flood discharges have fallen less or have remained unchanged. Ice-dam floods worldwide today originate at higher elevations and happen about six weeks earlier in the year than in 1900. Individual ice-dammed lakes with repeated outbursts show similar negative trends in magnitude and earlier occurrence, although with only moderate correlation to glacier thinning8. We anticipate that ice dams will continue to fail in the near future, even as glaciers thin and recede. Yet widespread deglaciation, projected for nearly all regions by the end of the twenty-first century9, may bring most outburst activity to a halt. KW - Outburst floods KW - Bayesian hierachical modelling KW - Trends in extreme events PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570529 DO - https://doi.org/10.1038/s41586-022-05642-9 VL - 614 IS - 7949 SP - 701 EP - 707 AN - OPUS4-57052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Machado Ferreira de Araujo, F. A1 - Duarte-Ruiz, D. A1 - Saßnick, H.-D. A1 - Gentzmann, Marie C. A1 - Huthwelker, T. A1 - Cocchi, C. T1 - Electronic Structure and Core Spectroscopy of Scandium Fluoride Polymorphs N2 - Microscopic knowledge of the structural, energetic, and electronic properties of scandium fluoride is still incomplete despite the relevance of this material as an intermediate for the manufacturing of Al−Sc alloys. In a work based on first-principles calculations and X-ray spectroscopy, we assess the stability and electronic structure of six computationally predicted ScF3 polymorphs, two of which correspond to experimentally resolved single-crystal phases. In the theoretical analysis based on density functional theory (DFT), we identify similarities among the polymorphs based on their formation energies, chargedensity distribution, and electronic properties (band gaps and density of states). We find striking analogies between the results obtained for the ow- and high-temperature phases of the material, indirectly confirming that the transition occurring between them mainly consists of a rigid rotation of the lattice. With this knowledge, we examine the X-ray absorption spectra from the Sc and F K-edge contrasting firstprinciples results obtained from the solution of the Bethe−Salpeter equation on top of all-electron DFT with high-energy-resolution fluorescence detection measurements. Analysis of the computational results sheds light on the electronic origin of the absorption maxima and provides information on the prominent excitonic effects that characterize all spectra. A comparison with measurements confirms that the sample is mainly composed of the high- and low-temperature polymorphs of ScF3. However, some fine details in the experimental results suggest that the probed powder sample may contain defects and/or residual traces of metastable polymorphs. KW - Scandium KW - X-ray spectroscopy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570727 DO - https://doi.org/10.1021/acs.inorgchem.2c04357 SN - 0020-1669 VL - 62 IS - 10 SP - 4238 EP - 4247 PB - ACS Publications CY - Washington DC AN - OPUS4-57072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roesch, Philipp A1 - Vogel, Christian A1 - Wittwer, Philipp A1 - Huthwelker, T. A1 - Borca, C. A1 - Sommerfeld, Thomas A1 - Kluge, Stephanie A1 - Piechotta, Christian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Taking a Look at the Surface: µ-XRF Mapping and Fluorine K-edge µ-XANES Spectroscopy of Organofluorinated Compounds in Environmental Samples and Consumer Products N2 - For the first time, µ-X-ray fluorescence (µ-XRF) mapping combined with fluorine K-edge µ-X-ray absorption near-edge structure (µ-XANES) spectroscopy was applied to depict per- and polyfluoroalkyl substances (PFAS) contamination and inorganic fluoride in samples concentrations down to 100 µg/kg fluoride. To demonstrate the matrix tolerance of the method, several PFAS contaminated soil and sludge samples as well as selected consumer product samples (textiles, food contact paper and permanent baking sheet) were investigated. µ-XRF mapping allows for a unique element-specific visualisation at the sample surface and enables localisation of fluorine containing compounds to a depth of 1 µm. Manually selected fluorine rich spots were subsequently analysed via fluorine K-edge µ-XANES spectroscopy. To support spectral interpretation with respect to inorganic and organic chemical distribution and compound class determination, linear combination (LC) fitting was applied to all recorded µ-XANES spectra. Complementarily, solvent extracts of all samples were target-analysed via LC-MS/MS spectrometry. The detected PFAS sum values range from 20 to 1136 µg/kg dry weight (dw). All environmentally exposed samples revealed higher concentration of PFAS with a chain length >C8 (e.g. 580 µg/kg dw PFOS for Soil1), whereas the consumer product samples showed a more uniform distribution with regard to chain lengths from C4 to C8. Independent from quantified PFAS amounts via target analysis, µ-XRF mapping combined with µ-XANES spectroscopy was successfully applied to detect both point-specific concentration maxima and evenly distributed surface coatings of fluorinated organic contaminants in the corresponding samples. KW - PFAS KW - XRF KW - LC-MS/MS KW - XANES KW - Fluoride KW - Soil PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576109 DO - https://doi.org/10.1039/D3EM00107E SN - 2050-7887 SP - 1 EP - 12 PB - Royal Society of Chemistry AN - OPUS4-57610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Serrano Munoz, Itziar A1 - Laquai, René A1 - Bruno, Giovanni T1 - Anwendungen der Röntgenrefraktionstechnik zur zerstörungsfreien Charakterisierung von Keramiken und Verbundwerkstoffen N2 - Die Brechung von Röntgenstrahlen (Röntgenrefraktion) an Grenzflächen zwischen Materialien unterschiedlicher Dichte ist analog zur Ablenk-ung von sichtbarem Licht an z.B. Glasoberflächen. Es gibt jedoch zwei wesentliche Unterschiede: a) konvexe Grenzflächen verursachen Divergenz (d.h. der Brechungsindex n ist kleiner als 1), und b) die Ablenkungswinkel sind sehr klein, und reichen von einigen Bogensekunden bis zu einigen Bogenminuten (d.h. n ist nahe bei 1); Wie auch bei sichtbarem Licht ist die Ablenkungsrichtung der Röntgenstrahlen abhängig von der Orientierung der durchstrahlten Grenzfläche. Aufgrund dieser Eigenschaften eignen sich Röntgenrefraktionsmethoden hervorragend für: a) die Erkennung und Quantifizierung von Defekten wie Poren und Mikrorissen und b) die Bewertung von Porosität und Partikeleigenschaften wie Orientierung, Größe und räumliche Verteilung. Wir zeigen die Anwendung der Röntgenrefraktionsradiographie (2,5D Technik) und der -tomographie (3D Technik) für die Untersuchung verschiedener Probleme in der Werkstoffwissenschaft und -technologie: a) Sintern von SiC-Grünkörpern b) Porositätsanalyse in Dieselpartikelfiltersilikaten c) Faser-Matrix-Haftung in Metall- und Polymermatrixverbundwerkstoffen d) Mikrorissbildung in Glaskeramik. Wir zeigen, dass der Einsatz von Röntgenrefraktionsmethoden quantitative Ergebnisse liefert, die direkt als Parameter in Werkstoffmodellen verwendet werden können. T2 - DACH-Jahrestagung 2023 CY - Friedrichshafen, Germany DA - 15.05.2023 KW - Röntgen-Refraktion KW - Verbundwerkstoffe KW - Keramik PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576171 UR - https://jahrestagung.dgzfp.de/Portals/jt2023/BB180/Inhalt/p9.pdf UR - https://jahrestagung.dgzfp.de/Portals/jt2023/BB180/Inhalt/default.htm SN - 978-3-947971-29-9 SP - 1 EP - 16 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-57617 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernández, R. A1 - Bokuchava, G. A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - González Doncel, G. T1 - On the dependence of creep-induced dislocation configurations on crystallographic orientation in pure Al and Al-Mg N2 - The peak broadening in neutron diffraction experiments on tensile specimens of pure Al (99.8%) and an Al-Mg alloy pre-deformed at different creep strains is analysed. These results are combined with the kernel angular misorientation of electron backscatter diffraction data from the creep-deformed microstructures. It is found that differently oriented grains possess different microstrains. These microstrains vary with creep strain in pure Al, but not in the Al-Mg alloy. It is proposed that this behaviour can explain the power-law breakdown in pure Al and the large creep strain observed in Al-Mg. The present findings further corroborate a description of the creep-induced dislocation structure as a fractal, predicated on previous work. KW - Creep KW - Aluminium alloys KW - Dislocations KW - Fractals KW - Diffraction peak width PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575527 DO - https://doi.org/10.1107/S1600576723003771 SN - 0021-8898 VL - 56 IS - Pt 3 SP - 764 EP - 775 AN - OPUS4-57552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Hufschläger, Daniel A1 - Gohlke, Dirk A1 - Weise, Matthias A1 - Ilse, D. A1 - Hillger, W. A1 - Szewieczek, A. T1 - Phased-Array-Prüfköpfe für luftgekoppelte Ultraschallprüfung auf Basis von zellulären Kunststoffen N2 - Luftgekoppelte Ultraschallprüfung setzt sich immer häufiger gegen die konventionelle Ultraschallprüfung von Leichtbaukomponenten durch, und zwar in vielen Industriezweigen von der Holzindustrie bis zur Luftfahrt. Während die Phased-Array-Technik mittlerweile zu dem industriellen Standard im Bereich der Prüfung mit Ankopplung gehört, wird luftgekoppelte Ultraschallprüfung meist mit zwei Wandlern in Durchschallung durchgeführt. Deswegen werden Vorteile der Phased-Array-Technik wie beispielsweise elektronische Fokussierung oder Schwenkung des Einschallwinkels für luftgekoppelte Prüfung selten genutzt. In diesem Beitrag werden die laufenden Arbeiten an der Entwicklung eines neuen Phased-Array-Geräts vorgestellt, mit dem Schwerpunkt an der Charakterisierung der Prüfköpfe und ihrer Schallfelder. Das Gerät besteht aus einem linearen Phased-Array-Prüfkopf, einer Sende- und einer Empfangseinheit. Die Hauptinnovation unserer Arbeit ist die Anwendung von zellulären Kunststoffen für den Bau eines Arrays, wobei der Sender mit Hochspannung von ca. 1500 V angeregt wird. Geladene zelluläre Polymere werden auch Ferroelektrete oder Piezoelektrete genannt. Sie weisen ein sehr niedriges Elastizitätsmodul und dadurch eine niedrige akustische Impedanz auf, so dass auf den Einbau von Anpassschichten verzichtet werden kann. Eine sehr niedrige mechanische Kreuzkopplung bei Ferroelektreten ermöglicht eine unabhängige Anregung einzelner Elemente, was bei Piezokompositen deutlich schwieriger wäre. Die Entwicklung der Array-Prüfköpfe wurde durch Berechnungen des Schallfeldes unterstützt, die auf Punktquellensynthese basieren. Die beabsichtigte Anwendung von Phased-Array-Prüfköpfen und des Prüfsystems sind die Durchschallung mit Fokussierung, elektronischer Scan und die Schwenkung des Einschallwinkels zur Anregung von geführten Wellen, angewandt an carbonfaserverstärkten Kunststoffen und ähnlichen Materialien. Die Anwendung von geführten Wellen bietet die Perspektive, Bauteile mit einseitiger Zugänglichkeit zu prüfen. T2 - DACH-Jahrestagung 2023 CY - Friedrichshafen, Germany DA - 15.05.2023 KW - Luftgekoppelte Ultraschallprüfung KW - Ferroelektret KW - Ultraschallwandler KW - Phased Array PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575564 SP - 1 EP - 6 AN - OPUS4-57556 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hufschläger, Daniel A1 - Gohlke, Dirk A1 - Weise, Matthias A1 - Bente, K. A1 - Gaal, Mate T1 - Thermoakustische Gruppenstrahler: Theorie und Anwendungen N2 - Bei der Prüfung von Werkstücken mit empfindlichen Oberflächen oder auch hydrophilen Werkstoffen sind traditionelle ultraschallbasierte zerstörungsfreie Prüfmethoden wie die Kontakttechnik oder die Tauchtechnik in vielen Anwendungsfällen aufgrund der Flüssigkeitsankopplung nicht anwendbar. Die luft-gekoppelte Ultraschallprüfung umgeht diese Problematik und eröffnet neue Prüfszenarien. Derzeit werden zwei Varianten der Schallerzeugung als vielversprechend angesehen: ferroelektrische Folien und thermoakustische Dünnschichtwandler. Thermoakustische Wandler ermöglichen die resonanzfreie Erzeugung von Ultraschall und somit kurze zeitliche Impulse sowie eine sehr breitbandige Anregung. Durch die Verwendung von gekrümmten Substraten ist sowohl eine Herstellung von planaren als auch fokussierten Wandlern möglich. Dieser Beitrag präsentiert die letzten Forschungsergebnisse im Bezug auf thermoakustischen Wandlern, welche derzeit in einen thermoakustischen Gruppenstrahler münden. Gruppenstrahler erlauben die simultane Änderung des Einschallwinkels, sowie die Verschiebung des Fokuspunktes während der Verwendung. Durch die Verbindung beider Schlüsseltechnologien, der thermoakustischen Anregung und des Gruppenstrahlerprinzips, wird das Spektrum der klassischen ZfP-Anwendungen, sowie moderner Ansätze wie der Anregung von geführten Wellen oder der Strukturüberwachung erheblich erweitert und bereichert. Dabei soll innerhalb dieses Beitrages auf die Modellierung des Schallfeldes, die elementweise Charakterisierung und verschiedene Anwendungsszenarien eingegangen werden. T2 - DACH-Jahrestagung 2023 CY - Friedrichshafen, Germany DA - 15.05.2023 KW - Luftgekoppelte Ultraschallprüfung KW - Thermoakustik KW - Ultraschallwandler KW - Phased Array PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575599 SP - 1 EP - 6 AN - OPUS4-57559 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Amano, K. O. A. A1 - Hahn, S.-K. A1 - Butt, N. A1 - Vorwerk, P. A1 - Gimadieva, E. A1 - Tschirschwitz, Rico A1 - Rappsilber, Tim A1 - Krause, U. T1 - Composition and Explosibility of Gas Emissions from Lithium-Ion Batteries Undergoing Thermal Runaway N2 - Lithium-based batteries have the potential to undergo thermal runaway (TR), during which mixtures of gases are released. The purpose of this study was to assess the explosibility of the gaseous emission from LIBs of an NMC-based cathode during thermal runaway. In the current project, a series of pouch lithium-based battery cells was exposed to abuse conditions (thermal) to study the total amount of gases released and the composition of the gas mixture. First, the battery cells were placed in a closed vessel, and the pressure and temperature rise inside the vessel were measured. In a second step, the composition of gases was analysed using a Fourier transform Infrared (FTIR) spectrometer. We found that the amount of released gases was up to 102 ± 4 L, with a clear dependence on the battery capacity. This study showed that the concentration of gaseous emissions such as carbon monoxide (CO), methane (CH4), ethylene (C2H4), ethane (C2H6), and hydrogen cyanide (HCN) increased with higher cell capacity. Of the five studied flammable gases, the maximum concentrations of carbon monoxide (16.85 vol%), methane (7.6 vol%), and ethylene (7.86 vol%) were identified to be within their explosible range. Applying Le Chatelier’s law, a calculated lower explosion limit (LEL) of 7% in volume fraction was obtained for the gas mixture. The upper explosion limit (UEL) of the gas mixture was also found to be 31% in volume. A filter comprising pyrobubbles was used for the removal of the studied gas components released during the thermal abuse. The investigation revealed that the pyrobubbles filter was highly effect in the removal of HCN (up to 94% removal) and CO2 (up to 100% removal). Herein, we report the dependency of the method of thermal runaway trigger on the measured maximum temperature. KW - Lithium-ion battery KW - Thermal runaway KW - Smoke gas emission KW - Gas explosion KW - Explosion limit PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576477 DO - https://doi.org/10.3390/batteries9060300 VL - 9 IS - 6 SP - 1 EP - 19 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obaton, A.-F. A1 - Fain, J. A1 - Meinel, Dietmar A1 - Tsamos, Athanasios A1 - Léonard, F. A1 - Lécuelle, B. A1 - Djemaï, M. T1 - In Vivo Bone Progression in and around Lattice Implants Additively Manufactured with a New Titanium Alloy N2 - The osseointegration in/around additively manufactured (AM) lattice structures of a new titanium alloy, Ti–19Nb–14Zr, was evaluated. Different lattices with increasingly high sidewalls gradually closing them were manufactured and implanted in sheep. After removal, the bone–interface implant (BII) and bone–implant contact (BIC) were studied from 3D X-ray computed tomography images. Measured BII of less than 10 µm and BIC of 95% are evidence of excellent osseointegration. Since AMnaturally leads to a high-roughness surface finish, the wettability of the implant is increased. The new alloy possesses an increased affinity to the bone. The lattice provides crevices in which the biological tissue can jump in and cling. The combination of these factors is pushing ossification beyond its natural limits. Therefore, the quality and speed of the ossification and osseointegration in/around these Ti–19Nb–14Zr laterally closed lattice implants open the possibility of bone spline key of prostheses. This enables the stabilization of the implant into the bone while keeping the possibility of punctual hooks allowing the implant to be removed more easily if required. Thus, this new titanium alloy and such laterally closed lattice structures are appropriate candidates to be implemented in a new generation of implants. KW - Osseointegration KW - X-ray computed tomography KW - Additive manufacturing KW - Machine learning segmentation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577066 DO - https://doi.org/10.3390/app13127282 VL - 13 IS - 12 SP - 1 EP - 18 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlick-Hasper, Eva A1 - Bethke, John A1 - Goedecke, Thomas T1 - How To Measure The Angle of Repose of Hazardous Substances in the Test Centers for Dangerous Goods Packagings N2 - The flow properties of powdery or granular filling substances for dangerous goods packagings are safety-relevant parameters. To specify the flow behavior, the angle of repose is measured in the recognized test centers for dangerous goods packagings in Germany. Previous investigations performed on non-hazardous substances revealed that some of the methods currently used have disadvantages in application. Additionally, for occupational health and safety reasons, it was generally viewed critically to carry out measurements of the angle of repose for dangerous goods at all. Instead, the dimensionless Hausner ratio to describe the flow behavior was proposed. In this work, the investigations were extended to real hazardous substances to concretize the assessment. Five exemplary hazardous substances were tested for their angle of repose using the methods commonly applied in the test centers. The Hausner ratio was also determined. In addition, the influence of a different climatic preconditioning on the angle of repose measurement was examined using three selected non-hazardous bulk materials. The results show that the measurement of the angle of repose is not fundamentally excluded for dangerous goods. However, for reasons of applicability, repeatability and occupational health and safety, only the ISO method can be applied for dangerous filling substances. This method provides conservative results regarding a safety-related evaluation of flow properties for the transport of dangerous goods. In principle, both the ISO method and the determination of the Hausner ratio can be used for dangerous goods. It is also essential especially with finely powdered filling goods, to carry out controlled preconditioning. KW - Angle of repose KW - Flow properties KW - Flowability KW - Hausner ratio KW - Powders KW - Sift-proofness PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576552 DO - https://doi.org/10.1002/pts.2756 SN - 0894-3214 SP - 1 EP - 20 PB - Wiley AN - OPUS4-57655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nguyen, H. G. A1 - Toman, B. A1 - van Zee, R. A1 - Prinz, Carsten A1 - Thommes, M. A1 - Ahmad, R. A1 - Kiska, D. A1 - Salinger, J. A1 - Walton, I. A1 - Walton, K. A1 - Broom, D. A1 - Benham, M. A1 - Ansari, H. A1 - Pini, R. A1 - Petit, C. A1 - Adolphs, J. A1 - Schreiber, A. A1 - Shigeoka, T. A1 - Konishi, Y. A1 - Nakai, K. A1 - Henninger, M. A1 - Petrzik, T. A1 - Kececi, C. A1 - Martis, V. A1 - Paschke, T. A1 - Mangano, E. A1 - Brandani, S. T1 - Reference isotherms for water vapor sorption on nanoporous carbon: results of an interlaboratory study N2 - This paper reports the results of an international interlaboratory study sponsored by the Versailles Project on Advanced Materials and Standards (VAMAS) and led by the National Institute of Standards and Technology (NIST) on the measurement of water vapor sorption isotherms at 25 °C on a pelletized nanoporous carbon (BAM-P109, a certified reference material). Thirteen laboratories participated in the study and contributed nine pure water vapor isotherms and four relative humidity isotherms, using nitrogen as the carrier gas. From these data, reference isotherms, along with the 95% uncertainty interval (Uk=2), were determined and are reported in a tabular format. KW - BAM-P109 KW - Interlaboratory study KW - Nanoporous carbon KW - Reference isotherm KW - VAMAS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576560 DO - https://doi.org/10.1007/s10450-023-00383-1 SN - 0929-5607 SP - 1 EP - 12 PB - Springer CY - Heidelberg AN - OPUS4-57656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Rissentwicklung in CFK-Laminaten nachgewiesen durch in situ Röntgen-Refraktion N2 - In Leichtbauanwendungen sind Materialien mit geringen Dichten und hohen Festigkeiten gefragt. Insbesondere Faser-Kunststoff-Verbunde (FKV) erfüllen diese Anforderungen und werden zunehmend für Strukturbauteile eingesetzt. Die Oberflächen moderner Rotorblätter von Windkraftanlagen werden aus FKV gefertigt. Das Versagen dieser Materialien hat massiven Einfluss auf die Einsatzfähigkeit der gesamten Windkraftanlage. Daher ist die Kenntnis des Versagensverhaltens dieser Komponenten unter statischer und zyklischer Belastung von großem Interesse, um die Betriebsbeanspruchung abzuschätzen. Im Idealfall wird die Schadensentwicklung unter Betriebslast mit zerstörungsfreien in-situ-Prüfverfahren ermittelt. Hier berichten wir über die Beobachtung der Rissentwicklung in Carbon-Faserverstärkten Kunststoffen (CFK) unter kontinuierlicher Zugbelastung durch in-situ Synchrotron-Röntgenrefraktionsradiographie. Eine selbst entwickelte elektromechanische Zugprüfmaschine mit einem Kraftbereich bis zu 15 kN wurde in den Strahlengang an der BAMline (BESSY II) integriert. Da in herkömmlichen (Absorptions-) Radiographien Defekte wie Zwischenfaserbrüche oder Faser-Matrix-Enthaftung keinen ausreichenden Kontrast verursachen, wird zur Kontrastanhebung die Röntgenrefraktion benutzt. Hier wird das sogenannte Diffraction Enhanced Imaging (DEI) angewandt, um Primär- und gebrochene Strahlung mit Hilfe eines Analysatorkristalls zu trennen. Diese Technik ermöglicht schnelle Messungen mit einem Gesichtsfeld von einigen Quadratmillimetern (hier: 14 mm × 7.2 mm) und ist ideal für in-situ Untersuchungen. Die Bildgebung und der Zugversuch erfolgen mit einer Bildfrequenz von 0.7 / s und einer Dehnrate von 0.00055 / s . Bei 0°/90° Fasergelegen treten die ersten Zwischenfaserrisse bei 380 MPa (Dehnung 0.8 %) auf. Vor dem Versagen bei ca. 760 MPa (Dehnung 2.0 %) beobachten wir die Ausbildung eines nahezu äquidistanten Rissmusters (Risse in ca. 1 mm Abstand), das sich im geschädigten Zustand über die gesamte Probe erstreckt. T2 - DACH-Jahrestagung 2023 CY - Friedrichshafen, Germany DA - 15.05.2023 KW - Röntgen-Refraktion KW - Synchrotronstrahlung KW - CFK KW - Rissentwicklung PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576230 SN - 978-3-947971-29-9 VL - BB 180 SP - 1 EP - 8 AN - OPUS4-57623 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Filimonova, S. M. A1 - Melnikov, E. S. A1 - Kaufmann, Jan Ole A1 - Shchepochkina, O. Y. A1 - Eremin, S. A. A1 - Gravel, I. V. A1 - Raysyan, Anna T1 - Exploring the anti‐α‐amylase activity of flavonoid aglycones in fabaceae plant extracts: a combined MALDI‐TOF‐MS and LC–MS/MS approach N2 - A combination of TLC-bioautography, MALDI-TOF-MS and LC–MS/MS methods was used to identify flavonoids with anti-α-amylase activity in extracts of Lathyrus pratensis L. (herb), L. polyphillus L. (fruits), Thermopsis lanceolata R. Br. (herb) and S. japonica L. (buds). After the TLC-autobiography assay, substances with anti-amylase activity were identified by MALDI-TOF-MS followed by confirmation of the result by LC–MS/MS. Results of the study revealed that the flavonoids apigenin, luteolin, formononetin, genistein and kaempferol display marked anti-α-amylase activity. Formononetin showed the largest activity. Compared with LC–MS/MS, MALDI-TOF-MS is a quick and convenient method; results can be obtained within minutes; and only minor sample amounts are required which allows us to analyse mixtures of substances without preliminary separation. However, the inability to distinguish between isomers is the main limitation of the method. KW - Enzyme KW - MALDI-TOF-MS KW - LC-MS/MS KW - Massenspektrometrie PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577128 DO - https://doi.org/https://doi.org/10.1111/ijfs.16491 SN - 0950-5423 VL - 58 IS - 7 SP - 3902 EP - 3911 PB - Wiley & Sons CY - Hoboken, NJ, USA AN - OPUS4-57712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A General Analytical Solution for Two-Dimensional Columnar Crystal Growth during Laser Beam Welding of Thin Steel Sheets N2 - A technique for calculating the main solidification parameters for a two-dimensional columnar crystal growth during complete penetration laser beam welding of thin steel sheets was developed. Given that the weld pool interface is described by Lamé curves (superellipses) within the horizontal plane of growth, general analytical solutions were derived for the geometry of the crystal axis and the corresponding growth rate and cross-sectional area of the crystal. A dimensionless analysis was performed to provide insights on the dependence of the solidification parameters on the shape and dimensions of the rear part of the weld pool boundary. The derived solutions were applied for the case of complete penetration laser beam keyhole welding of 2 mm thick 316L austenitic chromium-nickel steel sheets. It was shown that the reconstruction of the weld pool boundary with Lamé curves provides higher accuracy and flexibility compared to results obtained with elliptical functions. The validity of the proposed technique and the derived analytical solutions was backed up by a comparison of the obtained solutions to known analytical solutions and experimentally determined shapes and sizes of the crystals on the top surface of the sheet. The dimensions of the calculated crystal axis correlated well with the experimentally obtained results. KW - General analytical solutions KW - Two-dimensional solidification KW - Columnar crystal growth KW - Lamé curves KW - Laser beam welding PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576788 DO - https://doi.org/10.3390/app13106249 IS - 10 SP - 1 EP - 10 ET - 13 AN - OPUS4-57678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herr, M. A1 - Borras, F. X. A1 - Spaltmann, Dirk A1 - Kröll, Mirco A1 - Pirker, F. A1 - Cihak-Bayr, U. T1 - How to create trusted tribological characterization data of soft polymers as input for FEM simulations? N2 - Soft polymers such as the investigated polyurethane, characterized by low Young’s moduli and prone to high shear deflection, are frequently applied in pneumatic cylinders. Their performance and lifetime without external lubrication are highly determined by the friction between seal and shaft and the wear rate. FEM simulation has established itself as a tool in seal design processes but requires input values for friction and wear depending on material, load, and velocity. This paper presents a tribological test configuration for long stroke, reciprocating movement, allowing the generation of data which meet the requirements of input parameters for FEM simulations without the geometrical influences of specific seal profiles. A numerical parameter study, performed with an FEM model, revealed the most eligible sample geometry as a flat, disc-shaped sample of the polymer glued on a stiff sample holder. At the same time, the study illustrates that the sensitivity of the contact pressure distribution to Poisson’s ratio and CoF can be minimized by the developed and verified setup. It ensures robust, reliable, and repeatable experimental results with uniform contact pressures and constant contact areas to be used in databases and FEM simulations of seals, enabling upscaling from generically shaped samples to complex seal profiles. KW - Tribologie KW - FEM KW - Simulation KW - Polymere KW - Charakterisierung KW - i-TRIBOMAT KW - Modellierung KW - Polyurethan KW - Dichtungen KW - Upscaling PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567683 DO - https://doi.org/10.3390/ma16010131 SN - 1996-1944 VL - 16 IS - 1 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-56768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lenz, J. U. A1 - Pospiech, D. A1 - Komber, H. A1 - Korwitz, A. A1 - Kobsch, O. A1 - Paven, M. A1 - Albach, R. W. A1 - Günther, Martin A1 - Schartel, Bernhard T1 - Effective halogen-free flame-retardant additives for crosslinked rigid polyisocyanurate foams: Comparison of chemical structures N2 - The impact of phosphorus-containing flame retardants (FR) on rigid polyisocyanurate (PIR) foams is studied by systematic variation of the chemical structure of the FR, including non-NCO-reactive and NCO-reactive dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO)- and 9,10 dihydro-9-oxa-10 phosphaphenanthrene-10-oxide (DOPO)-containing compounds, among them a number of compounds not reported so far. These PIR foams are compared with PIR foams without FR and with standard FRs with respect to foam properties, thermal decomposition, and fire behavior. Although BPPO and DOPO differ by just one oxygen atom, the impact on the FR properties is very significant: when the FR is a filler or a dangling (dead) end in the PIR polymer network, DOPO is more effective than BPPO. When the FR is a subunit of a diol and it is fully incorporated in the PIR network, BPPO delivers superior results. KW - Flame retardant; KW - Dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide; BPPO KW - 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; DOPO KW - Polyisocyanurate; PIR KW - Rigid foam KW - Cone calorimeter KW - Pudovik reaction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567712 DO - https://doi.org/10.3390/ma16010172 SN - 1996-1944 VL - 16 IS - 1 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-56771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kubheka, G. A1 - Climent, Estela A1 - Tobias, Charlie A1 - Rurack, Knut A1 - Mack, J. A1 - Nyokong, T. T1 - Multiplexed Detection of Human Papillomavirus Based on AzaBODIPY-Doped Silica-Coated Polystyrene Microparticles N2 - Human papillomavirus (HPV) DNA detection can enable the early diagnosis of high-risk HPV types responsible for cervical cancer. HPV detection is also essential for investigating the clinical behavior and epidemiology of particular HPV types, characterization of study populations in HPV vaccination trials and monitoring the efficacy of HPV vaccines. In this study, two azaBODIPY dyes (1 and 2) were used as references and were doped into polystyrene particles (PS40), while a short HPV DNA single strand was used as a target molecule and was covalently bound to the silica shell. These particles were employed as optical probes in 1:1 hybridization assays, and their potential applicability as a tool for multiplex assays for the detection of different strands of HPV was evaluated using flow cytometry. A good separation in the fluorescence of the four different voncentrations prepared for each dye was observed. To perform the hybridization assays, HPV18, HPV16, HPV11 and HPV6 single strands were attached to the particles through EDC-mediated coupling. The c-DNA-1-PS40 and c-DNA-2-PS40 particles exhibited low limit of detection (LOD) and quantification (LOQ) values for HPV11, and a narrow detection range was obtained. Multiplexed assay experiments were successfully performed for both particles, and the results proved that c-DNA-1-PS40 could potentially be used as a tool for multiplexing assays and merits further in-depth study in this context. KW - Flow cytometry KW - BODIPY dyes KW - Core-shell particles KW - Multiplexed assay KW - Human papillomavirus PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567358 DO - https://doi.org/10.3390/chemosensors11010001 SN - 2227-9040 VL - 11 IS - 1 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-56735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diener, S. A1 - Schubert, Hendrik A1 - Günster, Jens A1 - Zocca, Andrea T1 - Ink development for the additive manufacturing of strong green parts by layerwise slurry deposition (LSD-print) N2 - Obtaining dense fine ceramics by the binder jetting additive manufacturing process is challenging. A slurry-based binder jetting process, such as the layerwise slurry deposition (LSD-print) process, can enable the printing of dense ceramic parts. This work describes a procedure to develop and qualify a suitable ink to manufacture silicon carbide green parts by LSD-print. Not only the printability but also the compatibility of the ink with the powder bed and the effect of the binding agent on the properties of the green parts are considered. Both aspects are important to obtain high green strength, which is necessary for printing large or thin-walled parts. Characterization methods, such as rheological and surface tension measurements, are applied to optimize three selected inks. The interplay between ink and powder bed is tested by contact angle measurements and by comparing the biaxial strength of cast and additively manufactured specimens. Out of the three binding agents tested, a polyethyleneimine and a phenolic resin have a high potential for their use in the LSD-print of silicon carbide green bodies, whereas a polyacrylate binding agent did not show the required properties. KW - Silicon carbide KW - Binders/binding KW - Inkjet KW - Printing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567911 DO - https://doi.org/10.1111/jace.18951 SN - 0002-7820 SP - 1 EP - 12 PB - Wiley online library AN - OPUS4-56791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scherr, J. F. A1 - Kollofrath, J. A1 - Popovics, J. S. A1 - Bühling, Benjamin A1 - Grosse, C. U. T1 - Detection of Delaminations in Concrete Plates Using a Laser Ablation Impact Echo Technique N2 - This study investigates the non-destructive detection of delaminations in concrete plates using non-contact laser ablation, instead of the conventional hammer excitation, as part of the impact echo method. We performed tests on five concrete specimens of different sizes, two of which contained artificial delaminations. A range of steel ball hammers was used as reference impulse sources, the responses of which were compared with wave excitation generated by a 7 ns pulsed 1064 nm Nd:YAG laser with 150 mJ pulse energy. Signals were recorded by surface-mounted accelerometers and two contactless methods: microphones and a laser Doppler vibrometer. The laser generates frequencies across a broad range of frequencies (0 to 150 kHz) but with much less energy than the hammers' narrower frequency spectra; the laser pulse energy transferred into the specimen is 0.07 mJ, corresponding to about 0.5 ‰ of the impulse source energy. Because of this, the thick intact plates' characteristic thickness stretch resonance frequency can be reliably detected by the hammer excitations but not when using laser excitation. However, the laser can excite low-frequency flexural vibration modes over a shallow delamination at 3 cm depth. The low-frequency flexural vibration results are verified by numerical natural frequency analysis. KW - Concrete testing KW - Defect detection KW - Lamb waves KW - Impact echo KW - Non-destructive testing KW - Vibration PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567932 DO - https://doi.org/10.1007/s10921-022-00921-x SN - 0195-9298 VL - 42 IS - 1 SP - 1 EP - 14 PB - Springer AN - OPUS4-56793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chubarenko, B. A1 - Domnin, D. A1 - Simon, Franz-Georg A1 - Scholz, Philipp A1 - Leitsin, V. A1 - Tovpinets, A. A1 - Karmanov, K. A1 - Esiukova, E. T1 - Change over Time in theMechanical Properties of Geosynthetics Used in Coastal Protection in the South-Eastern Baltic N2 - The most massive design on the Baltic shore used geosynthetic materials, the landslide protection construction in Svetlogorsk (1300 m long, 90,000 m2 area, South-Eastern Baltic, Kaliningrad Oblast, Russian Federation) comprises the geotextile and the erosion control geomat coating the open-air cliff slopes. Due to changes in elastic properties during long-term use in the open air, as well as due to its huge size, this structure can become a non-negligible source of microplastic pollution in the Baltic Sea. Weather conditions affected the functioning of the structure, so it was assessed that geosynthetic materials used in this outdoor (open-air) operation in coastal protection structures degraded over time. Samples taken at points with different ambient conditions (groundwater outlet; arid places; exposure to the direct sun; grass cover; under landslide) were tested on crystallinity and strain at break. Tests showed a 39–85% loss of elasticity of the polymer filaments after 3 years of use under natural conditions. Specimens exposed to sunlight are less elastic and more prone to fail, but not as much as samples taken from shaded areas in the grass and under the landslide, which were the most brittle. KW - Geosynthetics KW - Microplastic KW - Degradation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567978 UR - https://www.mdpi.com/2077-1312/11/1/113 DO - https://doi.org/10.3390/jmse11010113 SN - 2077-1312 VL - 11 IS - 1 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-56797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Brinell-Hardness data (HBW 2.5/62.5) of aluminum alloy EN AW-2618A after different aging times and temperatures N2 - The article covers data on the Brinell hardness of the forged precipitation-hardened aluminum alloy EN AW-2618A in the initial T61 condition (i. e. slightly underaged) and after isothermal aging for up to 25,0 0 0 h at aging temperatures between 160 °C and 350 °C. In addition, the hardness was determined on specimens after creep testing at 190 °C and various stresses. The hardness decreases with increasing ag- ing time due to the microstructural evolution of the harden- ing precipitates. The drop occurs faster the higher the aging temperature. Aging under creep load additionally accelerates the hardness decrease. KW - Aluminum alloy KW - EN AW-2618A KW - Brinell hardness KW - Aging KW - Creep KW - Ostwald ripening KW - Reheating PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567611 DO - https://doi.org/10.1016/j.dib.2022.108830 SN - 2352-3409 VL - 46 PB - Elsevier Inc. AN - OPUS4-56761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sözen, H.I. A1 - Ener, S. A1 - Maccari, F. A1 - Fayyazi, B. A1 - Gutfleisch, O. A1 - Neugebauer, J. A1 - Hickel, Tilmann T1 - Combined ab initio and experimental screening of phase stabilities in the Ce-Fe-Ti-X system (X = 3d and 4d metals) N2 - One of the main challenges for the synthesis and application of the promising hard-magnetic compound CeFe11Ti is the formation of Laves phases that are detrimental for their thermodynamic stability and magnetic properties. In this paper, we present an ab initio based approach to modify the stability of these phases in the Ce-Fe-Ti system by additions of 3d and 4d elements. We combine highly accurate free-energy calculations with an efficient screening technique to determine the critical annealing temperature for the formation of Ce(Fe,X)11Ti. The central findings are the dominant role of the formation enthalpy at T = 0 K on chemical trends and the major relevance of partial chemical decompositions. Based on these insights, promising transition metals to promote the stability of the hard-magnetic phase, such as Zn and Tc, were predicted. The comparison with suction casting and reactive crucible melting experiments for Ce-Fe-Ti-X (X = Cu, Ga, Co, and Cr) highlights the relevance of additional phases and quaternary elements. KW - Density functional theory KW - Phase stability KW - Energy materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568850 DO - https://doi.org/10.1103/PhysRevMaterials.7.014410 SN - 2475-9953 VL - 7 SP - 1 EP - 15 AN - OPUS4-56885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heisterkamp, I. A1 - Gartiser, S. A1 - Schoknecht, Ute A1 - Happel, O. A1 - Kalbe, Ute A1 - Kretzschmar, M. A1 - Ilvonen, O. T1 - Investigating the ecotoxicity of construction product eluates as multicomponent mixtures N2 - The release of hazardous compounds from construction products can harm human health and the environment. To improve the sustainability of construction materials, the leaching of substances from construction products and their potential environmental impact should be assessed. Twenty-seven construction products from different product groups were examined with a combination of standardized leaching tests (dynamic surface leaching test and percolation test) and biotests (algae, daphnia, fish egg, luminescent bacteria, umu and Ames fluctuation tests). To identify the released substances, extensive qualitative and quantitative chemical analyses were performed, including gas chromatographic and liquid chromatographic screening techniques. Results: Many of the tested eluates caused signifcant ecotoxic efects. Particularly high ecotoxicities were observed for grouts (lowest ineffective dilution (LID) up to 16384) and cork granules (LID up to 24578). The results of ecotoxicity tests allow the prioritization of the eluates that should be subjected to detailed chemical analyses. Organic screening by different methods and ranking the identifed substances based on recorded hazard classification is a suitable approach to identify the relevant toxic substances. Conclusions: Determining the ecotoxicity of eluates from construction products records the summary effect of all leachable substances. This instrument is especially useful for construction products of complex and largely unknown composition. The ecotoxicological and the chemical–analytical approach complement each other in an ideal way to characterize the potential hazard of eluates from construction products and to identify the environmentally hazardous components in these eluates. Our results confirm that the proposed harmonized methods for testing eluate toxicity are an adequate and applicable procedure to move toward a more sustainable way of building and to reduce toxic effects of construction products in their use phase in the environment. KW - Construction products KW - Building materials KW - Ecotoxicity KW - Biotests KW - Leaching KW - Eluates KW - Chemical analysis KW - Analytical screening techniques KW - Mixture toxicity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568864 DO - https://doi.org/10.1186/s12302-023-00711-w VL - 35 IS - 1 SP - 1 EP - 20 PB - Springer AN - OPUS4-56886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karapanagiotis, Christos A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Machine learning assisted BOFDA for simultaneous temperature and strain sensing in a standard optical fiber N2 - We report, to our knowledge for the first time on simultaneous distributed temperature and strain sensing in a standard telecom optical fiber using a machine learning assisted Brillouin frequency domain analysis (BOFDA) system. The well-known temperature and strain cross-sensitivity problem is addressed by developing a BOFDA system with a high signal-to-noise ratio and applying machine learning. The spectrum consists of four highly resolved peaks, whose Brillouin frequency shifts are extracted and serve as features for the machine learning algorithms. The spectra result from a 450-m standard SMF-28 optical fiber, and particularly from a segment of 30 m. This fiber segment is coiled around a stretcher and placed in a climate chamber. The applied temperature and strain values range from 20 °C to 40 °C and from 0 µɛ to 1380 µɛ, respectively. The total measurement time to achieve a high SNR and resolve four peaks with a spatial resolution of 6 m is 16 min. To discriminate temperature and strain effects, simple frequentist and more sophisticated Bayesian-based algorithms are employed with the powerful Gaussian process regression (GPR) delivering the best performance in terms of temperature and strain errors, which are found to be 2 °C and 45 µɛ, respectively. These errors are calculated using leave-one-out cross-validation, so that an unbiased estimation of the sensor’s performance is provided. KW - Machine learning KW - Brillouin distributed fiber optic sensors KW - Temperature and strain sensing KW - BOFDA PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569155 DO - https://doi.org/10.1364/OE.480224 SN - 1094-4087 VL - 31 IS - 3 SP - 5027 EP - 5041 PB - OPTICA AN - OPUS4-56915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Scholtz, Lena A1 - Genger, C. A1 - Welker, P. A1 - Schreiber, Frank A1 - Meyer, Klas A1 - Resch-Genger, Ute T1 - Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies N2 - Ratiometric green–red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fuorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability. KW - Sensors KW - Silica and polystyrene nanoparticles KW - pH probe KW - Fluorescence spectroscopy KW - Cell studies KW - Dye KW - Particle synthesis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569198 DO - https://doi.org/10.1038/s41598-023-28203-0 SN - 2045-2322 VL - 13 IS - 1 SP - 1321 EP - 1336 PB - Nature CY - London AN - OPUS4-56919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mehta, B. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Markötter, Henning A1 - Bruno, Giovanni A1 - Hryha, E. A1 - Nyborg, L. A1 - Virtanen, E. T1 - Microstructure, mechanical properties and fracture mechanisms in a 7017 aluminium alloy tailored for powder bed fusion – laser beam N2 - This study addressed a 7017 Al-alloy tailored for powder bed fusion – laser beam (PBF-LB) process. The alloy was prepared by mixing 3 wt% Zr and 0.5 wt% TiC powder to standard pre-alloyed 7017 grade aluminium powder. This made printing of the alloys possible avoiding solidification cracking in the bulk and achieving high relative density (99.8 %). Such advanced alloys have significantly higher Young’s modulus (>80 GPa) than conventional Al-alloys (70–75 GPa), thus making them attractive for applications requiring high stiffness. The resulting microstructure in as-printed condition was rich in particles originating from admixed powders and primary precipitates/inclusions originating from the PBF-LB process. After performing a T6-like heat treatment designed for the PBF-LB process, the microstructure changed: Zr-nanoparticles and Fe- or Mg/Zn- containing precipitates formed thus providing 75 % increase in yield strength (from 254 MPa to 444 MPa) at the cost of decreasing ductility (∼20 % to ∼9 %). In-situ tensile testing combined with SXCT, and ex-situ tensile testing combined with fracture analysis confirmed that the fracture initiation in both conditions is highly dependent on defects originated during printing. However, cracks are deflected from decohesion around Zr-containing inclusions/precipitates embedded in the Al-matrix. This deflection is seen to improve the ductility of the material. KW - Additive manufacturing KW - Powder bed fusion Laser beam KW - X-ray computed tomography KW - Strengthening mechanisms KW - Crack propagation KW - Zirconium PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568243 DO - https://doi.org/10.1016/j.matdes.2023.111602 SN - 0264-1275 VL - 226 SP - 1 EP - 14 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-56824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martusevich, A. A1 - Kornev, R. A1 - Ermakov, A. A1 - Gornushkin, Igor B. A1 - Nazarov, V. A1 - Shabarova, L. A1 - Shkrunin, V. T1 - Spectroscopy of Laser-Induced Dielectric Breakdown Plasma in Mixtures of Air with Inert Gases Ar, He, Kr, and Xe N2 - The generation of ozone and nitrogen oxides by laser-induced dielectric breakdown (LIDB) in mixtures of air with noble gases Ar, He, Kr, and Xe is investigated using OES and IR spectroscopy, mass spectrometry, and absorption spectrophotometry. It is shown that the formation of NO and NO2 noticeably depends on the type of inert gas; the more complex electronic configuration and the lower ionization potential of the inert gas led to increased production of NO and NO2. The formation of ozone occurs mainly due to the photolytic reaction outside the gas discharge zone. Equilibrium thermodynamic analysis showed that the formation of NO in mixtures of air with inert gases does not depend on the choice of an inert gas, while the equilibrium concentration of the NO+ ion decreases with increasing complexity of the electronic configuration of an inert gas. KW - Laser-induced dielectric breakdown (LIDB) KW - Nitrogen monoxide KW - Nitrogen dioxide KW - Ozone KW - Emission spectroscopy KW - Inert gases KW - Thermodynamic analysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568258 DO - https://doi.org/10.3390/s23020932 SN - 1424-8220 VL - 23 IS - 2 SP - 1 EP - 13 PB - MDPI CY - Basel, Switzerland AN - OPUS4-56825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abusafia, A. A1 - Scheid, C. A1 - Meurer, Maren A1 - Altmann, Korinna A1 - Dittmer, U. A1 - Steinmetz, H. T1 - Microplastic sampling strategies in urban drainage systems for quantification of urban emissions based on transport pathways N2 - Tracking waterborne microplastic (MP) in urban areas is a challenging task because of the various sources and transport pathways involved. Since MP occurs in low concentrations in most wastewater and stormwater streams, large sample volumes need to be captured, prepared, and carefully analyzed. The recent research in urban areas focused mainly on MP emissions at wastewater treatment plants (WWTPs), as obvious entry points into receiving waters. However, important transport pathways under wet-weather conditions are yet not been investigated thoroughly. In addition, the lack of comprehensive and comparable sampling strategies complicated the attempts for a deeper understanding of occurrence and sources. The goal of this paper is to (i) introduce and describe sampling strategies for MP at different locations in a municipal catchment area under dry and wet-weather conditions, (ii) quantify MP emissions from the entire catchment and two other smaller ones within the bigger catchment, and (iii) compare the emissions under dry and wet-weather conditions. WWTP has a high removal rate of MP (>96%), with an estimated emission rate of 189 kg/a or 0.94 g/[population equivalents (PEQ · a)], and polyethylene (PE) as the most abundant MP. The specific dry-weather emissions at a subcatchment were ≈30 g/(PEQ · a) higher than in the influent of WWTP with 23 g/(PEQ · a). Specific wet-weather emissions from large sub-catchment with higher traffic and population densities were 1952 g/(ha · a) higher than the emissions from smaller catchment (796 g/[ha · a]) with less population and traffic. The results suggest that wet-weather transport pathways are likely responsible for 2–4 times more MP emissions into receiving waters compared to dry-weather ones due to tire abrasion entered from streets through gullies. However, more investigations of wet-weather MP need to be carried out considering additional catchment attributes and storm event characteristics. KW - Combined sewer system KW - Large volume samplers KW - Microplastic pollution KW - Separate sewer system KW - Stormwater retention tank PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568271 DO - https://doi.org/10.1002/appl.202200056 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altmann, Korinna A1 - Goedecke, Caroline A1 - Bannick, C.-G. A1 - Abusafia, A. A1 - Scheid, C. A1 - Steinmetz, H. A1 - Paul, Andrea A1 - Beleites, C. A1 - Braun, U. T1 - Identification of microplastic pathways within a typical European urban wastewater system N2 - In recent years, thermoextraction/desorption-gas chromatography/mass spectrometry (TED-GC/MS) has been developed as a rapid detection method for the determination of microplastics (MP) mass contents in numerous environmentally relevant matrices and, in particular, for the measurement of polymers in water samples without time-consuming sample preparation. The TED-GC/MS method was applied to investigate a typical European municipal wastewater system for possible MP masses. Such investigations are important in view of the recent revision of the Urban Wastewater Treatment Directive. Four different representative sampling sites were selected: greywater (domestic wastewater without toilet), combined sewer, and influent and effluent of a wastewater treatment plant (WWTP). All samples were collected by fractional filtration. Filtration was carried out over mesh sizes of 500, 100, 50, and in some cases, 5 µm. Polyethylene (PE), polypropylene (PP), and polystyrene (PS) were detected in all samples, with the PE fraction dominating in all cases. Styrene-butadiene rubber which serves as an indication of tire abrasion, was only found in the influent of the WWTP. The highest MP mass contents were found in the combined sewer, so MP can become a source of pollution during heavy rain events when the capacity limits of the effluent are reached, and the polluted effluent is released uncontrolled into the environment. Based on the studies, MP retention from the WWTP could be estimated to be approximately 96%. Few trends in polymer type or mass contents were detected within the different fractions of the samples or when comparing samples to each other. KW - Microplastics KW - Microplastic analysis KW - TED-GC/MS KW - Microplastic pathways KW - Mass contents PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568289 DO - https://doi.org/doi.org/10.1002/appl.202200078 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Editorial: Special Issue “Advanced Pulse Laser Machining Technology" N2 - “Advanced Pulse Laser Machining Technology” is a rapidly growing field that can be tailored to special industrial and scientific applications. This is significantly driven by the availability of high-repetition-rate laser sources and novel beam delivery concepts. KW - Editorial KW - Pulse Laser KW - Laser Machining KW - Ultrashort laser pulses PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568410 DO - https://doi.org/10.3390/ma16020819 SN - 1996-1944 VL - 16 IS - 2 SP - 1 EP - 4 PB - MDPI CY - Basel AN - OPUS4-56841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Getenet, M. A1 - Otálora, F. A1 - Emmerling, Franziska A1 - Al-Sabbagh, Dominik A1 - García-Ruiz, J. M. T1 - Mineral precipitation and hydrochemical evolution through evaporitic processes in soda brines (East African Rift Valley) N2 - Soda lakes of the East African Rift Valley are hyperalkaline, hypersaline lakes extremely enriched in Na+, K+, Cl−, CO32−, HCO3−, and SiO2. In this paper, we investigate the chemical evolution in these lakes and the production of chemical sediments by salt precipitation via evaporation. Water samples from tributary springs and three lakes (Magadi, Nasikie Engida and Natron) have been experimentally studied by in-situ X-ray diffraction during evaporation experiments to characterize the sequence of mineral precipitation. These data are complemented by ex-situ diffraction studies, chemical analyses and thermodynamic hydrochemical calculations producing detailed information on the activity of all solution species and the saturation state of all minerals potentially generated by the given composition. Major minerals precipitating from these samples are sodium carbonates/bicarbonates as well as halite. The CO3/HCO3 ratio, controlled by pH, is the main factor defining the Na‑carbonates precipitation sequence: in lake brines where CO3/HCO3 > 1, trona precipitates first whereas in hot springs, where CO3/HCO3 ≪ 1, nahcolite precipitates instead of trona, which forms later via partial dissolution of nahcolite. Precipitation of nahcolite is possible only at lower pH values (pCO2 higher than −2.7) explaining the distribution of trona and nahcolite in current lakes and the stratigraphic sequences. Later, during evaporation, thermonatrite precipitates, normally at the same time as halite, at a very high pH (>11.2) after significant depletion of HCO3− due to trona precipitation. The precipitation of these soluble minerals increases the pH of the brine and is the main factor contributing to the hyperalkaline and hypersaline character of the lakes. Villiaumite, sylvite, alkaline earth carbonates, fluorapatite and silica are also predicted to precipitate, but most of them have not been observed in evaporation experiments, either because of the small amount of precipitates produced, kinetic effects delaying the nucleation of some phases, or by biologically induced effects in the lake chemistry that are not considered in our calculations. Even in these cases, the chemical composition in the corresponding ions allows for discussion on their accumulation and the eventual precipitation of these phases. The coupling of in-situ and ex-situ experiments and geochemical modelling is key to understanding the hydrogeochemical and hydroclimatic conditions of soda lakes, evaporite settings, and potentially soda oceans of early Earth and other extraterrestrial bodies. KW - Crystallization sequence KW - Hydrochemical evolution KW - Alkaline brines KW - Sodium carbonate minerals KW - Soda lakes KW - Evaporite deposits PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568431 DO - https://doi.org/10.1016/j.chemgeo.2022.121222 SN - 0009-2541 VL - 616 SP - 1 EP - 13 PB - Elsevier CY - New York, NY AN - OPUS4-56843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Adams, L. C. A1 - Brangsch, J. A1 - Heyl, J. L. A1 - Zhao, J. A1 - Verlemann, C. A1 - Karst, U. A1 - Collettini, F. A1 - Auer, T. A. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Collagen-specific molecular magnetic resonance imaging of prostate cancer N2 - Constant interactions between tumor cells and the extracellular matrix (ECM) influence the progression of prostate cancer (PCa). One of the key components of the ECM are collagen fibers, since they are responsible for the tissue stiffness, growth, adhesion, proliferation, migration, invasion/metastasis, cell signaling, and immune recruitment of tumor cells. To explore this molecular marker in the content of PCa, we investigated two different tumor volumes (500 mm3 and 1000 mm3) of a xenograft mouse model of PCa with molecular magnetic resonance imaging (MRI) using a collagen-specific probe. For in vivo MRI evaluation, T1-weighted sequences before and after probe administration were analyzed. No significant signal difference between the two tumor volumes could be found. However, we detected a significant difference between the signal intensity of the peripheral tumor area and the central area of the tumor, at both 500 mm3 (p < 0.01, n = 16) and at 1000 mm3 (p < 0.01, n = 16). The results of our histologic analyses confirmed the in vivo studies: There was no significant difference in the amount of collagen between the two tumor volumes (p > 0.05), but within the tumor, higher collagen expression was observed in the peripheral area compared with the central area of the tumor. Laser ablation with inductively coupled plasma mass spectrometry further confirmed these results. The 1000 mm3 tumors contained 2.8 +- 1.0% collagen and the 500 mm3 tumors contained 3.2 +- 1.2% (n = 16). There was a strong correlation between the in vivo MRI data and the ex vivo histological data (y = 0.068x + 1.1; R2 = 0.74) (n = 16). The results of elemental analysis by inductively coupled plasma mass spectrometry supported the MRI data (y = 3.82x + 0.56; R2 = 0.79; n = 7). MRI with the collagen-specific probe in PCa enables differentiation between different tumor areas. This may help to differentiate tumor from healthy tissue, potentially identifying tumor areas with a specific tumor biology. KW - Molecular imaging KW - Magnetic resonance imaging KW - MRI KW - Prostate cancer KW - Collagen KW - Laser ablation-inductively coupled plasma-mass spectroscopy KW - EP-3533 KW - Peptide probe KW - Gd-DOTA KW - Contrast agent KW - Tumor PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568449 DO - https://doi.org/10.3390/ijms24010711 SN - 1422-0067 SN - 1661-6596 VL - 24 IS - 1 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-56844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Agudo Jácome, Leonardo A1 - Lopez-Galilea, I. A1 - Darvishi Kamachali, Reza A1 - Fries, S. G. T1 - Data regarding the experimental findings compared with CALPHAD calculations of the AlMo0.5NbTa0.5TiZr refractory high entropy superalloy N2 - This contribution contains the raw data used to compare experimental results with thermodynamic calculations using the CALPHAD method, which is related to the research article “The AlMo0.5NbTa0.5TiZr refractory high entropy superalloy: experimental findings and comparison with calculations using the CALPHAD method” [1] , and therefore this article can be used as a basis for interpreting the data contained therein. The AlMo0.5NbTa0.5TiZr refractory superalloy was characterized in the cast and annealed condition (1400 °C for 24 h) in order to measure grain size and to identify and measure the size and area fraction of the phases present. The raw data of this article include X-ray diffraction (XRD) measurements, microstructural characterization by scanning and transmission electron microscopy (SEM and TEM), and elemental analysis by energy dispersive X-ray spectroscopy (EDX). XRD includes the determination of phases and the lattice parameters (A2, B2, and hexagonal structure). Microstructural analysis by scanning and transmission electron microscopy includes (1) identification of composition, size, and volume fraction of the present phases and (2) determination of grain size. Based on these experimental data, it is possible to identify similarities and discrepancies with the data calculated using the CALPHAD method for the alloy under study in Ref. [1] , which provides the basis for better and more efficient development of reliable databases. KW - Transmission electron microscopy KW - Scanning electron microscopy KW - Microstructural characterization KW - Refractory high entropy alloys PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568009 DO - https://doi.org/10.1016/j.dib.2022.108858 SN - 2352-3409 VL - 46 SP - 1 EP - 19 PB - Elsevier CY - Amsterdam AN - OPUS4-56800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rappsilber, Tim A1 - Yusfi, Nawar A1 - Krüger, Simone A1 - Hahn, S.-K. A1 - Fellinger, Tim-Patrick A1 - Krug von Nidda, Jonas A1 - Tschirschwitz, Rico T1 - Meta-analysis of heat release and smoke gas emission during thermal runaway of lithium-ion batteries N2 - Herein a meta-analysis of 76 experimental research papers from 2000 to 2021 is given about possible effects on the thermal runaway of lithium-ion battery cells. Data on the hazards of gas emissions and released heat are related to each other and differentiated by cell properties such as, cell geometry, cathode type or state of charge. Quantitative information on the total heat release in the range of 2.0–112.0 kJ Wh−1, the peak heat release rate in the range of 0.006–2.8 kW Wh−1and the smoke gas emission were extracted, normalized in terms of cell energy (Wh), combined in a data library and compared graphically. The total amount of gas emitted (3–48 mmol Wh−1) as well as the released amount of carbon monoxide (1–161 mg Wh−1) and hydrogen fluoride (2–197 mg Wh−1) were investigated as a function of the state of charge and cell geometry. The analysis reveals that the measured values are significantly influenced by the types of calorimeters and smoke gas analyzers used as well as by the type of thermal runaway trigger. This meta-analysis can serve as an important basis for any risk assessment of lithium-ion batteries. KW - Lithium-ion battery KW - Thermal runaway KW - Cathode active material KW - Heat release KW - Smoke gas emission PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568071 DO - https://doi.org/10.1016/j.est.2022.106579 SN - 2352-152X VL - 60 SP - 1 EP - 15 PB - Elsevier CY - Amsterdam AN - OPUS4-56807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Buzolin, R. H. A1 - Richter, Tim A1 - Pixner, F. A1 - Rhode, Michael A1 - Schroepfer, Dirk A1 - Enzinger, N. T1 - Microstructure characterisation of multi-principal element alloys welds produced by electron beam welding N2 - This work explores the feasibility of producing bead-on-plate welds of a CrCoNi medium entropy alloy and a CrMnFeCoNi high entropy alloy using electron beam welding. The alloys were welded in two states: one in an as-cold-rolled condition and the other in an annealed condition. In addition, the materials are welded with two different parameters. The FCC microstructure of the welds is investigated using scanning electron microscopy assisted by energy-dispersive X-ray spectroscopy and electron-backscattered diffraction. The impact of the weld on the microstructure is discussed. The heat-affected zone is negligible for the annealed condition of both medium and high entropy alloys since there is no driving force for recrystallisation and the exposure time to high temperature is insufficient for grain coarsening. The texture formed in the fusion zone is also discussed and compared to the texture in the base metal and the heat-affected zone. Although the grain growth along the (100) crystallographic direction is preferential in all cases, the crystallographic texture type differs from each weld. Higher hardness values are measured in the medium entropy alloy’s base metal and fusion zone than in the high entropy alloy. KW - Multi-principal element alloy KW - Electron backscattered diffraction KW - Electron beam welding KW - High-entropy alloy KW - Microstructure characterization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568129 DO - https://doi.org/10.1016/j.matdes.2023.111609 SN - 1873-4197 VL - 225 SP - 1 EP - 14 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-56812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, J. A1 - Gong, M. A1 - Zhang, W. A1 - Mehmood, Asad A1 - Zhang, J. A1 - Ali, G. A1 - Kucernak, A. T1 - Simultaneously incorporating atomically dispersed Co-Nₓ sites with graphitic carbon layer-wrapped Co₉S₈ nanoparticles for oxygen reduction in acidic electrolyte N2 - A facile yet robust synthesis is reported herein to simultaneously incorporate atomically dispersed Co-Nₓ sites with graphitic layer-protected Co₉S₈ nanoparticles (denoted as Co SACs+Co₉S₈) as an efficient electrocatalyst for oxygen reduction in acidic solution. The Co SACs+Co₉S₈ catalyst shows low H₂O₂ selectivity (∼5 %) with high half-wave potential (E1/2) of ∼0.78 V(RHE) in 0.5 M H₂SO₄. The atomic sites of the catalyst were quantified by a nitrite stripping method and the corresponding site density of the catalyst is calculated to be 3.2×10¹⁸ sites g⁻¹. Besides, we also found the presence of a reasonable amount of Co₉S₈ nanoparticles is beneficial for the oxygen electrocatalysis. Finally, the catalyst was assembled into a membrane electrode assembly (MEA) for evaluating its performance under more practical conditions in proton exchange membrane fuel cell (PEMFC) system. KW - Co−N-Cs KW - Fuel cells KW - Single-atom catalysts KW - Oxygen reduction reaction KW - PGM-free catalysts PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575993 DO - https://doi.org/10.1002/celc.202300110 SN - 2196-0216 VL - 10 IS - 12 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Czeskleba, Denis A1 - Nietzke, Jonathan A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Investigation of stress relief crack susceptibility of CrMoV steels coarse grain HAZ via simulation of uniaxial stress conditions during PWHT N2 - Creep-resistant steels such as the 13CrMoV9-10, used in the construction of thick-walled pressure vessels, are most commonly submerged arc welded (SAW). These steels can develop stress relief cracks (SRC) if the mandatory post weld heat treatment (PWHT) is performed improperly. Current PWHT parameters, such as heating rate and holding time at a specific holding temperature, are based on both empirical experience and conventional free shrinking welding experiments to characterize the SRC-susceptibility of the weld. These cannot adequately depict the higher residual stresses caused by the structurally induced stiffness of the surrounding construction. This study discusses the development of a repeatable, precise, and time-efficient methodology to study the effects of different stress levels and heating rates on the SRC susceptibility of the coarse grain heat-affected zone (CGHAZ). For that purpose, samples were thermically treated to simulate a coarse grain heat-affected zone (CGHAZ) and subsequently exposed to representative levels of stress during the heating phase of a PWHT. The recorded stress and heating rate–dependent strains were mathematically analyzed via curve tracing/calculus to identify interdependent effects. This procedure facilitates the measurement of material characteristics such as carbide growth on grain boundaries at the µm-scale via an integrated value over the entire sample volume. The first and second derivatives show a slight, precipitate-dependent, increase in hardness of the sample, depending on the heating rate and applied stress. This new methodology generates an improved assessment of the SRC susceptibility of SAW microstructures of creep-resistant CrMoV steels. KW - Submerged arc welding KW - Creep-resistant steel KW - Stress relief cracking KW - Component-like test KW - Post weld heat treatment PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576007 DO - https://doi.org/10.1007/s40194-023-01539-x SN - 0043-2288 SP - 1 EP - 9 PB - Springer Nature CY - Basel (CH) AN - OPUS4-57600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klippel, A. A1 - Hofmann-Böllinghaus, Anja A1 - Gnutzmann, Tanja A1 - Piechnik, K. T1 - Reaction-to-fire testing of bus interior materials: Assessing burning behaviour and smoke gas toxicity N2 - Although fire safety regulations for buses have been adapted in recent years regarding, for example, fire detection and engine fire suppression systems, the changes in regulations for bus interior materials are minimal. A comparison of fire safety regulations for interior materials in other transport sectors for trains, ships or aircraft reveals a much lower level of requirements for bus materials. Although repeated bus accidents as well as fire statistics show the danger a bus fire can pose to passengers. In particular, the combination of a fire incident and passengers with reduced mobility led to severe disasters in Germany and other European countries. To enhance the fire safety for passengers, the interior bus materials are crucial as the fire development in the bus cabin determines whether escape and rescue is possible. Against this background, bus interior materials were tested in different fire test scenarios. Measurement of a wide variety of parameters, for example, the mass loss, ignition time, smoke gas composition, heat release rate among others were carried out. Tested materials complied to the newest set of requirements. For this purpose, interior materials and their components had to be identified according to their chemical structure. Parts of the tests were funded by BASt (Federal Highway Research Institute) in the project 82.0723/2018. Experimental results show reaction-to-fire behaviour which lead to very limited times for escape and rescue in case of fire in a bus cabin. Based on the studies on fire behaviour and toxicity assessment, recommendations for improved fire safety regulations for interior materials could be made. KW - Burning behaviour KW - Bus interior materials KW - Cone calorimeter KW - DIN tube furnace KW - FTIR spectroscopy KW - Reference values KW - Smoke toxicity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576085 DO - https://doi.org/10.1002/fam.3108 SN - 1099-1018 VL - 47 IS - 5 SP - 665 EP - 680 PB - Wiley CY - New York, NY AN - OPUS4-57608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Krom, I. A1 - Heikens, D. A1 - Horn, Wolfgang A1 - Wilke, Olaf A1 - Richter, Matthias A1 - Baldan, A. T1 - Metrological generation of SI-traceable gas-phase standards and reference materials for (semi-) volatile organic compounds N2 - EN 16516 sets specifications for the determination of emissions into indoor air from construction products. Reliable, accurate and International System of Unit (SI)-traceable measurement results of the emissions are the key to consumer protection. Such measurement results can be obtained by using metrologically traceable reference materials. Gas-phase standards of volatile organic compounds (VOCs) in air can be prepared by a variety of dynamic methods according to the ISO 6145 series. However, these methods are not always applicable for semi-VOCs (SVOCs) due to their high boiling point and low vapour pressure. Therefore, a novel dynamic gas mixture generation system has been developed. With this system gas-phase standards with trace level VOCs and SVOCs in air can be prepared between 10 nmol mol−1 and 1000 nmol mol−1. The VOCs and SVOCs in this study have normal boiling points ranging from 146 °C to 343 °C. Metrologically traceable reference materials of the gas-phase standard were obtained by sampling of the VOC gas-phase standard into Tenax TA® sorbent material in SilcoNert® coated stainless steel tubes. Accurately known masses between 10 ng and 1000 ng per VOC were sampled. These reference materials were used to validate the dynamic system. Furthermore, the storage and stability periods of the VOCs in the reference materials were determined as these are crucial characteristics to obtain accurate and SI-traceable reference materials. In a round robin test (RRT), the reference materials were used with the aim of demonstrating the feasibility of providing SI-traceable standard reference values for SVOCs for interlaboratory comparison purposes. Based on the results from the validation, the storage and stability studies and the RRT, gas-phase standards and reference materials of VOCs and SVOCs with relative expanded uncertainties between 5% and 12% (k = 2) have been developed. These reference standards can be used as calibrants, reference materials or quality control materials for the analysis of VOC emissions. KW - SVOC KW - Dynamic calibration gas mixtures KW - Reference materials KW - Indoor air KW - Thermal desorption PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565978 DO - https://doi.org/10.1088/1361-6501/aca704 VL - 34 IS - 3 SP - 1 EP - 13 PB - IOP Publishing AN - OPUS4-56597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Soraya A1 - Jaut, Valerie A1 - Schneider, Rudolf T1 - Ergometrine sensing in rye flour by a magnetic bead-based immunoassay followed by flow injection analysis with amperometric detection N2 - A certain group of mycotoxins, the ergot alkaloids, has caused countless deaths throughout human history. They are found in rye and other cereals and ingesting contaminated foods can cause serious health problems. To identify contaminated food exceeding the legal limits for ergot alkaloids, a portable and cost-effective test system is of great interest to the food industry. Rapid analysis can be achieved by screening for a marker compound, for which we chose ergometrine. We developed a magnetic bead-based immunoassay for ergometrine with amperometric detection in a flow injection system using a handheld potentiostat and a smartphone. With this assay a limit of detection of 3 nM (1 μg/L) was achieved. In spiked rye flour, ergometrine levels from 25 to 250 μg/kg could be quantified. All results could be verified by optical detection. The developed assay offers great promise to meet the demand for on-site ergometrine detection in the food industry. KW - Ergot alkaloids KW - Amperometry KW - Magnetic beads KW - Immunoassay KW - Food analysis KW - Fow injection analysis KW - Mycotoxins PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565906 DO - https://doi.org/10.1016/j.talanta.2022.124172 SN - 0039-9140 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. VL - 254 IS - 124172 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-56590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Creep-fatigue of P92 in service-like tests with combined stress- and strain-controlled dwell times N2 - Complex service-like relaxation- and creep-fatigue tests with strain- and stress-controlled dwells and fatigue cycle durations of approx. 2200 s were performed exemplarily on a grade P92 steel at 620 ◦C in this study. The results indicate deviations in the prevailing creep mechanisms of long-term relaxation and creep dwells, affecting subsequent dwells, load shifts, and the macroscopic softening behavior quite differently. In addition, fracture surfaces and longitudinal metallographic sections reveal intergranular crack growth for complex loading with stress-controlled dwells, whereas complex strain-controlled tests enhance oxidation and transgranular crack propagation. These findings substantiate the limited transferability of relaxation-fatigue to creep-fatigue conditions. KW - Tempered martensite-ferritic steel KW - P92 KW - Dwell periods KW - Creep-fatigue interaction KW - Stress relaxation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564239 DO - https://doi.org/10.1016/j.ijfatigue.2022.107381 SN - 0142-1123 VL - 168 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-56423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Koch, Claudia T1 - Knowledge and technology transfer via publications, patents, standards: Exploring the hydrogen technological innovation system N2 - Clean technologies play a crucial role in reducing greenhouse gas emissions and protecting the climate. Hydrogen is a promising energy carrier and fuel that can be used in many applications. We explore the global hydrogen technological innovation system (TIS) by analyzing the three knowledge and technology transfer channels of publications, patents, and standards. Since the adoption of hydrogen technologies requires trust in their safety,this study specifically also focuses on hydrogen safety. Our results show that general and hydrogen safety research has increased significantly while patenting experienced stagnation. An analysis of the non-patent literature in safety patents shows little recognition of scientific publications. Similarly, publications are underrepresented in the analyzed 75 international hydrogen and fuel cell standards. This limited transfer of knowledge from published research to standards points to the necessity for greater involvement of researchers in standardization. We further derive implications for the hydrogen TIS and recommendations for a better and more impactful alignment of the three transfer channels. KW - Technological innovation system KW - Hydrogen safety KW - Knowledge and technology transfer KW - Publications KW - Patents KW - Standards PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564250 DO - https://doi.org/10.1016/j.techfore.2022.122201 SN - 0040-1625 VL - 187 SP - 1 EP - 14 PB - Elsevier Inc. AN - OPUS4-56425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Structuring of thin films by ultrashort laser pulses N2 - Modern life and global communication would not be possible without technologically tailored thin films; they are omnipresent in daily life applications. In most cases, the films are deposited entirely at the carrying substrates in a specific processing step of the device or sample. In some cases, however, removal or modification must be performed locally, i.e., site-controlled and material selective through an additional laser processing step. For that ultrashort laser pulses with durations in the femtosecond and picosecond range can provide unique advantages and capabilities in industrially scalable schemes. This article reviews the current state of the research and corresponding industrial transfer related to the structuring of thin films by ultrashort pulsed lasers. It focuses on the pertinent historic developments, reveals the relevant physical and chemical effects, explores the ultimate limits, and discusses selected industrial and scientific applications. KW - Thin films KW - Laser processing KW - Ultrashort lasers KW - Laser damage KW - Femtosecond laser ablation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565732 DO - https://doi.org/10.1007/s00339-022-06229-x SN - 0947-8396 SN - 1432-0630 VL - 129 IS - 1 SP - 1 EP - 38 PB - Springer CY - Berlin AN - OPUS4-56573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Wossidlo, Peter A1 - Habib, Abdel Karim T1 - Damage evolution detection in a pipeline segment under bending by means of acoustic emission N2 - A steel pipeline segment of 2.5 m length was subjected to quasi-static four-point bending load in three steps for studying the initial cracking and damage accumulation based on the Acoustic Emission (AE) technique and by the direct current potential drop (DCPD) technique. For the latter, a new post-test analysis method was established. AE is found more sensitive to crack initiation than DCPD. Formation of mesoscopic and macroscopic cracks as well as their closure and the resulting friction generate weighted peak frequencies below 400 kHz, whereas microscopic cracking produces AE with broad band spectra identifiable by weighted peak frequencies above 400 kHz. Critical states alike the maximum load level and the leak opening were accompanied by peak amplitudes above 85 dBAE. This rather fundamental study provides a data base for possibly developing advanced strategies of detection and alarm systems based on acoustic monitoring of pipelines, or at least, steel structures. KW - Crack KW - Accoustic emission KW - Frequency domain KW - Potential drop technique KW - Fracture PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565171 DO - https://doi.org/10.1016/j.ijpvp.2022.104863 SN - 0308-0161 VL - 201 IS - 104863 SP - 1 EP - 9 PB - Elsevier Science CY - Amsterdam AN - OPUS4-56517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Page, T.M. A1 - Nie, C. A1 - Neander, L. A1 - Povolotsky, T.L. A1 - Sahoo, A.K. A1 - Nickl, Philip A1 - Adler, J.M. A1 - Bawadkji, O. A1 - Radnik, Jörg A1 - Achazi, K. A1 - Ludwig, K. A1 - Lauster, D. A1 - Netz, R.R. A1 - Trimpert, J. A1 - Kaufer, B. A1 - Haag, R. A1 - Donskyi, Ievgen T1 - Functionalized Fullerene for Inhibition of SARS-CoV-2 Variants N2 - As virus outbreaks continue to pose a challenge, a nonspecific viral inhibitor can provide significant benefits, especially against respiratory viruses. Polyglycerol sulfates recently emerge as promising agents that mediate interactions between cells and viruses through electrostatics, leading to virus inhibition. Similarly, hydrophobic C60 fullerene can prevent virus infection via interactions with hydrophobic cavities of surface proteins. Here, two strategies are combined to inhibit infection of SARS-CoV-2 variants in vitro. Effective inhibitory concentrations in the millimolar range highlight the significance of bare fullerene’s hydrophobic moiety and electrostatic interactions of polysulfates with surface proteins of SARS-CoV-2. Furthermore, microscale thermophoresis measurements support that fullerene linear polyglycerol sulfates interact with the SARS-CoV-2 virus via its spike protein, and highlight importance of electrostatic interactions within it. All-atom molecular dynamics simulations reveal that the fullerene binding site is situated close to the receptor binding domain, within 4 nm of polyglycerol sulfate binding sites, feasibly allowing both portions of the material to interact simultaneously. KW - Covalent functionalization KW - Fullerene KW - SARS-CoV 2 KW - Sulfated materials KW - Virus inhibition PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568672 DO - https://doi.org/10.1002/smll.202206154 SN - 1613-6810 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-56867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merz, Benjamin A1 - Nilsson, R. A1 - Garske, C. A1 - Hilgenberg, Kai T1 - Camera-based high precision position detection for hybrid additive manufacturing with laser powder bed fusion N2 - Additive manufacturing (AM) in general and laser powder bed fusion (PBF-LB/M) in particular are becoming increasingly important in the field of production technologies. Especially the high achievable accuracies and the great freedom in design make PBF-LB/M interesting for the manufacturing and repair of gas turbine blades. Part repair involves building AM-geometries onto an existing component. To minimise the offset between component and AM-geometry, a precise knowledge of the position of the component in the PBF-LB/M machine is mandatory. However, components cannot be inserted into the PBF-LB/M machine with repeatable accuracy, so the actual position will differ for each part. For an offset-free build-up, the actual position of the component in the PBF-LB/M machine has to be determined. In this paper, a camera-based position detection system is developed considering PBF-LB/M constraints and system requirements. This includes finding an optimal camera position considering the spatial limitations of the PBF-LB/M machine and analysing the resulting process coordinate systems. In addition, a workflow is developed to align different coordinate systems and simultaneously correct the perspective distortion in the acquired camera images. Thus, position characteristics can be determined from images by image moments. For this purpose, different image segmentation algorithms are compared. The precision of the system developed is evaluated in tests with 2D objects. A precision of up to 30μm in translational direction and an angular precision of 0.021∘ is achieved. Finally, a 3D demonstrator was built using this proposed hybrid strategy. The offset between base component and AM-geometry is determined by 3D scanning and is 69μm. KW - Laser powder bed fusion KW - Additive manufacturing KW - Hybrid repair KW - Machine vision KW - Image processing KW - Position detection PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568583 DO - https://doi.org/10.1007/s00170-022-10691-5 SP - 1 EP - 16 PB - Springer AN - OPUS4-56858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sowoidnich, K. A1 - Maiwald, M. A1 - Ostermann, Markus A1 - Sumpf, B. T1 - Shifted excitation Raman difference spectroscopy for soil component identification and soil carbonate determination in the presence of strong fluorescence interference N2 - Detailed knowledge about soil composition is an important prerequisite for many applications, for example precision agriculture. Current standard laboratory methods are complex and time-consuming but could be complemented by non-invasive optical techniques. Its capability to provide a molecular fingerprint of individual soil components makes Raman spectroscopy a very promising candidate. A major challenge is strong fluorescence interference inherent to soil, but this issue can be overcome effectively using shifted excitation Raman difference spectroscopy (SERDS). A customized dual-wavelength diode laser emitting at 785.2 and 784.6 nm was used to investigate 117 soil samples collected from an agricultural field along a distance of 624 m and down to depths of 1 m. To address soil spatial heterogeneity, a raster scan approach comprising 100 measurement spots per sample was applied. Based on the Raman spectroscopic fingerprint extracted from intense fluorescence interference by SERDS, 13 mineral soil constituents were identified, and even closely related molecular species could be discriminated, for example polymorphs of titanium dioxide and calcium carbonate. For the first time, the capability of SERDS is demonstrated to predict the calcium carbonate content as an important soil parameter using partial least squares regression (R2 = 0.94, root mean square error of cross-validation RMSECV = 2.1%). Our findings demonstrate that SERDS can extract a wealth of spectroscopic information from disturbing backgrounds enabling qualitative and quantitative soil analysis. This highlights the large potential of SERDS for precision agriculture but also in further application areas, for example geology, cultural heritage and planetary exploration. KW - Calcium carbonate KW - Raman spectroscopy KW - Soil KW - X-Ray fluorescence KW - SERDS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569016 DO - https://doi.org/10.1002/jrs.6500 SN - 0377-0486 IS - Special Issue SP - 1 EP - 14 PB - John Wiley & Sons Ltd. CY - Hoboken, New Jersey, USA AN - OPUS4-56901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karapanagiotis, Christos A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Eine Sammlung durch Maschinelles Lernen unterstützter Verteilter Faseroptischer Sensoren für Infrastrukturmonitoring T1 - A collection of machine learning assisted distributed fiber optic sensors for infrastructure monitoring N2 - In this paper, we present a collection of machine learning assisted distributed fiber optic sensors (DFOS) for applications in the field of infrastructure monitoring. We employ advanced signal processing based on artificial neural networks (ANNs) to enhance the performance of the dynamic DFOS for strain and vibration sensing. Specifically, ANNs in comparison to conventional and computationally expensive correlation and linearization algorithms, deliver lower strain errors and speed up the signal processing allowing real time strain monitoring. Furthermore, convolutional neural networks (CNNs) are used to denoise the dynamic DFOS signal and enable useable sensing lengths of up to 100 km. Applications of the machine learning assisted dynamic DFOS in road traffic and railway infrastructure monitoring are demonstrated. In the field of static DFOS, machine learning is applied to the well-known Brillouin optical frequency domain analysis (BOFDA) system. Specifically, CNN are shown to be very tolerant against noisy spectra and contribute towards significantly shorter measurement times. Furthermore, different machine learning algorithms (linear and polynomial regression, decision trees, ANNs) are applied to solve the well-known problem of cross-sensitivity in cases when temperature and humidity are measured simultaneously. The presented machine learning assisted DFOS can potentially contribute towards enhanced, cost effective and reliable monitoring of infrastructures. N2 - In diesem Beitrag stellen wir eine Sammlung von verteilten faseroptischen Sensoren (DFOS) vor, die mit Hilfe von Maschinellem Lernen arbeiten und für Anwendungen im Bereich der Infrastrukturüberwachung geeignet sind. Wir setzen hierbei fortschrittliche Signalverarbeitung auf der Grundlage Künstlicher Neuronaler Netze ein, um die Leistungsfähigkeit dynamischer DFOS für die Messung von Dehnungen und Vibrationen zu verbessern. Insbesondere Künstliche Neuronale Netze (ANNs) liefern im Vergleich zu konventionellen und rechenintensiven Korrelations- und Linearisierungsalgorithmen geringere Dehnungsfehler und beschleunigen die Signalverarbeitung, so dass eine Dehnungsüberwachung in Echtzeit möglich ist. Darüber hinaus wenden wir Convolutional Neural Networks (CNNs) an, um dynamische DFOS-Signale zu entrauschen und damit nutzbare Messlängen von bis zu 100 km zu ermöglichen. Es werden Anwendungsbeispiele dieser durch Maschinelles Lernen unterstützten dynamischen DFOS in den Bereichen des Straßenverkehrsmonitorings und der Zug- und Gleisüberwachung aufgezeigt. Im Bereich der statischen DFOS wird Maschinelles Lernen auf das Verfahren der Optischen Brillouin-Frequenzbereichsanalyse (BOFDA) angewendet. Insbesondere CNN erweisen sich hier als sehr robust gegenüber verrauschten Spektren und tragen zu deutlich kürzeren Messzeiten bei. Darüber hinaus werden verschiedene Algorithmen des maschinellen Lernens (lineare und polynome Regression, Entscheidungsbäume, ANNs) angewandt, um das bekannte Problem der Querempfindlichkeit bei DFOS in den Fällen zu lösen, in denen Temperatur und Feuchtigkeit gleichzeitig gemessen werden sollen. Die hier vorgestellten, durch Maschinelles Lernen unterstützten, DFOS können zu einer verbesserten, kostengünstigen und zuverlässigen Überwachung von Infrastrukturen beitragen. KW - Artificial neural networks KW - Brillouin sensing KW - Distributed acoustic sensing KW - Fibre optic sensors KW - Infrastructure monitoring PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569044 DO - https://doi.org/10.1515/teme-2022-0098 SN - 0171-8096 SP - 1 EP - 19 PB - De Gruyter AN - OPUS4-56904 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schalau, Sebastian A1 - Habib, Abdel Karim A1 - Michel, S. T1 - A modified k-ε turbulence model for heavy gas dispersion in built-up environment N2 - For hazard assessment purposes, the dispersion of gases in complex urban areas is often a scenario to be considered. However, predicting the dispersion of heavy gases is still a challenge. In Germany, the VDI Guideline 3783, Part 1 and 2 is widely used for gas dispersion modelling. Whilst Part 1 uses a gauss model for calculating the dispersion of light or neutrally buoyant gases, Part 2 uses wind tunnel experiments to evaluate the heavier-than-air gas dispersion in generic built up areas. In practice, with this guideline, it is often not possible to adequately represent the existing obstacle configuration. To overcome this limitation, computational fluid dynamics (CFD) methods could be used. Whilst CFD models can represent obstacles in the dispersion area correctly, actual publications show that there is still further research needed to simulate the atmospheric flow and the heavy gas dispersion. This paper presents a modified k-ε-turbulence model that was developed in OpenFOAM v5.0 (England, London, The OpenFOAM Foundation Ltd Incorporated) to enhance the simulation of the atmospheric wind field and the heavy gas dispersion in built-up areas. Wind tunnel measurements for the dispersion of neutrally buoyant and heavy gases in built-up environments were used to evaluate the model. As a result, requirements for the simulation of the gas dispersion under atmospheric conditions have been identified and the model showed an overall good performance in predicting the experimental values. KW - Atmospheric boundary layer KW - OpenFOAM KW - Heavy gas KW - CFD PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568898 DO - https://doi.org/10.3390/atmos14010161 VL - 14 IS - 1 SP - 1 EP - 21 PB - MDPI AN - OPUS4-56889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine N2 - Small-angle X-ray scattering (SAXS) can be used for structural determination of biological macromolecules and polymers in their native states (e.g. liquid phase). This means that the structural changes of (bio-)polymers, such as proteins and DNA, can be monitored in situ to understand their sensitivity to changes in chemical environments. In an attempt to improve the reliability of such experiments, the reduction of radiation damage occurring from exposure to X-rays is required. One such method, is to use scavenger molecules to protect macromolecules against radicals produced during radiation exposure, such as reactive oxygen species (ROS). In this study we investigate the feasibility of applying the compatible solute, osmolyte and radiation protector Ectoine (THP(B)), as a scavenger molecule during SAXS measurements of the single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). In this case, we monitor the radiation induced changes of G5P during bio-SAXS measurments and the resulting microscopic energy-damage relation was determined from microdosimetric calculations by Monte-Carlo based particle scattering simulations with TOPAS/Geant4 and a custom target-model. This resulted in a median-lethal energy deposit of pure G5P at 4 mg mL−1 of E1/2 = 7 ± 5 eV, whereas a threefold increase of energy-deposit was needed under the presence of Ectoine to reach the same level of damage. This indicates that Ectoine increases the possible exposure time before radiation-damage to G5P is observed. Furthermore, the dominant type of damage shifted from aggregation in pure solutions towards a fragmentation for solutions containing Ectoine as a cosolute. These results are interpreted in terms of indirect radiation damage by reactive secondary species, as well as post-irradiation effects, related to preferential-exclusion of the cosolute from the protein surface. Hence, Ectoine is shown to provide a non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. KW - BioSAXS KW - Bio-SAXS KW - Cosolute KW - Ectoine KW - G5P KW - GVP KW - Radiation damage KW - Radical Scavenger KW - Single-stranded DNA-binding proteins KW - X-ray scattering KW - DNA KW - ssDNA KW - Protein KW - SAXS KW - Small-angle xray scattering KW - McSAS3 KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - Geant4-DNA KW - Topas KW - Topas-MC KW - Monte-Carlo simulations KW - Particle scattering simulations KW - Topas-nBio KW - OH Radical KW - OH radical scavenger KW - LEE KW - Ionizing radiation damage KW - Protein unfolding KW - Ectoin PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568909 DO - https://doi.org/10.1039/d2cp05053f SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5372 EP - 5382 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pech May, Nelson Wilbur A1 - Tabasco-Novelo, Carolina A1 - Quintana, Patricia A1 - Rodriguez-Gattorno, Geonel A1 - Alvarado-Gil, Juan J. T1 - Evidence of a Thermal Diffusivity Gap in Sintered Li–Co–Sb–O Solid Solutions N2 - In this work, the thermal properties of ternary Li₃ₓCo₇₋₄ₓSb₂₊ₓO₁₂ solid solutions are studied for different concentrations in the range 0 ≤ x ≤ 0.7. Samples are elaborated at four different sintering temperatures: 1100, 1150, 1200 and 1250 °C. The effect of increasing the content of Li⁺ and Sb⁵⁺, accompanied by the reduction of Co²⁺, on the thermal properties is studied. It is shown that a thermal diffusivity gap, which is more pronounced for low values of x, can be triggered at a certain threshold sintering temperature (around 1150 °C in this study). This effect is explained by the increase of contact area between adjacent grains. Nevertheless, this effect is found to be less pronounced in the thermal conductivity. Moreover, a new framework for heat diffusion in solids is presented that establishes that both the heat flux and the thermal energy (or heat) satisfy a diffusion equation and therefore highlights the importance of thermal diffusivity in transient heat conduction phenomena. KW - General Chemical Engineering KW - General Chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593248 DO - https://doi.org/10.1021/acsomega.2c07557 SN - 2470-1343 VL - 8 IS - 8 SP - 7808 EP - 7815 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-59324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diercks, Philipp A1 - Gläser, Dennis A1 - Lünsdorf, Ontje A1 - Selzer, Michael A1 - Flemisch, Bernd A1 - Unger, Jörg F. T1 - Evaluation of tools for describing, reproducing and reusing scientific workflows N2 - In the field of computational science and engineering, workflows often entail the application of various software, for instance, for simulation or pre- and postprocessing. Typically, these components have to be combined in arbitrarily complex workflows to address a specific research question. In order for peer researchers to understand, reproduce and (re)use the findings of a scientific publication, several challenges have to be addressed. For instance, the employed workflow has to be automated and information on all used software must be available for a reproduction of the results. Moreover, the results must be traceable and the workflow documented and readable to allow for external verification and greater trust. In this paper, existing workflow management systems (WfMSs) are discussed regarding their suitability for describing, reproducing and reusing scientific workflows. To this end, a set of general requirements for WfMSs were deduced from user stories that we deem relevant in the domain of computational science and engineering. On the basis of an exemplary workflow implementation, publicly hosted at GitHub (https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements), a selection of different WfMSs is compared with respect to these requirements, to support fellow scientists in identifying the WfMSs that best suit their requirements. KW - FAIR KW - Reproducibility KW - Scientific workflows KW - Tool comparison KW - Workflow management PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584832 DO - https://doi.org/10.48694/inggrid.3726 VL - 1 IS - 1 SP - 1 EP - 27 AN - OPUS4-58483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titscher, Thomas A1 - van Dijk, T. A1 - Kadoke, Daniel A1 - Robens-Radermacher, Annika A1 - Herrmann, Ralf A1 - Unger, Jörg F. T1 - Bayesian model calibration and damage detection for a digital twin of a bridge demonstrator N2 - Using digital twins for decision making is a very promising concept which combines simulation models with corresponding experimental sensor data in order to support maintenance decisions or to investigate the reliability. The quality of the prognosis strongly depends on both the data quality and the quality of the digital twin. The latter comprises both the modeling assumptions as well as the correct parameters of these models. This article discusses the challenges when applying this concept to realmeasurement data for a demonstrator bridge in the lab, including the data management, the iterative development of the simulation model as well as the identification/updating procedure using Bayesian inference with a potentially large number of parameters. The investigated scenarios include both the iterative identification of the structural model parameters as well as scenarios related to a damage identification. In addition, the article aims at providing all models and data in a reproducibleway such that other researcher can use this setup to validate their methodologies. KW - Damage detection KW - Finite element analysis KW - Load identification KW - Model updating KW - Estimation KW - System identification KW - Variational Bayesian statistics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574496 DO - https://doi.org/10.1002/eng2.12669 SN - 2577-8196 SP - 1 EP - 27 PB - Wiley CY - Hoboken, NJ AN - OPUS4-57449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diercks, Philipp A1 - Veroy, K. A1 - Robens-Radermacher, Annika A1 - Unger, Jörg F. T1 - Multiscale modeling of linear elastic heterogeneous structures via localized model order reduction N2 - In this paper, a methodology for fine scale modeling of large scale linear elastic structures is proposed, which combines the variational multiscale method, domain decomposition and model order reduction. The influence of the fine scale on the coarse scale is modelled by the use of an additive split of the displacement field, addressing applications without a clear scale separation. Local reduced spaces are constructed by solving an oversampling problem with random boundary conditions. Herein, we inform the boundary conditions by a global reduced problem and compare our approach using physically meaningful correlated samples with existing approaches using uncorrelated samples. The local spaces are designed such that the local contribution of each subdomain can be coupled in a conforming way, which also preserves the sparsity pattern of standard finite element assembly procedures. Several numerical experiments show the accuracy and efficiency of the method, as well as its potential to reduce the size of the local spaces and the number of training samples compared to the uncorrelated sampling. KW - Multiscale methods KW - Variational multiscale method KW - Localized model order reduction KW - Domain decomposition methods PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580671 DO - https://doi.org/10.1002/nme.7326 SN - 0029-5981 SP - 1 EP - 23 PB - Wiley online library AN - OPUS4-58067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Nondestructive thermographic detection of internal defects using pixel-pattern based laser excitation and photothermal super resolution reconstruction N2 - In this work, we present a novel approach to photothermal super resolution based thermographic resolution of internal defects using two-dimensional pixel pattern-based active photothermal laser heating in conjunction with subsequent numerical reconstruction to achieve a high-resolution reconstruction of internal defect structures. With the proposed adoption of pixelated patterns generated using laser coupled high-power DLP projector technology the complexity for achieving true two-dimensional super resolution can be dramatically reduced taking a crucial step forward towards widespread practical viability. Furthermore, based on the latest developments in high-power DLP projectors, we present their first application for structured pulsed thermographic inspection of macroscopic metal samples. In addition, a forward solution to the underlying inverse problem is proposed along with an appropriate heuristic to find the regularization parameters necessary for the numerical inversion in a laboratory setting. This allows the generation of synthetic measurement data, opening the door for the application of machine learning based methods for future improvements towards full automation of the method. Finally, the proposed method is experimentally validated and shown to outperform several established conventional thermographic testing techniques while conservatively improving the required measurement times by a factor of 8 compared to currently available photothermal super resolution techniques. KW - Thermography KW - Super resolution KW - NDT KW - Inspection KW - Internal defects KW - DMD KW - DLP PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570551 DO - https://doi.org/10.1038/s41598-023-30494-2 SN - 2045-2322 VL - 13 SP - 1 EP - 13 PB - Nature Research AN - OPUS4-57055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey T1 - Influence of edge‑deposited layers on mechanical and corrosion properties of laser beam welds of 15 mm thick AISI 2205 duplex stainless steel N2 - AISI 2205 duplex stainless steel is used in a variety of industries, including the chemical and petrochemical industries. This is due to its high tensile strength combined with good ductility and corrosion resistance. However, in laser beam welding, these properties are negatively afected by the high cooling rates typical of the welding process. The resulting higher ferrrite content in the weld metal than in the base material leads to a reduction in the ductility and corrosion resistance of the welded joint. To overcome this problem, in this study, thick plates were coated by direct energy deposition (DED) prior to laser beam welding, whereas a duplex powder mixture containing a higher nickel concentration was used as a coating material. To improve the weld quality for the proposed two-step process, a method of additional material deposition instead of conventional tack weld was investigated. The resulting welded joints showed a well-balanced austenite to ferrite ratio and their properties and microstructure were verifed by metallographic analysis, electron backscatter difraction and Charpy impact testing. Using the standard ASTM G48 test method, it was found that the corrosion resistance of the welds was improved by a factor of four in average compared to the conventionally welded joints. The resulting properties, such as good ductility and corrosion resistance, of the welds with pre-coated edges showed good agreement with those of the base metal and confrmed the proposed two-step process as a promising alternative to the conventional approaches for welding thick duplex stainless steel plates. KW - Laser metal deposition KW - Laser beam welding KW - Duplex steels PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581731 UR - https://rdcu.be/dlb6E DO - https://doi.org/10.1007/s40194-023-01567-7 SN - 0043-2288 SP - 1 EP - 12 PB - Springer AN - OPUS4-58173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andrés Arcones, Daniel A1 - Weiser, M. A1 - Koutsourelakis, F. A1 - Unger, Jörg F. T1 - A Bayesian Framework for Simulation-based Digital Twins of Bridges N2 - Simulation-based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their tructural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation-based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up-to-date representation of bridge behavior, helping to inform decision-making for maintenance and management. T2 - Eurostruct 2023 CY - Vienna, Austria DA - 25.09.2023 KW - Digital Twins KW - Bayesian Inference KW - Bridge Monitoring KW - Uncertainty Quantification PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586803 UR - https://eurostruct.org/eurostruct-2023/ DO - https://doi.org/10.1002/cepa.2177 SN - 2509-7075 VL - 6 IS - 5 SP - 734 EP - 740 PB - Ernst & Sohn CY - Berlin AN - OPUS4-58680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Robens-Radermacher, Annika A1 - Unger, Jörg F. A1 - Mezhov, Alexander A1 - Schmidt, Wolfram ED - Biondini, F. ED - Frangopo, D. M. T1 - Temperature dependent modelling approach for early age behavior of printable mortars N2 - Structural build-up describes the stability and early-age strength development of fresh mortar used in 3D printing. lt is influenced by several factors, i.e. the composition of the print­ able material, the printing regime, and the ambient conditions. The existing modelling approaches for structural build-up usually define the model parameters for a specific material composition with­ out considering the influence of the ambient conditions. The goal of this contribution is to explicitly include the temperature dependency in the modelling approach. Temperature changes have signifi­ cant impact on the structural build-up process: an increase of the temperature leads to a faster dissol­ ution of cement phases and accelerates hydration. The proposed extended model includes temperature dependency using the Arrhenius theory. The new model parameters are successfully calibrated based on Viskomat measurement data using Bayesian inference. Furthermore, a higher impact of the temperature in the re-flocculation as in the structuration stage is observed. T2 - The Eighth International Symposium on Life-Cycle Civil Engineering (IALCCE 2023) CY - Milano, Italien DA - 02.07.2023 KW - 3D concrete printing KW - Material characterization KW - Structural build-up KW - Thixotropy KW - Model calibration PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582175 SN - 978-1-003-32302-0 DO - https://doi.org/10.1201/9781003323020-146 SN - 978-1-003-32302-0 VL - 1st Edition SP - 1193 EP - 1200 PB - CRC Press AN - OPUS4-58217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Xin A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Distributed acoustic sensing to monitor ground motion/movement at multi-frequency bands N2 - A novel distributed acoustic sensing technique is proposed that exploits both phase and amplitude of the Rayleigh backscattered light to quantify the environmental variation. The system employs a wavelength-scanning laser and an imbalanced Mach-Zehnder interferometer to acquire the reflection spectra and the phase of the detected light, respectively. Fading-free and low-frequency measurements are realized via the crosscorrelation of the reflection spectra. The discrete crosscorrelation is used to circumvent the nonlinear frequency sweeping of the laser. Based on the phase of the backscattered light, it is possible to quantify fast environmental variations. The whole system requires no hardware modification of the existing system and its functionality is experimentally validated. The proposed system has the potential to monitor ground motion/movement at very low frequency band like subsidence around mining areas and at high frequency band like earthquakes and vibrations induced by avalanches. KW - Distributed acoustic sensing KW - DAS KW - Distributed fiber optic sensing KW - Ground motion detection KW - Subsidence monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596129 DO - https://doi.org/10.1109/JLT.2024.3358495 SP - 1 EP - 8 PB - Optical Society und IEEE Photonics Society AN - OPUS4-59612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trogadas, P. A1 - Cho, J. I. S. A1 - Rasha, L. A1 - Lu, X. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Manke, I. A1 - Shearing, P. R. A1 - Brett, D. J. L. A1 - Coppens, M. O. T1 - A nature-inspired solution for water management in flow fields for electrochemical devices N2 - A systematic, nature-inspired chemical engineering approach is employed to solve the issue of flooding in electrochemical devices. The mechanism of passive water transport utilized by lizards living in arid environments is leveraged to design flow-fields with a microchannel structure on their surface, through which capillary pressure rapidly removes the water generated in the electrochemical device. This water management strategy is implemented in proton exchange membrane fuel cells (PEMFCs) with a lunginspired flow-field, which ensures uniform distribution of reactants across the catalyst layer. Jointly, this nature-inspired approach results in flood-free, stable operation at 100% RH and a B60% increase in current (B1.9 A cm-2) and peak power density (B650 mW cm−2) compared to current PEMFCs with a flood-prone, serpentine flow-field (B0.8 A cm-2 and 280 mW cm-2, respectively). This significant advance allows for PEMFC operation at fully humidified conditions. KW - Neutron imaging KW - X-ray tomography KW - Fuel cell PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596662 DO - https://doi.org/10.1039/d3ee03666a VL - 17 SP - 2007 EP - 2017 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Syntheses of Polyglycolide via Polycondensation: A Reinvestigation N2 - The Na salt of chloroacetic acid is condensed in suspension. Furthermore,glycolic acid is condensed in bulk or in concentrated solution by means of SnCl2 or 4-toluene sulfonic acid (TSA) as catalysts. The temperatures are varied from 160 to 200°C and the time from 1 to 5 days. Low molar mass cyclic poly(glycolic acid) (PGA) is detected by means of matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry in most PGAs. A predominance of certain cycles having an even number of repeat units is observed suggesting a thermodynamically favored formation of extended-ring crystals. Extremely high melting temperatures (up to 237.5°C)and high melting enthalpies are found for polycondensations with TSA in 1,2-dichlorobenzene. KW - MALDI TOF MS KW - Polycondensation KW - Polyglycolide KW - Cyclization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596856 DO - https://doi.org/10.1002/macp.202300397 IS - 2300397 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-59685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. T1 - Cyclic polyglycolides via ring-expansion polymerization with cyclic tin catalysts N2 - Glycolide was polymerized in bulk with two cyclic catalysts − 2,2-dibutyl-2-stanna-1,3-dithiolane (DSTL) and 2-stanna-1,3-dioxa-4,5,6,7-dibenzepane (SnBiph). The monomer/initiator ratio, temperature (140 – 180 °C) and time (1–––4 days) were varied. The MALDI TOF mass spectra exclusively displayed peaks of cyclic polyglycolide (PGA) and revealed an unusual “saw-tooth pattern” in the mass range below m/z 2 500 suggesting formation of extended ring crystallites. The DSC measurements indicated increasing crystallinity with higher temperature and longer time, and after annealing for 4 d at 160 °C a hitherto unknown and unexpected glass transition was found in the temperature range of 170–185 °C. Linear PGAs prepared by means of metal alkoxides under identical conditions did not show the afore-mentioned features of the cyclic PGAs, neither in the mass spectra nor in the DSC measurements. All PGAs were also characterized by SAXS measurements, which revealed relatively small L-values suggesting formation of thin crystallites in all cases with little influence of the reaction conditions. KW - Polyglycolide KW - MALDI-TOF MS KW - Ring-expansion polymerization KW - Crystals PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595541 DO - https://doi.org/10.1016/j.eurpolymj.2024.112811 SN - 0014-3057 VL - 207 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-59554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tukhmetova, Dariya A1 - Lisec, Jan A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Development of an Online Isotope Dilution CE/ICP–MS Method for the Quantification of Sulfur in Biological Compounds N2 - We report an analytical methodology for the quantification of sulfur in biological molecules via a speciesunspecific postcolumn isotope dilution (online ID) approach using capillary electrophoresis (CE) coupled online with inductively coupled plasma−mass spectrometry (online ID CE/ICP−MS). The method was optimized using a mixture of standard compounds including sulfate, methionine, cysteine, cystine, and albumin, yielding compound recoveries between 98 and 105%. The quantity of sulfur is further converted to the quantity of the compounds owing to the prior knowledge of the sulfur content in the molecules. The limit of detection and limit of quantification of sulfur in the compounds were 1.3−2.6 and 4.1−8.4 mg L−1, respectively, with a correlation coefficient of 0.99 within the concentration range of sulfur of 5−100 mg L−1. The capability of the method was extended to quantify albumin in its native matrix (i.e., in serum) using experimentally prepared serum spiked with a pure albumin standard for validation. The relative expanded uncertainty of the method for the quantification of albumin was 6.7% (k = 2). Finally, we tested the applicability of the method on real samples by the analysis of albumin in bovine and human sera. For automated data assessment, a software application (IsoCor) which was developed by us in a previous work was developed further for handling of online ID data. The method has several improvements compared to previously published setups: (i) reduced adsorption of proteins onto the capillary wall owing to a special capillary-coating procedure, (ii) baseline separation of the compounds in less than 30 min via CE, (iii) quantification of several sulfur species within one run by means of the online setup, (iv) SI traceability of the quantification results through online ID, and (v) facilitated data processing of the transient signals using the IsoCor application. Our method can be used as an accurate approach for quantification of proteins and other biological molecules via sulfur analysis in complex matrices for various fields, such as environmental, biological, and pharmaceutical studies as well as clinical diagnosis. Sulfur is an essential element in living organisms, where it plays important roles in various biological processes, such as protein synthesis, enzyme activity, and antioxidant defense. However, the biological effects of different sulfur species can vary widely, and imbalances in sulfur speciation have been observed in a range of diseases, including cancer, Alzheimer’s disease, and diabetes.1−3 The accurate quantification of sulfur and its species in biological samples requires sensitive and selective analytical techniques. In recent years, separation techniques coupled online with inductively coupled plasma−mass spectrometry (ICP−MS) have emerged as powerful online analytical tools complementary to molecular spectrometric methods for speciation analysis of biological compounds. External calibration4−9 and isotope dilution (ID)10−15 are common calibration approaches applied for online quantification of sulfur species in complex samples. The ID analysis is advantageous over. KW - Analytical Chemistry KW - CE/MC-ICP-MS KW - species-specific isotope information PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594736 DO - https://doi.org/10.1021/acs.analchem.3c03553 SN - 0003-2700 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-59473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabhakara, Prathik A1 - Lay, Vera A1 - Mielentz, Frank A1 - Niederleithinger, Ernst A1 - Behrens, Matthias T1 - Enhancing the Performance of a Large Aperture Ultrasound System (LAUS): A Combined Approach of Simulation and Measurement for Transmitter–Receiver Optimization N2 - The Large Aperture Ultrasound System (LAUS) developed at BAM is known for its ability to penetrate thick objects, especially concrete structures commonly used in nuclear waste storage and other applications in civil engineering. Although the current system effectively penetrates up to ~9 m, further optimization is imperative to enhance the safety and integrity of disposal structures for radioactive or toxic waste. This study focuses on enhancing the system’s efficiency by optimizing the transducer spacing, ensuring that resolution is not compromised. An array of twelve horizontal shear wave transducers was used to find a balance between penetration depth and resolution. Systematic adjustments of the spacing between transmitter and receiver units were undertaken based on target depth ranges of known reflectors at depth ranges from 5 m to 10 m. The trade-offs between resolution and artifact generation were meticulously assessed. This comprehensive study employs a dual approach using both simulations and measurements to investigate the performance of transducer units spaced at 10 cm, 20 cm, 30 cm, and 40 cm. We found that for depths up to 5 m, a spacing of 10 cm for LAUS transducer units provided the best resolution as confirmed by both simulations and measurements. This optimal distance is particularly effective in achieving clear reflections and a satisfactory signal-to-noise ratio (SNR) in imaging scenarios with materials such as thick concrete structures. However, when targeting depths greater than 10 m, we recommend increasing the distance between the transducers to 20 cm. This increased spacing improves the SNR in comparison to other spacings, as seen in the simulation of a 10 m deep backwall. Our results emphasize the critical role of transducer spacing in achieving the desired SNR and resolution, especially in the context of depth imaging requirements for LAUS applications. In addition to the transducer spacing, different distances between individual sets of measurement positions were tested. Overall, keeping the minimal possible distance between measurement position offsets provides the best imaging results at greater depths. The proposed optimizations for the LAUS in this study are primarily relevant to applications on massive nuclear structures for nuclear waste management. This research highlights the need for better LAUS efficiency in applications such as sealing structures, laying the foundation for future technological advances in this field. KW - Engineered barrier system KW - Phased array technique KW - Ultrasonic testing KW - Non-destructive testing in civil engineering KW - Seismic migration PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592426 DO - https://doi.org/10.3390/s24010100 VL - 24 IS - 1 SP - 1 EP - 23 PB - MDPI CY - Basel, Switzerland AN - OPUS4-59242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Syntheses of high molecular mass polyglycolides via ring-opening polymerization with simultaneous polycondensation(ROPPOC) by means of tin and zinc catalysts N2 - Glycolide was polymerized in bulk by means of four different ROPPOC catalysts: tin(II) 2-ethylhexanoate (SnOct2), dibutyltin bis(pentafluoro-phenoxide) (BuSnOPF),zinc biscaproate (ZnCap), and zinc bis(pentafluoro-phenyl sulfide) (ZnSPF). The temperature was varied between 110 and 180°C and the time between 3 h and 7 days. For the few polyglycolides (PGAs) that were soluble extremely high molecular masses were obtained. The MALDI TOF mass spectra had all a low signal-to-noise ration and displayed the peaks of cyclic PGAs with a“saw-tooth pattern ”indicating formation of extended-ring crystallites in the mass range below m/z 2500. The shape of DSC curves varied considerably with catalyst and reaction conditions, whereas the long-distance values measured by SAXS were small and varied little with the polymeriza-tion conditions. KW - MALDI TOF MS KW - Polyglycolide KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598221 DO - https://doi.org/10.1002/pat.6365 VL - 35 IS - 4 SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-59822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiele, Isabel A1 - Santolin, Lara A1 - Meyer, Klas A1 - Machatschek, Rainhard A1 - Bölz, Uwe A1 - Tarazona, Natalia A. A1 - Riedel, Sebastian L. T1 - Microbially synthesized poly(hydroxybutyrate-co-hydroxyhexanoate) with low to moderate hydroxyhexanoate content: Properties and applications N2 - Plastic pollution is the biggest environmental concern of our time. Breakdown products like micro- and nanoplastics inevitably enter the food chain and pose unprecedented health risks. In this scenario, bio-based and biodegradable plastic alternatives have been given a momentum aiming to bridge a transition towards a more sustainable future. Polyhydroxyalkanoates (PHAs) are one of the few thermoplastic polymers synthesized 100 % via biotechnological routes which fully biodegrade in common natural environments. Poly(hydroxybutyrate-cohydroxyhexanoate) [P(HB-co-HHx)] is a PHA copolymer with great potential for the commodity polymers industry, as its mechanical properties can be tailored through fine-tuning of its molar HHx content. We have recently developed a strategy that enables for reliable tailoring of the monomer content of P(HB-co-HHx). Nevertheless, there is often a lack of comprehensive investigation of the material properties of PHAs to evaluate whether they actually mimic the functionalities of conventional plastics. We present a detailed study of P(HB-co-HHx) copolymers with low to moderate hydroxyhexanoate content to understand how the HHx monomer content influences the thermal and mechanical properties and to link those to their abiotic degradation. By increasing the HHx fractions in the range of 2 – 14 mol%, we impart an extension of the processing window and application range as the melting temperature (Tm) and glass temperature (Tg) of the copolymers decrease from Tm 165 ◦C to 126 ◦C, Tg 4 ◦C to − 5.9 ◦C, accompanied by reduced crystallinity from 54 % to 20 %. Elongation at break was increased from 5.7 % up to 703 % at 14 mol% HHx content, confirming that the range examined was sufficiently large to obtain ductile and brittle copolymers, while tensile strength was maintained throughout the studied range. Finally, accelerated abiotic degradation was shown to be slowed down with an increasing HHx fraction decreasing from 70 % to 55 % in 12 h. KW - Molecular Biology KW - General Medicine KW - Biochemistry KW - Structural Biology PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595636 DO - https://doi.org/10.1016/j.ijbiomac.2024.130188 VL - 263 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-59563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Balderas‐Xicohténcatl, Rafael A1 - Al Shakhs, Ali N. A1 - Berenguer‐Murcia, Ángel A1 - Buckley, Craig E. A1 - Cazorla‐Amorós, Diego A1 - Charalambopoulou, Georgia A1 - Couturas, Fabrice A1 - Cuevas, Fermin A1 - Fairen‐Jimenez, David A1 - Heinselman, Karen N. A1 - Humphries, Terry D. A1 - Kaskel, Stefan A1 - Kim, Hyunlim A1 - Marco‐Lozar, Juan P. A1 - Oh, Hyunchul A1 - Parilla, Philip A. A1 - Paskevicius, Mark A1 - Senkovska, Irena A1 - Shulda, Sarah A1 - Silvestre‐Albero, Joaquin A1 - Steriotis, Theodore A1 - Tampaxis, Christos A1 - Hirscher, Michael A1 - Maiwald, Michael T1 - Establishing ZIF‐8 as a reference material for hydrogen cryoadsorption: An interlaboratory study N2 - AbstractHydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal‐organic framework ZIF‐8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF‐8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77 K and up to 100 bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3–4 % between pressures of 10–100 bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF‐8 pellets, which we want to propose as a reference material. KW - Physical and theoretical chemistry KW - Atomic and molecular physics, and optics PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594788 DO - https://doi.org/10.1002/cphc.202300794 SN - 1439-7641 SP - 1 EP - 7 PB - Wiley CY - Weinheim AN - OPUS4-59478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan T1 - Improving onset picking in ultrasonic testing by using a spectral entropy criterion N2 - In ultrasonic testing, material and structural properties of a specimen can be derived from the time-of-flight (ToF). Using signal features, such as the first peak or envelope maximum, to calculate the ToF is error-prone in multipath arrangements or dispersive and attenuating materials, which is not the case for the signal onset. Borrowing from seismology, researchers used the Akaike information criterion (AIC) picker to automatically determine onset times. The most commonly used formulation, Maeda's AIC picker, is reassessed and found to be based on inappropriate assumptions for signals often used in ultrasonic testing and dependent on arbitrary parameters. Consequently, an onset picker for ultrasonic through-transmission measurements is proposed, based on a spectral entropy criterion (SEC) to model the signal using the AIC framework. This SEC picker takes into account the spectral properties of the ultrasonic signal and is virtually free of arbitrary parameters. Synthetic and experimental data are used to compare the performance of SEC and AIC pickers. It is shown that the accuracy of onset picking is improved for densely sampled data. KW - Akaike information criterion picker KW - Nondestructive testing KW - Ultrasound KW - Time of flight PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594284 UR - https://pubs.aip.org/asa/jasa/article/155/1/544/3061576/Improving-onset-picking-in-ultrasonic-testing-by DO - https://doi.org/10.1121/10.0024337 SN - 0001-4966 VL - 155 IS - 1 SP - 544 EP - 554 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-59428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Timofeev, Juri A1 - Azari, H. A1 - Satyanarayana, R. T1 - Controlled Creating of Delaminations in Concrete for Nondestructive Testing N2 - Locating and sizing delaminations is a common inspection task in the maintenance and quality control of construction and rehabilitation. Their detection is an important area of application of nondestructive testing in civil engineering (NDT-CE). To improve this application, NDT test systems and test solutions must be compared, for which specimens containing well-defined delaminations are needed to serve as a reference. Currently, there are no widely accepted procedures available for creating such flaws locally and reproducibly. This study presents procedures for creating artificial delaminations repeatably and as close as possible to natural delaminations. To produce the discontinuities only substances were used which can occur in concrete components and do not affect the application of NDT-CE methods. Ultrasonic pulse-echo (UPE) was used to test the flaws in the specimens. The delaminations were created by applying expansive mortar in prepared through holes. Three specimens with two delaminations each were built and tested using UPE. KW - Concrete KW - Reference KW - Delamination KW - Test specimen KW - Non-destructive testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595201 DO - https://doi.org/10.1007/s10921-023-01044-7 SN - 0195-9298 VL - 43 IS - 1 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Fluidic Ultrasound Generation for Non‐Destructive Testing N2 - AbstractAir‐coupled ultrasonic testing (ACU) is a pioneering technique in non‐destructive testing (NDT). While contact testing and fluid immersion testing are standard methods in many applications, the adoption of ACU is progressing slowly, especially in the low ultrasonic frequency range. A main reason for this development is the difficulty of generating high amplitude ultrasonic bursts with equipment that is robust enough to be applied outside a laboratory environment. This paper presents the fluidic ultrasonic transducer as a solution to this challenge. This novel aeroacoustic source uses the flow instability of a sonic jet in a bistable fluidic switch to generate ultrasonic bursts up to 60 kHz with a mean peak pressure of 320 Pa. The robust design allows operation in adverse environments, independent of the operating fluid. Non‐contact through‐transmission experiments are conducted on four materials and compared with the results of conventional transducers. For the first time, it is shown that the novel fluidic ultrasonic transducer provides a suitable acoustic signal for NDT tasks and has potential of furthering the implementation of ACU in industrial applications.This article is protected by copyright. All rights reserved KW - Aeroacoustics KW - Air-coupled ultrasound KW - Fluidics KW - Harsh environment KW - Laser Doppler vibrometer KW - Non-destructive testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594273 DO - https://doi.org/10.1002/adma.202311724 SN - 0935-9648 SP - 1 EP - 14 PB - Wiley AN - OPUS4-59427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Maack, Stefan A1 - Buske, Stefan T1 - Application of iterative elastic SH reverse time migration to synthetic ultrasonic echo data N2 - The ultrasonic echo technique is widely used in non-destructive testing (NDT) of concrete objects for thickness measurements, geometry determinations and localization of built-in components. To improve ultrasonic imaging of complex concrete structures, we transferred a seismic imaging technique, the Reverse Time Migration (RTM), to NDT in civil engineering. RTM, in contrast to the conventionally used synthetic aperture focusing technique (SAFT) algorithms, considers all wavefield types and thus, can handle complex wave propagations in any direction with no limit on velocity variations and reflector dip. In this paper, we focused on the development, application and evaluation of a two-dimensional elastic RTM algorithm considering horizontally polarized shear (SH) waves only. We applied the elastic SH RTM routine to synthetic ultrasonic echo SH-wave data generated with a concrete model incorporating several steps and circular cavities. As these features can often be found in real-world NDT use cases, their imaging is extremely important. By using elastic SH RTM, we were able to clearly reproduce almost all reflectors inside the concrete model including the vertical step edges and the cross sections of the cavities.We were also capable to show that more features could be mapped compared to SAFT, and that imaging of complex reflectors could be sharpened compared to elastic P-SV (compressional-vertically polarized shear) RTM. Our promising results illustrate that elastic SH RTM has the potential to significantly enhance the reconstruction of challenging concrete structures, representing an important step forward for precise, high-quality ultrasonic NDT in civil engineering. KW - Ultrasonic echo technique KW - Concrete structures KW - Elastic reverse time migration KW - Synthetic aperture focusing technique KW - Horizontally polarized shear waves PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591716 DO - https://doi.org/10.1007/s10921-023-01010-3 SN - 1573-4862 VL - 43 SP - 1 EP - 16 PB - Springer Science and Business Media CY - Dordrecht AN - OPUS4-59171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels—part 1: restraint and cold cracking risk N2 - AbstractThe sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures, like mobile or ship cranes. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of global and local welding-induced stresses may lead to crack formation and component failure, particularly in interaction with the degradation of the microstructure and mechanical properties of high-strength steels during the repair process. However, manufacturers hardly have any information about these issues and there is a lack of recommendations and guidelines to take these safety-relevant aspects into account in adequate repair concepts. The aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines to avoid cold cracking, damage and expensive reworking especially for high-strength steels. Part 1 of this study involves systematic investigations of influences of shrinkage restraint during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures. The quantification of the shrinkage restraint of repair weld joints was achieved by means of experimental and numerical restraint intensity analysis. In welding experiments with self-restrained slot specimens, restraint intensity and introduction of hydrogen via the welding arc using anti spatter spray were varied systematically to analyse the effect on welding result, residual stresses and cold cracking. It could be shown that increasing restraint intensities result in significantly higher transverse residual stress levels. In the case of hydrogen introduction S500MLO showed no cold cracking independent of the restraint conditions. However, S960QL was found to be considerably cold cracking sensitive if hydrogen is introduced. With increasing restraint intensity length and number of cold cracks increases significantly. Part 2 [1] of this study is focussed on microstructure and residual stresses due to gouging and stress optimization via adequate heat control parameters in repair welding. KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595212 DO - https://doi.org/10.1007/s40194-024-01691-y SN - 0043-2288 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Konert, Florian A1 - Wieder, Frank A1 - Nietzke, Jonathan A1 - Meinel, Dietmar A1 - Böllinghaus, Thomas A1 - Sobol, Oded T1 - Evaluation of the impact of gaseous hydrogen on pipeline steels utilizing hollow specimen technique and μCT N2 - The high potential of hydrogen as a key factor on the pathway towards a climate neutral economy, leads to rising demand in technical applications, where gaseous hydrogen is used. For several metals, hydrogen-metal interactions could cause a degradation of the material properties. This is especially valid for low carbon and highstrength structural steels, as they are commonly used in natural gas pipelines and analyzed in this work. This work provides an insight to the impact of hydrogen on the mechanical properties of an API 5L X65 pipeline steel tested in 60 bar gaseous hydrogen atmosphere. The analyses were performed using the hollow specimen technique with slow strain rate testing (SSRT). The nature of the crack was visualized thereafter utilizing μCT imaging of the sample pressurized with gaseous hydrogen in comparison to one tested in an inert atmosphere. The combination of the results from non-conventional mechanical testing procedures and nondestructive imaging techniques has shown unambiguously how the exposure to hydrogen under realistic service pressure influences the mechanical properties of the material and the appearance of failure. KW - Energy Engineering and Power Technology KW - Condensed Matter Physics KW - Fuel Technology KW - Renewable Energy, Sustainability and the Environment KW - µCT KW - Hollow Specimen Technique KW - Hydrogen Embrittlement PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595077 DO - https://doi.org/10.1016/j.ijhydene.2024.02.005 SN - 0360-3199 VL - 59 SP - 874 EP - 879 PB - Elsevier B.V. AN - OPUS4-59507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glienke, R. A1 - Kalkowsky, F. A1 - Hobbacher, A. F. A1 - Holch, A. A1 - Thiele, Marc A1 - Marten, F. A1 - Kersten, R. A1 - Henkel, K.-M. T1 - Evaluation of the fatigue resistance of butt‑welded joints in towers of wind turbines - A comparison of experimental studies with small scale and component tests as well as numerical based approaches with local concepts N2 - Wind turbines are exposed to a high number of load cycles during their service lifetime. Therefore, the fatigue strength verification plays an important role in their design. In general, the nominal stress method is used for the fatigue verification of the most common used butt-welded joints. The Eurocode 3 part 1–9 is the current design standard for this field of application. This paper presents recent results of fatigue tests on small-scaled specimens and large components with transverse butt welds to discuss the validity of the FAT-class. Furthermore, results from numerical simulations for the verification with the effective notch stress and the crack propagation approach are used for comparison. Based on the consistency between the numerical results and the fatigue tests, the influence of the seam geometry on the fatigue resistance was investigated. Finally, a prediction of the fatigue strength of butt-welded joints with plate thicknesses up to 80 mm was carried out. KW - Transverse butt weld KW - Weld imperfections KW - Wind turbine tower KW - Fatigue strength KW - Local approaches KW - Large components KW - Wind energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596648 DO - https://doi.org/10.1007/s40194-023-01630-3 SN - 1878-6669 SP - 1 EP - 26 PB - Springer CY - Berlin AN - OPUS4-59664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -