TY - JOUR A1 - Fernádez-Canteli, A. A1 - Castillo, E. A1 - Blasón, Sergio T1 - A methodology for phenomenological analysis of cumulative damage processes. Application to fatigue and fracture phenomena JF - International Journal of Fatigue N2 - Sample functions, i.e., stochastic process realizations, are used to define cumulative damage phenomena which end into an observable terminal state or failure. The complexity inherent to such phenomena justifies the use of phenomenological models associated with the evolution of a physical magnitude feasible to be monitored during the test. Sample functions representing the damage evolution may be identified, once normalized to the interval [0,1], with cumulative distribution functions (cdfs), generally, of the generalized extreme value (GEV) family. Though usually only a fraction of the whole damage evolution, according to the specific problem handled, is available from the test record, the phenomenological models proposed allow the whole damage process to be recovered. In this way, down- and upwards extrapolations of the whole damage process beyond the scope of the experimental program are provided as a fundamental tool for failure prediction in the practical design. The proposed methodology is detailed and its utility and generality confirmed by its successive application to representative well-known problems in fatigue and fracture characterization. The excellent fittings, the physical interpretation of the model parameters and the good expectations to achieve a complete probabilistic analysis of these phenomena justify the interest of the proposed phenomenological approach with possible applications to other cumulative damage processes. KW - Bayesian technique KW - Sample random results KW - Stochastic sample functions KW - Probabilistic assessment PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552371 DO - https://doi.org/10.1016/j.ijfatigue.2021.106311 SN - 0142-1123 VL - 150 SP - 106311 PB - Elsevier Ltd. AN - OPUS4-55237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, Chayanika A1 - Kastania, Eleni A1 - Witt, Julia A1 - Özcan Sandikcioglu, Özlem T1 - Corrosion protection properties of poly(4-vinyl pyridine) containing multilayer polymeric coatings on magnesium alloy AZ31 JF - Materials and Corrosion N2 - The aim of this study is to develop polymeric thin films for corrosion protection of magnesium alloy AZ31. As polymer matrix, poly(4-vinyl pyridine) (P4VP) is selected due to its semiconducting properties and protonic conductivity. Polyacrylic acid is tested as crosslinking layers to improve interfacial adhesion. The macroscopic corrosion properties of the multilayer coatings are investigated by means of electrochemical methods, such as linear sweep voltammetry and electrochemical impedance spectroscopy (EIS), in corrosive media simulating technical and biomedical applications. It is demonstrated that thin multilayer coatings can suppress the corrosion rates of magnesium alloys. To our best knowledge, this is the first demonstration of the use of P4VP as a conducting polymer film with protonic conductivity for corrosion protection of magnesium alloys. KW - Multilayercoatings KW - AZ31 KW - Corrosion protection KW - Intrinsically conducting polymers KW - Magnesium alloys PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551799 DO - https://doi.org/10.1002/maco.202112708 SN - 0947-5117 VL - 73 IS - 3 SP - 427 EP - 435 PB - Wiley VHC-Verlag AN - OPUS4-55179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, C. A1 - Xie, G. A1 - Wu, Dejian A1 - Yan, T. A1 - Chen, S. A1 - Zhao, P. A1 - Wu, Z. A1 - Li, W. T1 - Experimental investigation on an energy-efficient floor heating system with intelligent control: A case study in Chengdu, China JF - Case Studies in Thermal Engineering N2 - The space heating system accounts for 20%~50% of building energy consumption, and may lead to energy waste due to unreasonable controls. In this study, an energy-efficient floor heating system with intelligent control was proposed to improve energy efficiency of the system. In order to validate the concept of the proposed intelligent control, an experimental system was designed and constructed in Chengdu, China. Temperature, control cycle and energy consumption were then studied under different control strategies. The result shows that a larger flow rate of supply water will result in a longer control cycle and a lower control frequency, i.e., the average control cycle at 7 L min−1 is 1.7 h during the test day, while it is 1.5 h at 5 L min−1. Moreover, adopting water with a higher temperature and flow rate could achieve a higher efficiency of the system. The energy consumptions in case 1 (5 L min−1, 50 °C), case 2 (5 L min−1, 55 °C), case 5 (7 L min−1, 55 °C) and case 6 (7 L min−1, 60 °C) are 4746 kJ, 3534 kJ, 3093 kJ and 3028 kJ, respectively. Based on the experimental data, the supply water temperature is suggested to set lower than 60 °C considering human comfort. KW - Floor heating KW - Intelligent control KW - Experimental KW - Energy consumption KW - Control strategy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550522 DO - https://doi.org/10.1016/j.csite.2021.101094 SN - 2214-157X VL - 26 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-55052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed Aejaz A1 - Malpass-Evans, R. A1 - McKeown, N. A1 - Tyagi, M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Low frequency vibrations and diffusion in disordered polymers bearing an intrinsic microporosity as revealed by neutron scattering JF - Crystals N2 - The microscopic diffusion and the low frequency density of states (VDOS) of PIM-EATB(CH3) are investigated by inelastic and quasi-elastic neutron scattering where also the demethylated counterpart of PIM-EA-TB(H2) is considered. These intrinsic microporous polymers are characterized by large BET surface area values of several hundred m2/g and pore sizes between 0.5 and 2 nm. Detailed comparison is made to the archetype of polymers of intrinsic microporosity, PIM-1, and polynorbornenes also bearing a microporosity. Due to the wavelength of neutrons, the diffusion and vibrations can be addressed on microscopic length and time scales. From the inelastic neutron scattering experiments the low frequency density of states (VDOS) is estimated which shows excess contributions to the Debye-type VDOS known as Boson peak. It was found that the maximum frequency of the Boson peak decreases with increasing microporosity characterized by the BET surface area. However, besides the BET surface area, additional factors such as the backbone stiffness govern the maximum frequency of the Boson peak. Further the mean squared displacement related to microscopic motions was estimated from elastic fixed window scans. At temperatures above 175 K, the mean squared displacement PIM-EA-TB(CH3) is higher than that for the demethylated counterpart PIM-EA-TB(H2). The additional contribution found for PIM-EATB(CH3) is ascribed to the rotation of the methyl group in this polymer because the only difference between the two structures is that PIM-EA-TB(CH3) has methyl groups where PIM-EA-TB(H2) has none. A detailed comparison of the molecular dynamics is also made to that of PIM-1 and the microporous polynorbornene PTCNSi1. The manuscript focuses on the importance of vibrations and the localized molecular mobility characterized by the microscopic diffusion on the gas Transport in polymeric separation membranes. In the frame of the random gate model localized fluctuations can open or close bottlenecks between pores to enable the diffusion of gas molecules. KW - Polymer of intrisic microporosity KW - Neutron scattering KW - Boson peak KW - Methyl group rotation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538490 DO - https://doi.org/10.3390/cryst11121482 VL - 11 IS - 12 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-53849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Wiehle, Philipp A1 - Munsch, Sarah Mandy T1 - About the dominance of mesopores in physisorption in amorphous materials JF - Molecules N2 - Amorphous, porous materials represent by far the largest proportion of natural and men-made materials. Their pore networks consists of a wide range of pore sizes, including mesoand macropores. Within such a pore network, material moisture plays a crucial role in almost all transport processes. In the hygroscopic range, the pores are partially saturated and liquid water is only located at the pore fringe due to physisorption. Therefore, material parameters such as porosity or median pore diameter are inadequate to predict material moisture and moisture transport. To quantify the spatial distribution of material moisture, Hillerborg’s adsorption Theory is used to predict the water layer thickness for different pore geometries. This is done for all pore sizes, including those in the lower nanometre range. Based on this approach, it is shown that the material moisture is almost completely located in mesopores, although the pore network is highly dominated by macropores. Thus, mesopores are mainly responsible for the moisture storage capacity, while macropores determine the moisture transport capacity, of an amorphous material. Finally, an electrical analogical circuit is used as a model to predict the diffusion coefficient based on the pore-size distribution, including physisorption. KW - Physisorption KW - Mesopores KW - Amorphous materials KW - Macropores KW - Adsorbed water layer thickness KW - Material moisture KW - Moisture distribution PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538525 UR - https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/NILGW2 DO - https://doi.org/10.3390/molecules26237190 VL - 26 IS - 23 SP - 1 EP - 22 PB - MDPI AN - OPUS4-53852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musl, O. A1 - Sulaeva, I. A1 - Sumerskii, I. A1 - Mahler, A.K. A1 - Rosenau, T. A1 - Falkenhagen, Jana A1 - Potthast, A. T1 - Mapping of the Hydrophobic Composition of Lignosulfonates JF - ACS Sustainable Chemistry&Engineering N2 - Lignosulfonates are industrial biorefinery products that are characterized by significant variability and heterogeneity in their structural composition. Typically, they exhibit high dispersities in molar mass (molar mass distribution-MMD) and in functionalities (functionality-type distribution - FTD), which crucially affect their material usage. In terms of FTD, state-of-the-art Lignin analytics still rely mainly on the determination of functional group contents, which are statistical averages with limited explanatory power. In contrast, our online hydrophobic interaction chromatography−size-exclusion chromatography 2D-LC approach combines the determination of both MMD and FTD in a single measurement to provide a comprehensive picture of the characteristic composition of industrial lignosulfonates information hitherto inaccessible by state-of-the-art lignin analytics. In this way, the complex inter - relationships between these two important structural parameters can be studied in an unprecedented manner. In this study, we reveal the considerable differences in terms of hydrophobic composition and its dispersity present in a range of different industrial lignosulfonates - data desperately needed in tailoring and refining of lignosulfonate composition for material usage. KW - Lignosulfonates KW - Amphiphilicity KW - Hydrophobic interaction chromatography KW - Two-dimensional chromatography (2D-LC) KW - Charge-to-size-ratio PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538612 DO - https://doi.org/10.1021/acssuschemeng.1c06469 VL - 9 IS - 49 SP - 16786 EP - 16795 PB - ASC Publications AN - OPUS4-53861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Moufid, M. A1 - Tiebe, Carlo A1 - El Bari, N. A1 - Bartholmai, Matthias A1 - Bouchikhi, B. T1 - Characterization of Unpleasant Odors in Poultry Houses Using Metal Oxide Semiconductor-Based Gas Sensor Arrays and Pattern Recognition Methods T2 - The 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry) N2 - In this study, the ability of an electronic nose developed to analyze and monitor odor emissions from three poultry farms located in Meknes (Morocco) and Berlin (Germany) was evaluated. Indeed, the potentiality of the electronic nose (e-nose) to differentiate the concentration fractions of hydrogen sulfide, ammonia, and ethanol was investigated. Furthermore, the impact change of relative humidity values (from 15% to 67%) on the responses of the gas sensors was reported and revealed that the effect remained less than 0.6%. Furthermore, the relevant results confirmed that the developed e-nose system was able to perfectly classify and monitor the odorous air of poultry farms. T2 - 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry CY - Online meeting DA - 01.07.2021 KW - Pattern recognition methods KW - Gas sensors KW - Electronic nose KW - poultry odorous air monitoring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544005 UR - https://csac2021.sciforum.net/ DO - https://doi.org/10.3390/CSAC2021-10481 VL - 5 IS - 52 SP - 1 EP - 7 PB - MDPI AN - OPUS4-54400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the Extrapolation Capability of an Artificial Neural Network Algorithm in Combination with Process Signals in Resistance Spot Welding of Advanced High-Strength Steels JF - Metals N2 - Resistance spot welding is an established joining process for the production of safetyrelevant components in the automotive industry. Therefore, consecutive process monitoring is essential to meet the high quality requirements. Artificial neural networks can be used to evaluate the process parameters and signals, to ensure individual spot weld quality. The predictive accuracy of such algorithms depends on the provided training data set, and the prediction of untrained data is challenging. The aim of this paper was to investigate the extrapolation capability of a multi-layer perceptron model. That means, the predictive performance of the model was tested with data that clearly differed from the training data in terms of material and coating composition. Therefore, three multi-layer perceptron regression models were implemented to predict the nugget diameter from process data. The three models were able to predict the training datasets very well. The models, which were provided with features from the dynamic resistance curve predicted the new dataset better than the model with only process parameters. This study shows the beneficial influence of process signals on the predictive accuracy and robustness of artificial neural network algorithms. Especially, when predicting a data set from outside of the training space. KW - Automotive KW - Artificial intelligence KW - Quality monitoring KW - Resistance spot welding KW - Quality assurance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539783 DO - https://doi.org/10.3390/met11111874 VL - 11 IS - 11 SP - 1 EP - 11 PB - MDPI AN - OPUS4-53978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Crouzier, L. A1 - Feltin, N. A1 - Delvallée, A. A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Cios, Grzegorz A1 - Tokarski, T. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis of the dimensional properties of bipyramidal titania nanoparticles by complementing electron microscopy with other methods JF - Nanomaterials N2 - In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano‐bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging. Furthermore, a recently developed method, Transmission Kikuchi Diffraction (TKD), which needs preparation of the crystalline NPs on electron‐transparent substrates such as TEM grids, has been tested with respect to its capability of identifying the geometrical orientation of the individual NPs. With the NPs prepared homogeneously on a TEM grid, the transmission mode in a SEM, i.e., STEM‐in‐SEM (or T‐SEM), can be also applied to extract accurate projection dimensions of the nanoparticles from the same sample area as that analysed by SEM, TKD and possibly AFM. Finally, Small Angle X‐ray Scattering (SAXS) can be used as an ensemble technique able to measure the NPs in liquid suspension and, with ab‐initio knowledge of the NP shape from the descriptive imaging techniques, to provide traceable NP size distribution and particle concentration. KW - Nanoparticles KW - Complex-shape KW - Bipyramid KW - Electron microscopy KW - AFM KW - Size measurements KW - TKD KW - STEM-in-SEM KW - SAXS KW - Nanoparticle concentration KW - Correlative analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539888 DO - https://doi.org/10.3390/nano11123359 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-53988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Gräf, S. T1 - Ten Open Questions about Laser-Induced Periodic Surface Structures JF - Nanomaterials N2 - Laser-induced periodic surface structures (LIPSS) are a simple and robust route for the nanostructuring of solids that can create various surface functionalities featuring applications in optics, medicine, tribology, energy technologies, etc. While the current laser technologies already allow surface processing rates at the level of m2/min, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry, as well as by limitations in controlling the processing of LIPSS and in the long-term stability of the created surface functions. This Perspective article aims to identify some open questions about LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, we intend to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry. KW - Laser-induced periodic surface structures (LIPSS) KW - Industrial application KW - Functional properties KW - Surface functionalization KW - Modelling PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539503 DO - https://doi.org/10.3390/nano11123326 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 21 PB - MDPI CY - Basel, Switzerland AN - OPUS4-53950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pech May, Nelson Wilbur A1 - Ziegler, Mathias T1 - Detection of surface breaking cracks using flying line laser thermography: A Canny-based algorithm JF - Engineering proceedings N2 - In this work, we introduce a new algorithm for effectual crack detection using flying line laser thermography, based on the well-known Canny approach. The algorithm transforms the input thermographic sequence into an edge map. Experimental measurements are performed on a metallic component that contains surface breaking cracks due to industrial use. The specimen is tested using flying line thermography at different scanning speeds and laser input powers. Results obtained with the proposed algorithm are additionally compared with a previously established algorithm for flying spot thermography. The proposed Canny-based algorithm can be used in automated systems for thermographic non-destructive testing. T2 - Advanced Infrared Technology and Applications 2021 CY - Online meeting DA - 26.10.2021 KW - Canny approach KW - Flying line thermography KW - Crack detection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539628 DO - https://doi.org/10.3390/engproc2021008022 SN - 2673-4591 VL - 8 IS - 1 SP - 1 EP - 4 PB - MDPI CY - Basel AN - OPUS4-53962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hudson, A.D. A1 - Jamieson, O. A1 - Crapnell, R.D. A1 - Rurack, Knut A1 - Soares, T.C.C. A1 - Mecozzi, F. A1 - Laude, A. A1 - Gruber, J. A1 - Novakovic, K. A1 - Peeters, M. T1 - Dual detection of nafcillin using a molecularly imprinted polymer-based platform coupled to thermal and fluorescence read-out JF - Materials Advances N2 - Reported here is the production of molecularly imprinted polymer (MIP) films, integrating a fluorescent moiety that serves as both an element for template interaction and signalling, for the thermal and optical detection of the beta-lactam antibiotic nafcillin. Fluorescein methacrylate (FluMa) was synthesized and introduced during the molecular imprinting process as the sole monomer and in a 1 : 1 mixture with methacrylic acid (MAA), allowing to draw first conclusions on the MIP formation potential of such a rather large and rigid monomer. At first, MIP microparticles containing FluMa were prepared by free radical polymerisation. Optical batch rebinding experiments revealed that FluMa can act as a functional monomer for selective detection of nafcillin; however, the addition of MAA as co-monomer significantly improved performance. Subsequently, thin MIP films containing FluMa were deposited onto functionalised glass slides and the influence of porogen, drying time, and monomer composition was studied. These MIP-functionalised glass electrodes were mounted into a customised 3D-printed flow cell, where changes in the liquid were either evaluated with a thermal device or using fluorescence bright field microscopy. Thermal analysis demonstrated that multiple MIP layers enhanced sensor specificity, with detection in the environmentally relevant range. The fluorescence bright field microscope investigations validated these results, showing an increase in the fluorescence intensity upon exposure of the MIP-functionalised glass slides to nafcillin solutions. These are promising results for developing a portable sensor device that can be deployed for antibiotics outside of a dedicated laboratory environment, especially if sensor design and fluorophore architecture are optimised. KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Antibiotics KW - Heat-transfer Measurements KW - Thin films PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540044 DO - https://doi.org/10.1039/D1MA00192B VL - 2 IS - 15 SP - 5105 EP - 5115 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-54004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Kabelitz, Anke A1 - Schokel, Alexander A1 - Wagner, Ralf A1 - Prinz, Carsten A1 - Kemnitz, E A1 - Emmerling, Franziska A1 - Krahl, Thoralf A1 - de Oliveira Guilherme Buzanich, Ana T1 - Local Structure of Europium-Doped Luminescent Strontium Fluoride Nanoparticles: Comparative X-ray Absorption Spectroscopy and Diffraction Study JF - ChemNanoMat N2 - Rare-earth based luminescent materials are key functional components for the rational design of light-conversion smart devices. Stable Eu3+-doped strontium fluoride (SrF2) nanoparticles were prepared at room temperature in ethylene glycol. Their luminescence depends on the Eu content and changes after heat treatment. The crystallinity of heat-treated material increases in comparison with as-synthesized samples. Particles were investigated in solution using X-ray diffraction, small-angle X-ray scattering, and X-ray spectroscopy. After heat treatment, the size of the disordered nanoparticles increases together with a change of their local structure. Interstitial fluoride ions can be localized near Eu3+ ions. Therefore, non-radiative relaxation from other mechanisms is decreased. Knowledge about the cation distribution is key information for understanding the luminescence properties of any material. KW - SrF2 KW - EXAFS KW - Eu PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540094 DO - https://doi.org/10.1002/cnma.202100281 VL - 7 IS - 11 SP - 1221 EP - 1229 PB - Wiley Online Library AN - OPUS4-54009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serebrennikova, P. A1 - Komarov, V. A1 - Sukhikh, A. A1 - Khranenko, S. A1 - Zadesenetz, A. A1 - Gromilov, S A1 - Yusenko, Kirill T1 - [NiEn3](MoO4)0.5(WO4)0.5 co-crystals as single-source precursors for ternary refractory Ni-Mo-W alloys JF - Nanomaterials N2 - The co-crystallisation of [NiEn3](NO3)2 (En = ethylenediamine) with Na2MoO4 and Na2WO4 from a water solution results in the formation of [NiEn3](MoO4)0.5(WO4)0.5 co-crystals. According to the X-ray diffraction analysis of eight single crystals, the parameters of the hexagonal unit cell (space group P–31c, Z = 2) vary in the following intervals: a = 9.2332(3)–9.2566(6); c = 9.9512(12)–9.9753(7) Å with the Mo/W ratio changing from 0.513(3)/0.487(3) to 0.078(4)/0.895(9). The thermal decomposition of [NiEn3](MoO4)0.5(WO4)0.5 individual crystals obtained by co-crystallisation was performed in He and H2 atmospheres. The ex situ X-ray study of thermal decomposition products shows the formation of nanocrystalline refractory alloys and carbide composites containing ternary Ni–Mo–W phases. The formation of carbon–nitride phases at certain stages of heating up to 1000 °C were shown. KW - Single source precursors KW - Phase diagrams PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540123 DO - https://doi.org/10.3390/nano11123272 VL - 11 IS - 12 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-54012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Ring-Expansion Polymerization of 𝝐-Caprolactone, Glycolide, and l-lactide with a Spirocyclic Tin(IV) Catalyst Derived from or 2,2′-Dihydroxy-1,1′-Binaphthyl – New Results and a Revision JF - Macromolecular Chemistry and Physics N2 - In contrast to other cyclic tin bisphenoxides, polymerizations of glycolide and l-lactide with the spirocyclic tin(IV) bis-1,1′-bisnapthoxide yield linear chains having a 1,1′-bisnapthol end group and no cycles. In the case of l-lactide, LA/Cat ratio and temperature are varied and at 160 °C or below, all polylactides mainly consist of even-numbered chains. A total predominance of even-numbered chains is also found for homopolymerization of glycolide, or the copolymerization of glycolide and l-lactide, when conducted <120 °C. Linear chains having a bisnaphthol end group are again the main reaction products of ring-expansion polymerizations (REP) of 𝝐-caprolactone, but above 150 °C cycles are also formed. KW - Polylactide KW - MALDI-TOF MS KW - Polymerization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541931 DO - https://doi.org/10.1002/macp.202100308 VL - 222 IS - 24 SP - 1 EP - 10 PB - Wiley VCH GmbH AN - OPUS4-54193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van Den Bossche, T. A1 - Arntzen, M. O. A1 - Becher, D. A1 - Benndorf, D. A1 - Eijsink, V. G. H. A1 - Henry, C. A1 - Jagtap, P. D. A1 - Jehmlich, N. A1 - Juste, C. A1 - Kunath, B. J. A1 - Mesuere, B. A1 - Muth, Thilo A1 - Pope, P. B. A1 - Seifert, J. A1 - Tanca, A. A1 - Uzzau, S. A1 - Wilmes, P. A1 - Hettich, R. L. A1 - Armengaud, J. T1 - The Metaproteomics Initiative: a coordinated approach for propelling the functional characterization of microbiomes JF - Microbiome N2 - Through connecting genomic and metabolic information, metaproteomics is an essential approach for understanding how microbiomes function in space and time. The international metaproteomics community is delighted to announce the launch of the Metaproteomics Initiative (www.metaproteomics.org), the goal of which is to promote dissemination of metaproteomics fundamentals, advancements, and applications through collaborative networking in microbiome research. The Initiative aims to be the central information hub and open meeting place where newcomers and experts interact to communicate, standardize, and accelerate experimental and bioinformatic methodologies in this feld. We invite the entire microbiome community to join and discuss potential synergies at the interfaces with other disciplines, and to collectively promote innovative approaches to gain deeper insights into microbiome functions and dynamics. KW - Microbiome KW - Metaproteomics KW - Networking KW - Meta-Omics KW - Interactions KW - Education PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542290 DO - https://doi.org/10.1186/s40168-021-01176-w VL - 9 IS - 1 SP - 243 PB - BMC AN - OPUS4-54229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - MacLean, J. A1 - Mayanna, S. A1 - Benning, L. G. A1 - Horn, F. A1 - Bartholomäus, A. A1 - Wiesner, Yosri A1 - Wagner, D. A1 - Liebner, S. T1 - The terrestrial plastisphere: Diversity and polymer-colonizing potential of plastic-associated microbial communities in soil JF - Microorganisms N2 - The concept of a ‘plastisphere microbial community’ arose from research on aquatic plastic debris, while the effect of plastics on microbial communities in soils remains poorly understood. Therefore, we examined the inhabiting microbial communities of two plastic debris ecosystems with regard to their diversity and composition relative to plastic-free soils from the same area using 16S rRNA amplicon sequencing. Furthermore, we studied the plastic-colonizing potential of bacteria originating from both study sites as a measure of surface adhesion to UV-weathered polyethylene (PE) using high-magnification field emission scanning electron microscopy (FESEM). The high plastic content of the soils was associated with a reduced alpha diversity and a significantly different structure of the microbial communities. The presence of plastic debris in soils did not specifically enrich bacteria known to degrade plastic, as suggested by earlier studies, but rather shifted the microbial community towards highly abundant autotrophic bacteria potentially tolerant to hydrophobic environments and known to be important for biocrust formation. The bacterial inoculates from both sites formed dense biofilms on the surface and in micrometer-scale surface cracks of the UV-weathered PE chips after 100 days of in vitro incubation with visible threadlike EPS structures and cross-connections enabling surface adhesion. High-resolution FESEM imaging further indicates that the microbial colonization catalyzed some of the surface degradation of PE. In essence, this study suggests the concept of a ‘terrestrial plastisphere’ as a diverse consortium of microorganisms including autotrophs and other pioneering species paving the way for those members of the consortium that may eventually break down the plastic compounds. KW - Soil microbial community KW - Polyethylene colonization KW - Plastic pollution PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542790 DO - https://doi.org/10.3390/microorganisms9091876 VL - 9 IS - 9 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-54279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Colini, Claudia A1 - Shevchuk, I. A1 - Huskin, K. A. A1 - Rabin, Ira A1 - Hahn, Oliver ED - Quenzer, J. B. T1 - A New Standard Protocol for Identification of Writing Media T2 - Exploring Written Artefacts N2 - Our standard protocol for the characterisation of writing materials within advanced manuscript studies has been successfully used to investigate manuscripts written with a pure ink on a homogeneous writing surface. However, this protocol is inadequate for analysing documents penned in mixed inks. We present here the advantages and limitations of the improved version of the protocol, which now includes imaging further into the infrared region (1100−1700 nm). KW - Archaeometry KW - Manuscripts KW - Non-destructive testing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543454 SN - 978-3-11-074545-0 DO - https://doi.org/10.1515/9783110753301-009 VL - 25 SP - 161 EP - 182 PB - Walter de Gruyter GmbH CY - Berlin/Boston AN - OPUS4-54345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Hahn, Oliver A1 - Golle, U. A1 - Wintermann, Carsten A1 - Laurenza, D. ED - Quenzer, J. B. T1 - Scientific Analysis of Leonardo’s Manuscript with Anatomic Drawings and Notes T2 - Exploring Written Artefacts N2 - In this paper, we discuss the importance of scientifically investigating cultural artefacts in a non-invasive way. Taking as test case Leonardo da Vinci’s Manuscript with anatomic drawings and notes, which is stored in Weimar, we clarify fundamental steps in the chronology of this folio. By means of microscopy, infrared reflectography, UV photography, and X-ray fluorescence analysis, we were able to identify various types of sketching material and several varieties of iron gall ink. For his sketches, Leonardo used two different sketching tools, a lead pencil and a graphite pencil, as well as several types of ink for developing these sketches into drawings. With regard to ink, it is important to observe that there is no difference between the ink Leonardo used for drawing and the ink he used for writing text. Based on the materials analysed, we suggest a chronology for the creation of this unique folio. KW - Archaeometry KW - Non-invasive analysis KW - Drawings KW - Leonardo da Vinci PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543460 SN - 978-3-11-074545-0 DO - https://doi.org/10.1515/9783110753301-011 VL - 25 SP - 213 EP - 228 PB - Walter de Gruyter GmbH CY - Berlin/Boston AN - OPUS4-54346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stolzenberg, U. A1 - Schmitt Rahner, M. A1 - Pullner, B. A1 - Legall, Herbert A1 - Bonse, Jörn A1 - Kluge, M. A1 - Ortner, A. A1 - Hoppe, B. A1 - Krüger, Jörg T1 - X-ray emission hazards from ultrashort pulsed laser material processing in an industrial setting JF - Materials N2 - Interactions between ultrashort laser pulses with intensities larger than 10^13 W/cm^2 and solids during material processing can lead to the emission of X-rays with photon energies above 5 keV, causing radiation hazards to operators. A framework for inspecting X-ray emission hazards during laser material processing has yet to be developed. One requirement for conducting radiation protection inspections is using a reference scenario, i.e., laser settings and process parameters that will lead to an almost constant and high level of X-ray emissions. To study the feasibility of setting up a reference scenario in practice, ambient dose rates and photon energies were measured using traceable measurement equipment in an industrial setting at SCHOTT AG. Ultrashort pulsed (USP) lasers with a maximum average power of 220 W provided the opportunity to measure X-ray emissions at laser peak intensities of up to 3.3 × 10^15 W/cm^2 at pulse durations of ~1 ps. The results indicate that increasing the laser peak intensity is insufficient to generate high dose rates. The investigations were affected by various constraints which prevented measuring high ambient dose rates. In this work, a list of issues which may be encountered when performing measurements at USP-laser machines in industrial settings is identified. KW - X-ray emission hazards KW - Ultrashort pulsed laser KW - Radiation protection KW - Industrial applications KW - Protection housing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538632 DO - https://doi.org/10.3390/ma14237163 SN - 1996-1944 VL - 14 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-53863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Poly(L-lactide): Optimization of Melting Temperature and Melting Enthalpy JF - Materials Advances N2 - Twice recrystallized L-lactide was polymerized with a dozen of different tin or bismuth catalysts in bulk at 160°C for 24 h and was annealed at 150°C afterwards. In two cases Tm values above 197.0°C were obtained. The parameters causing a scattering of the DSC data were studied and discussed. The samples prepared with SnCl2, 2,2-dibutyl-2-stanna-1,3-ditholane (DSTL) or cyclic tin(II) bisphenyldioxide (SnBiph) were subject to annealing programs with variation of time and temperatures, revealing that the Tm´s did not increase. However, an increase of Hm was achieved with maximum values in the range of 93-96 J g-1 corresponding to crystallinities off around 90%. Further studies were performed with once recrystallized L-lactide. Again, those samples directly crystallized from the polymerization process showed the highest Tm values. These data were compared with the equilibrium Tm0 and Hm0 data calculated by several research groups for perfect crystallites. A Tm0 of 213+/-2°C and a Hm0 of 106 J g-1 show the best agreement with the experimental data. The consequences of annealing for the thickness growth of crystallites are discussed on the basis of SAXS measurements. Finally, a comparison of cyclic and linear poly L-lactide)s is discussed. KW - Polylactide KW - MALDI-TOF MS KW - Transesterification PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538656 DO - https://doi.org/10.1039/D1MA00957E SP - 1 EP - 10 PB - Royal Society for Chemistry AN - OPUS4-53865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biedermann, P. H. W. A1 - Rohlfs, M. A1 - McMahon, Dino Peter A1 - Meunier, J. ED - Elgar, M. A. T1 - Editorial: Microbial Drivers of Sociality – From Multicellularity to Animal Societies N2 - While sociality is present in a taxonomically diverse number of species, most animals remain solitary (Bourke, 2011). Over the last centuries, this apparent imbalance in social and non-social animals has led to a great deal of research aimed at shedding light on the biotic and abiotic factors explaining the emergence and maintenance of sociality in nature (West et al., 2015). Among them, microbes were quickly identified as a major problem for the evolution of social life, because frequent contact between group members typically facilitates the transmission of pathogens, high nest fidelity favours the establishment of microbial pathogens close to their social hosts and, finally, because social groups often exhibit limited genetic diversity and thus limited genetic resistance against certain pathogen strains (Schmid-Hempel, 1998; Cremer et al., 2007). However, this long-standing view has changed considerably over the last few years. Recent research indeed revealed that group living may be more effective than solitary living to Limit the risk of infection by pathogenic microbes because group living also allows the development of an additional layer of defence against pathogens in the form of social immunity (Cremer et al., 2007; Cotter and Kilner, 2010). Under strong pressure from pathogens, microbes could therefore promote, rather than hinder, the evolutionary transition from solitary to group Living (Meunier, 2015; Biedermann and Rohlfs, 2017). Moreover, we are increasingly aware that many microbes provide essential benefits to their hosts by performing critical digestive, physiological, and reproductive functions (Engel and Moran, 2013; McFall-Ngai et al., 2013). The need to Access beneficial microbes may thus have played a role in the expression of frequent and tight interactions between conspecifics and ultimately promoted social evolution (Wilson, 1971; Onchuru et al., 2018). Finally, a growing number of studies suggest that microbes could enforce the Aggregation and expression of cooperative behaviours of the hosts to increase their chance of reaching new hosts and may therefore be involved in the evolution of host sociality (Lewin-Epstein et al., 2017) (but see Johnson and Foster, 2018). KW - Microbe KW - Sociality KW - Multicellularity KW - Evolution KW - Symbiosis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538741 DO - https://doi.org/10.3389/fevo.2021.752906 SN - 2296-701X VL - 9 SP - 1 EP - 4 PB - Frontiers in Ecology and Evolution CY - Melbourne, Australia AN - OPUS4-53874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Riedel, Jens T1 - Approaching phase-imaging through defocusing shadowgraphy for acoustic resonator diagnosis and the capability of direct index-of-refraction measurements JF - Review of Scientific Instruments N2 - The visualization of index-of-refraction (IoR) distribution is one of the common methods to investigate fluid flow or pressure fields. While schlieren and shadowgraphy imaging techniques are widely accepted, their inherent limitations often lead to difficulties in elucidating the IoR distribution and extracting the true IoR information from the resulting images. While sophisticated solutions exist, the IoR-gradient-to-image was achieved by purposely introducing a commonly avoided “defect” into the optical path of a conventional coincident schlieren/shadowgraphy setup; the defect is a combination of slight defocusing and the use of non-conjugate optical components. As such, the method presented in this work is referred to as defocusing shadowgraphy, or DF-shadowgraphy. While retaining the ease of a conventional schlieren/shadowgraphy geometry, this DF approach allows direct visualization of complicated resonant acoustic fields even without any data processing. For instance, the transient acoustic fields of a common linear acoustic resonator and a two-dimensional one were directly visualized without inversion. Moreover, the optical process involved in DF-shadowgraphy was investigated from a theoretical perspective. A numerical solution of the sophisticated impulse response function was obtained, which converts the phase distortion into intensity distributions. Based on this solution, the IoRs of various gas streams (e.g., CO2 and isopropanol vapor) were determined from single images. KW - Imaging Technique KW - Phase Imaging KW - Shadowgraphy KW - Schlieren Imaging PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537116 DO - https://doi.org/10.1063/5.0058334 SN - 1089-7623 VL - 92 IS - 10 SP - 103703 PB - AIP Publishing Group AN - OPUS4-53711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Casali, L. A1 - Broll, V. A1 - Ciurili, S. A1 - Braga, D. A1 - Emmerling, Franziska A1 - Gepioni, F. T1 - Facilitating Nitrification Inhibition through Green, Mechanochemical Synthesis of a Novel Nitrapyrin Complex JF - Crystal Growth and Design N2 - Nitrapyrin (NP) is applied to cultivated soils to inhibit the enzymatic activity of ammonia monooxygenase (AMO), but its poor aqueous solubility and high volatility severely limit its application. β-Cyclodextrin (β-CD) is commonly used to form inclusion complexes with hydrophobic molecules, improving water solubility and stability upon complexation. Here we report on the mechanochemical synthesis of the inclusion complex β-CD·NP, characterized via a combination of solid-state techniques, including exsitu and in situ X-ray diffraction, Raman and NMR spectroscopies, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The pure inhibitor NP was also structurally characterized. The β-CD·NP complex presents improved solubility and thermal stability, and still inhibits the enzymatic activity of AMO with high efficacy. All results indicate that the inclusion of NP into β-CD represents a viable route for the preparation of a novel class of inhibitors, with improved properties related to stability, water solubility, and good inhibition activity. KW - Mechanochemistry KW - Nitrification PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537154 DO - https://doi.org/10.1021/acs.cgd.1c00681 VL - 21 IS - 10 SP - 5792 EP - 5799 PB - ACS Publications AN - OPUS4-53715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Pfretzschner, B. A1 - Taparli, Ugur Alp A1 - Kardjilov, N. T1 - Time-Resolved Neutron Bragg-Edge Imaging: A Case Study by Observing Martensitic Phase Formation in Low Temperature Transformation (LTT) Steel during GTAW JF - Applied Sciences N2 - Polychromatic and wavelength-selective neutron transmission radiography were applied during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization of austenitization upon welding and subsequent α’-martensite formation during cooling could be achieved with a temporal resolution of 2 s for monochromatic imaging using a single neutron wavelength and of 0.5 s for polychromatic imaging using the full spectrum of the beam (white beam). The spatial resolution achieved in the experiments was approximately 200 µm. The transmitted monochromatic neutron beam intensity at a wavelength of λ = 0.395 nm was significantly reduced during cooling below the martensitic start temperature Ms since the emerging martensitic phase has a ~10% higher attenuation coefficient than the austenitic phase. Neutron imaging was significantly influenced by coherent neutron scattering caused by the thermal motion of the crystal lattice (Debye–Waller factor), resulting in a reduction in the neutron transmission by approx. 15% for monochromatic and by approx. 4% for polychromatic imaging. KW - Austenite-to-martensite transformation KW - Neutron radiography KW - Bragg-edge imaging KW - Gas tungsten arc welding (GTAW) KW - Debye–Waller factor KW - Low transformation temperature (LTT) steel PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538016 DO - https://doi.org/10.3390/app112210886 VL - 11 IS - 22 SP - 10886 PB - MDPI CY - Basel AN - OPUS4-53801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Serrano Munoz, Itziar A1 - Fritsch, Tobias A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Diffraction-Based Residual Stress Characterization in Laser Additive Manufacturing of Metals JF - Metals N2 - Laser-based additive manufacturing methods allow the production of complex metal structures within a single manufacturing step. However, the localized heat input and the layer-wise manufacturing manner give rise to large thermal gradients. Therefore, large internal stress (IS) during the process (and consequently residual stress (RS) at the end of production) is generated within the parts. This IS or RS can either lead to distortion or cracking during fabrication or in-service part failure, respectively. With this in view, the knowledge on the magnitude and spatial distribution of RS is important to develop strategies for its mitigation. Specifically, diffraction-based methods allow the spatial resolved determination of RS in a non-destructive fashion. In this review, common diffraction-based methods to determine RS in laser-based additive manufactured parts are presented. In fact, the unique microstructures and textures associated to laser-based additive manufacturing processes pose metrological challenges. Based on the literature review, it is recommended to (a) use mechanically relaxed samples measured in several orientations as appropriate strain-free lattice spacing, instead of powder, (b) consider that an appropriate grain-interaction model to calculate diffraction-elastic constants is both material- and texture-dependent and may differ from the conventionally manufactured variant. Further metrological challenges are critically reviewed and future demands in this research field are discussed. KW - Laser-based additive manufacturing KW - Residual stress analysis KW - X-ray and neutron diffraction KW - Diffraction-elastic constants KW - Strain-free lattice spacing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538054 DO - https://doi.org/10.3390/met11111830 VL - 11 IS - 11 SP - 1830 PB - MPDI CY - Basel AN - OPUS4-53805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Metasurface-Enhanced Photon Upconversion upon 1550 nm Excitation JF - Advanced Science News N2 - Photon upconversion upon 1550 nm excitation is of high relevance for applications in the third biological excitation window, for photovoltaics beyond current limitations, and enables appealing options in the field of glass Fiber telecommunications. Trivalent doped erbium ions (Er3+) are the material of choice for 1550 nm excited upconversion, however, they suffer from a low absorption cross-section and a low brightness. Therefore, the ability of Silicon metasurfaces to provide greatly enhanced electrical near-fields is employed to enable efficient photon upconversion even at low external Illumination conditions. Hexagonally shaped β-NaYF4:Er3+ nanoparticles are placed on large-area silicon metasurfaces designed to convert near-infrared (1550 nm) to visible light. More than 2400-fold enhanced photon upconversion luminescence is achieved by using this metasurface instead of a planar substrate. With the aid of optical simulations based on the finite-element method, this result is attributed to the coupling of the excitation source with metasurface resonances at appropriate incident angles. Analysis of the excitation power density dependence of upconversion luminescence and red-to-green-emission ratios enables the estimation of nanoscale near-field enhancement on the metasurface. The findings permit the significant reduction of required external excitation intensities for photon upconversion of 1550 nm light, opening perspectives in biophotonics, telecommunication, and photovoltaics. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Single enhancement KW - SWIR KW - Method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537193 DO - https://doi.org/10.1002/adom.202101285. SN - 2195-1071 VL - 9 IS - 24 SP - 2101285 PB - Wiley-VCH-GmbH AN - OPUS4-53719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sommerfeld, Thomas A1 - Jung, Christian A1 - Riedel, Juliane A1 - Mauch, Tatjana A1 - Sauer, Andreas A1 - Koch, Matthias T1 - Development of a certified reference material for the determination of polycyclic aromatic hydrocarbons (PAHs) in rubber toy JF - Analytical and Bioanalytical Chemistry N2 - Polycyclic aromatic hydrocarbons (PAHs) are a large group of priority organic pollutants, which contaminate environmental compartments, food, and consumer products as well. Due to their frequent occurrence associated with elevated Levels of PAHs, plastic and rubber parts of consumer products and toys are particular sources of exposure. Although European maximum levels exist for eight carcinogenic PAHs in consumer products and toys according to REACH Regulation (EC) No. 1907/2006, certified reference materials (CRM) are still not available. To overcome this lack, the first CRM for the determination of PAHs in rubber toys (BAM-B001) was developed according to the requirements of ISO Guide 35. The whole process of CRM development including preparation, homogeneity and stability studies, and value assignment is presented. The assignment of the certified mass fractions was based upon in-house study at BAM using stable isotope Dilution analysis (SIDA) gas chromatography mass spectrometry (GC–MS). The obtained values were confirmed by the results of two interlaboratory comparison (ILC) studies with more than 50 expert laboratories from Germany and China. The mass fractions of 14 PAHs including all REACH and GS mark regulated compounds were certified ranging between 0.2 and 15.4 mg/ kg accompanied by expanded uncertainties (coverage factor k = 2). In addition, informative values were determined for 4 PAHs, mainly due to higher uncertainties and/or lack of ILC data for confirmation. BAM-B001 is intended for analytical quality control particularly based on the AfPS GS 2019:01 PAK method and contributes to improve the chemical safety of consumer products including toys. KW - PAHs KW - Consumer Products KW - Toys KW - Chemical Safety KW - Certified reference material KW - Quality assurance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539920 DO - https://doi.org/10.1007/s00216-021-03796-5 VL - 414 IS - 15 SP - 4369 EP - 4378 PB - Springer AN - OPUS4-53992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Yuan, R. A1 - Chakraborty, A. A1 - Ghassemi-Armaki, H. A1 - Zuo, J. M. A1 - Maaß, Robert T1 - Early stages of liquid-metal embrittlement in an advanced high-strength steel JF - Materials Today Advances N2 - Grain-boundary degradation via liquid-metal embrittlement (LME) is a prominent and long-standing failure process in next generation advanced high-strength steels. Here we reveal, well ahead of the crack tip, the presences of nano-scale grains of intermetallic phases in Zn-infiltrated but uncracked grain boundaries with scanning- and 4D transmission electron microscopy. Instead of the often-reported Znrich Fe-Zn intermetallics, the nano-scale phase in the uncracked infiltrated grain boundaries is identified as the G-phase, and its presence reveals the local enhancement of strain heterogeneities in the grain boundary network. Based on these observations, we argue that intermetallic phase formation is not occurring after cracking and subsequent liquid Zn infiltration but is instead one of the primary nanoscopic drivers for grain-boundary weakening and crack initiation. These findings shift the focus of LME from micro- and meso-scale crack investigations to the very early stages immediately following Zn diffusion, after which secondary phase nucleation and growth emerge as the root-cause for failure. KW - Advanced high strength steels KW - Liquid metal embrittlement KW - Transmission electron microscopy KW - 4-Dimensional scanning transmission KW - electron microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539716 DO - https://doi.org/10.1016/j.mtadv.2021.100196 SN - 2590-0498 VL - 13 IS - 196 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-53971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - SnOct2-catalyzed ROPs of L-lactide initiated by acidic OH- compounds: Switching from ROP to polycondensation and cyclization JF - Journal of Polymer Science A: Polymer Chemistry N2 - Ring-opening polymerizations (ROPs) of L-lactide are performed in bulk at 130°C with tin(II) 2-ethylhexanoate as catalyst and various phenols of differentacidity as initiators. Crystalline polylactides having phenyl ester end groups are isolated, which are almost free of cyclics. The dispersities and molecular weights are higher than those obtained from alcohol-initiated ROPs under identical conditions. Polymerizations at 160°C yield higher molecular weights than expected from the monomer/initiator ratio and a considerable fraction of cycles. The fraction of cycles increases with higher reactivity of the ester end group indicating that the cycles are formed by end-to-end cyclization. KW - Polylactide KW - MALDI-TOF MS KW - Polymerization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540250 DO - https://doi.org/10.1002/pol.20210823 SN - 2642-4150 VL - 60 IS - 5 SP - 785 EP - 793 PB - Wiley AN - OPUS4-54025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander A1 - Krebber, Katerina T1 - Distributed fiber optic radiation sensors T2 - Interdisciplinary Research Symposium on the Safety of Nuclear Disposal Practices safeND N2 - In this work, we present our results achieved in several research activities for development of distributed fiber optic radiation sensors using glass and polymer optical fibers. The findings show that both the measurement of the radiation-induced attenuation (RIA) along the entire sensing fiber and the accompanying change in the refractive index of the fiber core can be used for distributed radiation monitoring. T2 - safeND CY - Online meeting DA - 10.11.2021 KW - Distributed fiber optic radiation sensors KW - Radiation-induced attenuation KW - Optical fiber sensor KW - Incoherent optical frequency domain reflectometry PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537531 DO - https://doi.org/10.5194/sand-1-15-2021 VL - 1 SP - 15 EP - 16 AN - OPUS4-53753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Trace compounds in Early Medieval Egyptian blue carry information on provenance, manufacture, application, and ageing JF - Scientific Reports N2 - Only a few scientific evidences for the use of Egyptian blue in Early Medieval wall paintings in Central and Southern Europe have been reported so far. The monochrome blue fragment discussed here belongs to the second church building of St. Peter above Gratsch (South Tyrol, Northern Italy, fifth/ sixth century A.D.). Beyond cuprorivaite and carbon black (underpainting), 26 accessory minerals down to trace levels were detected by means of Raman microspectroscopy, providing unprecedented insights into the raw materials blend and conversion reactions during preparation, application, and ageing of the pigment. In conjunction with archaeological evidences for the manufacture of Egyptian blue in Cumae and Liternum and the concordant statements of the antique Roman writers Vitruvius and Pliny the Elder, natural impurities of the quartz sand speak for a pigment produced at the northern Phlegrean Fields (Campania, Southern Italy). Chalcocite (and chalcopyrite) suggest the use of a sulphidic copper ore, and water-insoluble salts a mixed-alkaline flux in the form of plant ash. Not fully reacted quartz crystals partly intergrown with cuprorivaite and only minimal traces of silicate glass portend solid-state reactions predominating the chemical reactions during synthesis, while the melting of the raw materials into glass most likely played a negligible role. KW - Egyptian blue KW - Raman microspectroscopy KW - Spectoscopic imaging KW - Cuprorivaite KW - Amorphous carbon PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537591 DO - https://doi.org/10.1038/s41598-021-90759-6 VL - 11 SP - 1 EP - 12 PB - Nature Portfolio AN - OPUS4-53759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Kraft, Ronja A1 - Dariz, P. T1 - Shedding light onto the spectra of lime - Part 2: Raman spectra of Ca and Mg carbonates and the role of d-block element luminescence JF - Journal of Raman Spectroscopy N2 - We previously described the observation of a characteristic narrowband red luminescence emission of burnt lime (CaO), whose reason was unknown so far. This study presents Raman spectra of Mg5 CO3)4(OH)2∙4H2O, Mg5(CO3)4(OH)2, MgCO3, CaMgCO3 and CaCO3 (in limestone powder) as well as luminescence spectra of their calcination products. Comparison of the latter revealed MgO:Cr3+ as the source of the red lime luminescence in all studied samples, containing magnesium oxide as major component, minor component or trace. Spectral characteristics and theoretical background of the luminescence emission of d-block elements integrated in crystal lattices are discussed with the aim of sharpening the awareness for this effect in the Raman community and promoting its application in materials analysis. The latter is demonstrated by the Raman microspectroscopic imaging of the distributions of both Raman-active and Raman-inactive phases in clinker remnants in a 19th-century meso Portland cement mortar sample, which contain relatively high amounts of free lime detected in the form of both luminescing CaO and Raman-scattering Ca(OH)2, owing to exposure of the surface of the thin section to humid air. A combination of light and Raman spectroscopy revealed a calcium–magnesium–iron sulphide phase, indicating sulphurous raw materials and/or solid fuels employed in the calcination process, which in contrast to previously described morphologies of sulphides in cement clinker form extensive greenish black layers on free lime crystals. KW - Calcium carbonates KW - Raman spectroscopy KW - Luminescence KW - Magnesium carbonates KW - Meso Portland cement PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537611 DO - https://doi.org/10.1002/jrs.6174 SN - 0377-0486 VL - 52 IS - 8 SP - 1462 EP - 1472 PB - Wiley Analytical Science AN - OPUS4-53761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Hidde, Julia A1 - Grünier, Sophie A1 - Jungnickel, Robert A1 - Dariz, P. A1 - Riedel, Jens A1 - Neuhaus, B. T1 - Ageing effects in mountig media of microscope slide samples from natural history collections: A case study with Canada balsam and Permount™ JF - Polymers N2 - Microscope slide collections represent extremely valuable depositories of research material in a natural history, forensic, veterinary, and medical context. Unfortunately, most mounting media of these slides deteriorate over time, with the reason for this not yet understood at all. In this study, Raman spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, and different types of light microscopy were used to investigate the ageing behaviour of naturally aged slides from museum collections and the experimentally aged media of Canada balsam and Permount™, representing a natural and a synthetic resin, respectively, with both being based on mixtures of various terpenes. Whereas Canada balsam clearly revealed chemical ageing processes, visible as increasing colouration, Permount™ showed physical deterioration recognisable by the increasing number of cracks, which even often impacted a mounted specimen. Noticeable changes to the chemical and physical properties of these mounting media take decades in the case of Canada balsam but just a few years in the case of Permount™. Our results question whether or not Canada balsam should really be regarded as a mounting medium that lasts for centuries, if its increasing degree of polymerisation can lead to a mount which is no longer restorable. KW - Deterioration KW - Microscope slides KW - Mounting media KW - Raman spectroscopy KW - UV–Vis spectroscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537632 DO - https://doi.org/10.3390/polym13132112 VL - 13 IS - 13 SP - 1 EP - 27 PB - MDPI CY - Basel AN - OPUS4-53763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michna, A. A1 - Maciejewska-Prończuk, J. A1 - Wasilewska, M. A1 - Kilicer, Tayfun A1 - Witt, Julia A1 - Özcan Sandikcioglu, Özlem T1 - Effect of the Anchoring Layer and Transport Type on the Adsorption Kinetics of Lambda Carrageenan JF - The Journal of Physical Chemistry N2 - The kinetics of lambda carrageenan (λ-car) adsorption/desorption on/from anchoring layers under diffusion- and convection-controlled transport conditions were investigated. The eighth generation of poly(amidoamine) dendrimers and branched polyethyleneimine possessing different shapes and polydispersity indexes were used for anchoring layer formation. Dynamic light scattering, electrophoresis, streaming potential measurements, optical waveguide lightmode spectroscopy, and quartz crystal microbalance were applied to characterize the formation of mono- and bilayers. The unique combination of the employed techniques enabled detailed insights into the mechanism of the λ-car adsorption mainly controlled by electrostatic interactions. The results show that the macroion adsorption efficiency is strictly correlated with the value of the final zeta potentials of the anchoring layers, the transport type, and the initial bulk concentration of the macroions. The type of the macroion forming the anchoring layer had a minor impact on the kinetics of λ-car adsorption. Besides significance to basic science, the results presented in this paper can be used for the development of biocompatible and stable macroion multilayers of well-defined electrokinetic properties and structure. KW - AFM KW - Dynamic light scattering KW - Electrophoresis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540546 DO - https://doi.org/10.1021/acs.jpcb.1c03550 VL - 125 IS - 28 SP - 7797 EP - 7808 PB - American Chemical Society AN - OPUS4-54054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böllinghaus, Thomas A1 - Wentland, Eva A1 - Jaßmann, R. A1 - Keller, R. A1 - Wolfrum, Anne T1 - Conservation of the Shaft #1 Headgear at the Tsumeb Mine, Namibia: Corrosion Protection JF - Studies in conservation N2 - The Tsumeb Mine in Namibia represents one of the best-preserved mining sites in the world and is rapidly gaining cross-disciplinary interest among cultural and engineering scientists. Most of the open pit and the shaft mining equipment are still in place, including the ore processing units and the local power plant. The mining area thus deserves recognition as an industrial world heritage site, especially due to the rarity of such locations on the African continent. The Shaft #1 headgear, built in 1924, represents one of the oldest known riveted steel headgears of the Promnitz design worldwide. In contrast to similar steel structures located in the northern hemisphere, it has been exposed to a different rural semi-arid climate since it is located in the Otavi Mountain Land, characterized by semi-annual change of rainy and dry seasons. Parts of the Shaft #1 headgear have remained largely untouched for more than 70 years. Besides its outstanding heritage value, it thus also represents an interesting object for studying the composition of corrosion layers formed on mild steel surfaces when exposed to continental and industrial mining atmospheres. To find a suitable transparent corrosion prevention coating, various on-site coating samples were evaluated after 11 months of outdoor exposure, including Owatrol Oil®, which is based on natural oil and alkyd resin with strong wicking potential. The substance is frequently applied for the conservation of single components but is not yet widely used on large steel structures in the field of industrial heritage conservation. However, it represented the most stable anti-corrosion coating under the local atmospheric conditions in the on-site tests. Thus, the suitability of Owatrol Oil® as a transparent coating for corrosion protection of riveted mild steel structures in such climates was further investigated as a more recent approach for the conservation of large steel structures. Since the protective coatings are exposed to strong UV radiation in the local climate, the addition of a specific UV stabilizer mixture was also tested. For such laboratory tests, two mild steel samples were taken. The first one originated from a diagonal strut of the 1920s and the second one from a handrail mounted in the early 1960s. Using corresponding high-resolution scanning electron microscopy (HR-SEM) and energy-dispersive X-ray spectroscopy (EDX) it was found that the corrosion layers are predominantly composed of lepidocrocite and goethite. A weathering program simulating the specific environmental conditions at Tsumeb in a UV climate chamber was developed and the corrosion resistance of the mild steel surface was subsequently evaluated by potentiodynamic measurements. Such tests proved to be a fast and reliable procedure for ranking the corrosion resistance of the old mild steels. It was found that the long-term corrosion layers already provide significant protection against further corrosion in the simulated environment. However, the study also showed that this can be further improved by the application of the Owatrol Oil® as a protective coating that also seals crevices. The addition of the UV stabilizers, however, led to a significant deterioration in corrosion protection, even in comparison to that of the uncoated long-term corrosion layers on the surface. Regular overcoating seems more advisable for the long-term preservation of the Shaft #1 headgear than modifying the Owatrol Oil® Coating with the tested UV-stabilizing additives. KW - Potentiodynamic measurements KW - Mining head gear KW - Mild steels KW - Chemical composition KW - Characterization of corrosion layers KW - Alkyd resin-based coating KW - UV-blocker addition KW - Weathering tests PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541476 DO - https://doi.org/10.1080/00393630.2021.2004007 SN - 0039-3630 SP - 1 EP - 15 PB - Taylor & Francis Online AN - OPUS4-54147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dzekan, D. A1 - Waske, Anja A1 - Nielsch, K. A1 - Fähler, S. T1 - Efficient and affordable thermomagnetic materials for harvesting low grade waste heat JF - APL Materials N2 - Industrial processes release substantial quantities of waste heat, which can be harvested to generate electricity. At present, the conversion of low grade waste heat to electricity relies solely on thermoelectric materials, but such materials are expensive and have low thermodynamic efficiencies. Although thermomagnetic materials may offer a promising alternative, their performance remains to be evaluated, thereby hindering their real-world application. Here, the efficiency and cost effectiveness of thermomagnetic materials are evaluated for the usage in motors, oscillators, and generators for converting waste heat to electricity. The analysis reveals that up to temperature differences of several 10 K, the best thermomagnetic materials have the potential to compete with thermoelectric materials. Importantly, it is found that the price per watt of some thermomagnetic materials is much lower compared to that of present-day thermoelectrics, which can become competitive with conventional power plants. This materials library enables the selection of the best available thermomagnetic materials for harvesting waste heat and gives guidelines for their future development. KW - Waste heat conversion KW - Magnetic materials KW - Thermomagnetic generator PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541493 DO - https://doi.org/10.1063/5.0033970 VL - 9 SP - 1 EP - 9 PB - AIP Publishing CY - Melville, USA AN - OPUS4-54149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chi, J. A1 - Agea Blanco, B. A1 - Bruno, Giovanni A1 - Günster, Jens A1 - Zocca, Andrea T1 - Self-Organization Postprocess for Additive Manufacturingin Producing Advanced Functional Structure and Material JF - Advanced Engineering Materials N2 - Additive manufacturing (AM) is developing rapidly due to itsflexibility in producing complex geometries and tailored material compositions. However, AM processes are characterized by intrinsic limitations concerning their resolution and surface finish, which are related to the layer-by-layer stacking process. Herein, a self-organization process is promoted as an approach to improve surface quality and achieve optimization of 3D minimal surface lightweight structures. The self-organization is activated after the powder bed 3D printing process via local melting, thereby allowing surface tension-driven viscous flow.The surface roughness Ra (arithmetic average of the roughness profile) could bedecreased by a factor of 1000 and transparent lenses and complex gyroid structures could be produced for demonstration. The concept of self-organization is further elaborated by incorporating external magnetic fields to intentionally manipulate magnetic particles, which are mixed with the polymer before printing and self-organization. This concept can be applied to develop programmable materials with specific microtextures responding to the external physical conditions. KW - Additive Manufacturing KW - Self-organization KW - Triply Periodical Minimal Surface PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540588 DO - https://doi.org/10.1002/adem.202101262 VL - 24 IS - 6 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-54058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P. A1 - Nitsche, A. T1 - Thickness and microstructure effect on hydrogen diffusion in creep‑resistant 9% Cr P92 steel and P91 weld metal JF - Welding in the World N2 - Martensitic 9% Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. Limited data on room temperature diffusion coefficients reported in literature vary widely by several orders of magnitude (mostly attributed to variation in microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. From the results obtained, diffusion coefficients were calculated using to different methods, time-lag, and inflection point. Results show that, despite microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. KW - Creep-resistant steel KW - Diffusion KW - Hydrogen assisted cracking KW - Welding KW - Electrochemical permeation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540645 DO - https://doi.org/10.1007/s40194-021-01218-9 SN - 0043-2288 SP - 1 EP - 16 PB - Springer Nature Switzerland AG AN - OPUS4-54064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nehring, Grzegorz A1 - Bonnerot, Olivier A1 - Gordon, N. A1 - Rabin, Ira T1 - Writing and Correcting a Torah Scroll in Germany of the Thirteenth and Fourteenth Centuries JF - Comparative Oriental Manuscript Studies Bulletin N2 - Scientific material analysis of the elemental composition of inks from different strata of a manuscript has the potential to complement scholarly observations using palaeography and philology in reconstructing the history of the manuscript’s production, correction and repair. There are three typologically different classes of black writing inks: soot inks consist of carbon particles. KW - Manuscript studies KW - Hebrew studies KW - Ink analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540658 DO - https://doi.org/10.25592/uhhfdm.9749 VL - Comparative Oriental Manuscript Studies Bulletin 7, 2021 IS - 7 SP - 2 EP - 20 PB - Centre for the study of manuscript cultures CY - Hamburg AN - OPUS4-54065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Léonard, F. A1 - Lange, A. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - On the Morphological and Crystallographic Anisotropy of Diesel Particulate Filter Materials JF - Advanced Engineering Materials N2 - The determination of the anisotropy of materials’ microstructure and morphology (pore space) in diesel particulate filter (DPF) materials is an important problem to solve, since such anisotropy determines the mechanical, thermal, and filtration properties of such materials. Through the use of a dedicated (and simple) segmentation algorithm, it is shown how to exploit the information yielded by 3D X-ray computed tomography data to quantify the morphological anisotropy. It is also correlated that such anisotropy of the pore space Such anisotropy of the pore space is also correlated with the microstructure and crystallographic anisotropy of the material in several showcases: a microstructurally isotropic material, such as SiC, and some morphologically and microstructurally anisotropic cordierite materials. In the later case, the finer the grain size, the more isotropic the microstructure. KW - Diesel Particulate Filter Materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540705 DO - https://doi.org/10.1002/adem.202101380 VL - 24 IS - 2101380 SP - 1 EP - 12 PB - Wiley VCH GmbH CY - Weinheim AN - OPUS4-54070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van Den Bossche, T. A1 - Kunath, B. A1 - Schallert, K. A1 - Schäpe, S. A1 - Abraham, P. E. A1 - Armengaud, J. A1 - Arntzen, M. Ø. A1 - Bassignani, A. A1 - Benndorf, D. A1 - Fuchs, S. A1 - Giannone, R. J. A1 - Griffin, T. J. A1 - Hagen, L. H. A1 - Halder, R. A1 - Henry, C. A1 - Hettich, R. L. A1 - Heyer, R. A1 - Jagtap, P. A1 - Jehmlich, N. A1 - Jensen, M. A1 - Juste, C. A1 - Kleiner, M. A1 - Langella, O. A1 - Lehmann, T. A1 - Leith, E. A1 - May, P. A1 - Mesuere, B. A1 - Miotello, G. A1 - Peters, S. L. A1 - Pible, O. A1 - Queiros, P. T. A1 - Reichl, U. A1 - Renard, B. Y. A1 - Schiebenhoefer, H. A1 - Sczyrba, A. A1 - Tanca, A. A1 - Trappe, K. A1 - Trezzi, J.-P. A1 - Uzzau, S. A1 - Verschaffelt, P. A1 - von Bergen, M. A1 - Wilmes, P. A1 - Wolf, M. A1 - Martens, L. A1 - Muth, Thilo T1 - Critical Assessment of MetaProteome Investigation (CAMPI): A multi-laboratory comparison of established workflows JF - Nature communications N2 - Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments. KW - Metaproteomics KW - Mass spectrometry KW - Data science KW - Benchmarking KW - Bioinformatics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541220 DO - https://doi.org/10.1038/s41467-021-27542-8 SN - 2041-1723 VL - 12 SP - 1 EP - 15 PB - Nature Publishing Group CY - London AN - OPUS4-54122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valentin, J. A1 - Straub, H. A1 - Pietsch, Franziska A1 - Lemare, M. A1 - Ahrens, C. A1 - Schreiber, Frank A1 - Webb, J. A1 - van der Mei, H. A1 - Ren, Q. T1 - Role of the flagellar hook in the structural development and antibiotic tolerance of Pseudomonas aeruginosa biofilms JF - ISME Journal N2 - Pseudomonas aeruginosa biofilms exhibit an intrinsic resistance to antibiotics and constitute a considerable clinical threat. In cystic fibrosis, a common feature of biofilms formed by P. aeruginosa in the airway is the occurrence of mutants deficient in flagellar motility. This study investigates the impact of flagellum deletion on the structure and antibiotic tolerance of P. aeruginosa biofilms, and highlights a role for the flagellum in adaptation and cell survival during biofilm development. Mutations in the flagellar hook protein FlgE influence greatly P. aeruginosa biofilm structuring and antibiotic tolerance. Phenotypic analysis of the flgE knockout mutant compared to the wild type (WT) reveal increased fitness under planktonic conditions, reduced initial adhesion but enhanced formation of microcolony aggregates in a microfluidic environment, and decreased expression of genes involved in exopolysaccharide formation. Biofilm cells of the flgE knock-out mutant display enhanced tolerance towards multiple antibiotics, whereas its planktonic cells show similar resistance to the WT. Confocal microscopy of biofilms demonstrates that gentamicin does not affect the viability of cells located in the inner part of the flgE knock-out mutant biofilms due to reduced penetration. These findings suggest that deficiency in flagellar proteins like FlgE in biofilms and in cystic fibrosis infections represent phenotypic and evolutionary adaptations that alter the structure of P. aeruginosa biofilms conferring increased antibiotic tolerance. KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541113 DO - https://doi.org/10.1038/s41396-021-01157-9 SN - 1751-7370 VL - 16 IS - 4 SP - 1176 EP - 1186 PB - Springer Nature AN - OPUS4-54111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krietsch, Arne A1 - Reyes Rodriguez, M. A1 - Kristen, A. A1 - Kadoke, D. A1 - Abbas, Z. A1 - Krause, U. T1 - Ignition temperatures and flame velocities of metallic nanomaterials T2 - Proceedings of the 13th Symposium International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions N2 - The production of materials with dimensions in the nanometre range has continued to increase in recent years. In order to ensure safety when handling these products, the hazard potential of such innovative materials must be known. While several studies have already investigated the effects of explosions (such as maximum explosion pressure and maximum pressure rise) of powders with primary particles in the nanometre range, little is known about the ignition temperatures and flame velocities. Therefore, the minimum ignition temperature (MIT) of metallic nano powders (aluminium, iron, copper and zinc) was determined experimentally in a so called Godbert-Greenwald (GG) oven. Furthermore, the flame velocities were determined in a vertical tube. In order to better classify the test results, the tested samples were characterised in detail and the lower explosion limits of the tested dust samples were determined. Values for the burning velocity of aluminium nano powders are higher compared to values of micrometre powders (from literature). While MIT of nanometre aluminium powders is within the range of micrometre samples, MIT of zinc and copper nano powders is lower than values reported in literature for respective micrometre samples. T2 - 13th Symposium International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Online meeting DA - 27.07.2021 KW - Dust explosions KW - Nanomaterial KW - Flame propagation KW - Minimum ignition temperature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540930 DO - https://doi.org/10.7795/810.20200724 SP - 591 EP - 605 PB - Physikalisch-Technische Bundesanstalt AN - OPUS4-54093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Michalchuk, Adam A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit T1 - Elastic Flexibility in an Optically Active Naphthalidenimine-Based Single Crystal JF - Crystals N2 - Organic single crystals that combine mechanical flexibility and optical properties are important for developing flexible optical devices, but examples of such crystals remain scarce. Both mechanical flexibility and optical activity depend on the underlying crystal packing and the nature of the intermolecular interactions present in the solid state. Hence, both properties can be expected to be tunable by small chemical modifications to the organic molecule. By incorporating a chlorine atom, a reportedly mechanically flexible crystal of (E)-1-(4-bromo-phenyl)iminomethyl-2-hydroxylnaphthalene (BPIN) produces (E)-1-(4-bromo-2-chloro-phenyl)iminomethyl-2-hydroxyl-naphthalene (BCPIN). BCPIN crystals show elastic bending similar to BPIN upon mechanical stress, but exhibit a remarkable difference in their optical properties as a result of the chemical modification to the backbone of the organic molecule. This work thus demonstrates that the optical properties and mechanical flexibility of molecular materials can, in principle, be tuned independently. KW - Elastic Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539040 DO - https://doi.org/10.3390/cryst11111397 VL - 11 IS - 11 SP - 1397 PB - MDPI AN - OPUS4-53904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schalau, Sebastian A1 - Habib, Abdel Karim T1 - Atmospheric wind field modelling with OpenFOAM for near-ground gas dispersion JF - Atmosphere N2 - CFD simulations of near-ground gas dispersion depend significantly on the accuracy of the wind field. When simulating wind fields with conventional RANS turbulence models, the velocity and turbulence profiles specified as inlet boundary conditions change rapidly in the approach flow region. As a result, when hazardous materials are released, the extent of hazardous areas is calculated based on an approach flow that differs significantly from the boundary conditions defined. To solve this problem, a turbulence model with consistent boundary conditions was developed to ensure a horizontally homogeneous approach flow. Instead of the logarithmic vertical velocity profile, a power law is used to overcome the problem that with the logarithmic profile, negative velocities would be calculated for heights within the roughness length. With this, the problem that the distance of the wall-adjacent cell midpoint has to be higher than the roughness length is solved, so that a high grid resolution can be ensured even in the near-ground region which is required to simulate gas dispersion. The evaluation of the developed CFD model using the German guideline VDI 3783/9 and wind tunnel experiments with realistic obstacle configurations showed a good agreement between the calculated and the measured values and the ability to achieve a horizontally homogenous approach flow. KW - OpenFOAM KW - Gas dispersion KW - Atmospheric boundary layer KW - Turbulence model PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539095 DO - https://doi.org/10.3390/atmos12080933 VL - 12 IS - 8 SP - 933 PB - MDPI AN - OPUS4-53909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Söftje, M. A1 - Weingartz, T. A1 - Plarre, Rüdiger A1 - Gjikaj, M. A1 - Namysko, J. C. A1 - Kaufmann, D. E. T1 - Surface Tuning of Wood via Covalent Modification of Its Lignocellulosic Biopolymers with Substituted BenzoatesA Study on Reactivity, Efficiency, and Durability JF - ACS Omega N2 - Chemical modification of wood applying benzotriazolyl-activated carboxylic acids has proven to be a versatile method for the durable functionalization of its lignocellulosic biopolymers. Through this process, the material properties of Wood can be influenced and specifically optimized. To check the scope and limitations of this modification method, various benzamide derivatives with electron-withdrawing (EWG) or electron-donating (EDG) functional groups in different positions of the aromatic ring were synthesized and applied for covalent modification of Scots pine (Pinus sylvestris L.) sapwood in this study. The bonded amounts of substances (up to 2.20 mmol) were compared with the reactivity constants of the Hammett equation, revealing a significant correlation between the modification efficiency and the theoretical reactivity constants of the corresponding aromatic substitution pattern. The successful covalent attachment of the respective substituted benzamides was proven by attenuated total reflection infrared (ATR-IR) spectroscopy, while the stability of the newly formed ester bond was proven in a standardized leaching test. KW - Leaching KW - Wood Protection KW - Wood Modification PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538932 DO - https://doi.org/10.1021/acsomega.1c04353 VL - 6 IS - 49 SP - 33542 EP - 33553 AN - OPUS4-53893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, Francesco A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Schmidt, R. A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Customizing New Titanium Dioxide Nanoparticles with Controlled Particle Size and Shape Distribution: A Feasibility Study Toward Reference Materials for Quality Assurance of Nonspherical Nanoparticle Characterization JF - Advanced Engineering Materials N2 - An overview is given on the synthesis of TiO2 nanoparticles with well-defined nonspherical shapes (platelet like, bipyramidal, and elongated), with the focus on controlled, reproducible synthesis, as a key requirement for the production of reference materials with homogeneous and stable properties. Particularly with regard to the nanoparticle shapes, there is a high need of certified materials, solely one material of this type being commercially available since a few months (elongated TiO2). Further, measurement approaches with electron microscopy as the golden method to tackle the nanoparticle shape are developed to determine accurately the size and shape distribution for such nonspherical particles. A prerequisite for accurate and easy (i.e., automated) image analysis is the sample preparation, which ideally must ensure a deposition of the nanoparticles from liquid suspension onto a substrate such that the particles do not overlap, are solvent-free, and have a high deposition density. Challenges in the Synthesis of perfectly monodispersed and solvent-free TiO2 nanoparticles of platelet and acicular shapes are highlighted as well as successful measurement approaches on how to extract from 2D projection electron micrographs the most accurate spatial information, that is, true 3D size, for example, of the bipyramidal nanoparticles with different geometrical orientations on a substrate. KW - Nanoparticles KW - Titanium dioxide KW - Reference materials KW - Standardisation KW - Particle size and shape distribution PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538849 DO - https://doi.org/10.1002/adem.202101347 VL - 24 IS - 6 SP - 1 EP - 10 PB - Wiley-VCH AN - OPUS4-53884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - He, S. A1 - Sieksmeyer, T. A1 - Che, Y. A1 - Mora, M. A. E. A1 - Stiblik, P. A1 - Banasiak, Robert A1 - Harrison, M. C. A1 - Sobotnik, J. A1 - Wang, Z. A1 - Johnston, P. R. A1 - McMahon, Dino Peter ED - He, s. ED - McMahon, Dino Peter T1 - Evidence for reduced immune gene diversity and activity during the evolution of termites JF - Proceedings B N2 - The evolution of biological complexity is associated with the emergence of bespoke immune systems that maintain and protect organism integrity. Unlike the well-studied immune systems of cells and individuals, little is known about the origins of immunity during the transition to eusociality, a major evolutionary transition comparable to the evolution of multicellular organisms from single-celled ancestors. We aimed to tackle this by characterizing the immune gene repertoire of 18 cockroach and termite species, spanning the spectrum of solitary, subsocial and eusocial lifestyles. We find that key transitions in termite sociality are correlated with immune gene family contractions. In cross-species comparisons of immune gene expression, we find evidence for a caste-specific social defence system in termites, which appears to operate at the expense of individual immune protection. Our study indicates that a major transition in organismal complexity may have entailed a fundamental reshaping of the immune system optimized for group over individual defence. KW - Social insect KW - Subsocial KW - Cockroach KW - Major transition KW - Contraction KW - Expansion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538878 DO - https://doi.org/10.1098/rspb.2020.3168 SN - 0962-8452 VL - 288 IS - 1945 SP - 1 EP - 10 PB - The Royal Society Publishing CY - London, UK AN - OPUS4-53887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Mrkwitschka, Paul A1 - Moos, R. A1 - Rabe, Torsten T1 - Glass-ceramic composites as insulation material for thermoelectric oxide multilayer generators JF - Journal of the American Ceramic Society N2 - Thermoelectric generators can be used as energy harvesters for sensor applications. Adapting the ceramic multilayer technology, their production can be highly automated. In such multilayer thermoelectric generators, the electrical insulation material, which separates the thermoelectric legs, is crucial for the performance of the device. The insulationmaterial should be adapted to the thermoelectric regarding its averaged coefficient of thermal expansion α and its sintering temperature while maintaining a high resistivity. In this study, starting from theoretical calculations, a glass-ceramic Composite material adapted for multilayer generators fromcalciummanganate and Calcium cobaltite is developed. The material is optimized towards an α of 11 × 10−6 K−1 (20–500◦C), a sintering temperature of 900◦C, and a high resistivity up to 800◦C. Calculated and measured α are in good agreement. The chosen glass-ceramic composite with 45 vol.% quartz has a resistivity of 1 × 107 Ωcm and an open porosity of <3%. Sintered multilayer samples from tape-cast thermoelectric oxides and screen-printed insulation show only small reaction layers. It can be concluded that glass-ceramic composites are a well-suited material class for insulation layers as their physical properties can be tuned by varying glass composition or dispersion phases. KW - Electrical insulators KW - Glass-ceramics KW - Multilayers KW - Thermal expansion PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538898 DO - https://doi.org/10.1111/jace.18235 SN - 0002-7820 SP - 1 EP - 10 PB - Wiley Online Library AN - OPUS4-53889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Benke, Alexander A1 - Janovsky, B. A1 - Krause, U. A1 - Krietsch, Arne T1 - Influence of pre-ignition pressure rise on safety characteristics of dusts and hybrid mixtures JF - Fuel N2 - For the determination of the safety characteristics of dusts it is necessary to disperse the dust in the oxidating atmosphere (usually air). In the standard procedures for dusts this is realized by a partially evacuated explosion vessel (20L-sphere) in which the dust gets injected from a dust chamber pressurized with air. Shortly after that injection (60 ms) the dust cloud gets ignited under turbulent conditions, that are otherwise seen as almost ambient with 20 ◦C and about 1 bar (abs). While there has been a lot of research about the influence of the ignition delay time and the level of turbulence in the recent years little attention was paid to the pre–ignition pressure rise and the allowed variations in the standards. In the following work we showed that the allowed ranges for the pressures in the different dust standards influence the safety characteristics of dust alone severely. Even though hybrid mixtures are an emerging risk problem in an interconnected industry there is no standard for the determination of their safety characteristics. In this work it is shown that especially for the preparation of hybrid mixtures of flammable dust and gas the pressures after injection of the dust and the mixing procedure have a large influence on the composition of the tested mixtures and therefore on the safety characteristics. Considering both effects, wrong concentration of gas and wrong initial pressure, the discrepancy of safety characteristics from different facilities will be too big to applicable. The methods to overcome these weaknesses are also presented. KW - Hybrid mixtures KW - 20L-sphere KW - Pre-ignition pressure rise KW - Post-injection pressure drop KW - Safety characteristics KW - Mixing procedure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537358 DO - https://doi.org/10.1016/j.fuel.2021.122495 VL - 311 SP - 122495 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-53735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - The bulging effect and its relevance in high power laser beam welding JF - IOP Conference Series: Materials Science and Engineering N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and an infrared camera is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs more frequently during partial penetration above 6 mm and complete penetration above 8 mm penetration depth, respectively. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root. T2 - 18th Nordic Laser Materials Processing Conference (18th NOLAMP) KW - High-power laser beam welding KW - Bulge effect KW - Solidification cracking KW - Multi-physical modelling KW - Metal mixing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539149 DO - https://doi.org/10.1088/1757-899X/1135/1/012003 VL - 1135 IS - 012003 SP - 1 EP - 11 PB - IOP Publishing AN - OPUS4-53914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lay, Vera A1 - Buske, S. A1 - Townend, J. A1 - Kellett, R. A1 - Savage, M. A1 - Schmitt, D. R. A1 - Constantinou, A. A1 - Eccles, J. D. A1 - Gorman, A. A1 - Bertram, M. A1 - Hall, K. A1 - Lawton, D. A1 - Kofman, R. T1 - 3D Active Source Seismic Imaging of the Alpine Fault Zone and the Whataroa Glacial Valley in New Zealand JF - Journal of Geophysical Research: Solid Earth N2 - The Alpine Fault zone in New Zealand marks a major transpressional plate boundary that is late in its typical earthquake cycle. Understanding the subsurface structures is crucial to understand the tectonic processes taking place. A unique seismic survey including 2D lines, a 3D array, and borehole recordings, has been performed in the Whataroa Valley and provides new insights into the Alpine Fault zone down to ∼2 km depth at the location of the Deep Fault Drilling Project (DFDP)-2 drill site. Seismic images are obtained by focusing prestack depth migration approaches. Despite the challenging conditions for seismic imaging within a sediment filled glacial valley and steeply dipping valley flanks, several structures related to the valley itself as well as the tectonic fault system are imaged. A set of several reflectors dipping 40°–56° to the southeast are identified in a ∼600 m wide zone that is interpreted to be the minimum extent of the damage zone. Different approaches image one distinct reflector dipping at ∼40°, which is interpreted to be the main Alpine Fault reflector located only ∼100 m beneath the maximum drilled depth of the DFDP-2B borehole. At shallower depths (z < 0.5 km), additional reflectors are identified as fault segments with generally steeper dips up to 56°. Additionally, a glacially over-deepened trough with nearly horizontally layered sediments and a major fault (z < 0.5 km) are identified 0.5–1 km south of the DFDP-2B borehole. Thus, a complex structural environment is seismically imaged and shows the complexity of the Alpine Fault at Whataroa. KW - Imaging KW - Signal processing KW - Seismic KW - Borehole KW - DAS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539163 DO - https://doi.org/10.1029/2021JB023013 VL - 126 IS - 12 SP - 1 EP - 21 PB - American Geophysical Union AN - OPUS4-53916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of an external applied AC magnetic field on the melt pool dynamics at high-power laser beam welding JF - IOP Conference Series: Materials Science and Engineering N2 - The study deals with the determination of the influence of an externally applied oscillating magnetic field on the melt pool dynamics in high power laser beam and hybrid laser arc welding processes. An AC magnet was positioned under the workpiece which is generating an upward directed electromagnetic force to counteract the formation of the droplets. To visualise the melt flow characteristics, several experiments were carried out using a special technique with mild steel from S355J2 with a plate thickness of up to 20 mm and a quartz glass in butt configuration. The profile of the keyhole and the melt flow were recorded with a highspeed camera from the glass side. Additionally, the influence of the magnetic field orientation to the welding direction on the filler material dilution on laser hybrid welding was studied with variating oscillation frequency. The element distribution over the whole seam thickness was measured with X-ray fluorescence (XRF). The oscillation frequency demonstrated a great influence on the melt pool dynamics and the mixing of the elements of the filler wire. The highspeed recordings showed, under the influence of the magnetic field, that the melt is affected under strong vortex at the weld root, which also avoids the formation of droplets. T2 - 18th Nordic Laser Materials Processing Conference (18th NOLAMP) KW - Laser beam welding KW - AC magnetic field KW - Melt pool dynamics KW - Filler wire mixing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539231 DO - https://doi.org/10.1088/1757-899X/1135/1/012017 VL - 1135 IS - 012017 SP - 1 EP - 10 PB - IOP Publishing AN - OPUS4-53923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of the gap bridgeability at high-power laser hybrid welding of plasma-cut thick mild steels with AC magnetic support JF - IOP Journal of Physics: Conference Series N2 - One of the challenges of the high-power hybrid laser welding of thick steels is the sensitivity of the process of the process to manufacturing tolerances. This usually leads to a time-consuming preparation of the welding edges, such as milling. The study deals with the influence of the edge quality of milled and plasma-cut steel made of S355J2 with a wall thickness of 20 mm on the laser hybrid welded seam quality. Furthermore, the gap bridgeability and the tolerances towards edge misalignment was investigated. An AC magnet was used as backing support to prevent sagging and positioned under the workpiece, to generate an upwards directed electromagnetic pressure. The profiles of the edges and the gap on the top and root side were measured using a digital camera. Single-pass laser hybrid welds of plasma-cut edges could be welded using a laser beam power of just 13.7 kW. A gap bridgeability up to 2 mm and misalignment of edges up to 2 mm could be achieved successful. Additionally, the independence of the cutting side and the welding side was shown, so that samples were welded to the opposite side to their cutting. For evaluation of internal defects or irregularities, X-ray images were carried out. Charpy impact strength tests were performed to determine the toughness of the welds. T2 - X International Conference «Beam Technologies & Laser Application» KW - Laser hybrid welding KW - Magnetic bath support KW - Plasma-cut samples KW - Thick plate welding PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539248 DO - https://doi.org/10.1088/1742-6596/2077/1/012007 VL - 2077 IS - 012007 SP - 1 EP - 8 PB - IOP Publishing AN - OPUS4-53924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winterkorn, René A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Wire arc additive manufacturing with novel Al-Mg-Si filler wire - Assessment of weld quality and mechanical properties JF - Metals N2 - Wire arc additive manufacturing enables the production of near-net shape large-volume metallic components leveraging an established industrial base of welding and cladding technology and adapting it for layer-wise material deposition. However, the complex relationship between the process parameters and resulting mechanical properties of the components still remains challenging. In case of high-strength Al-Mg-Si aluminum alloys, no commercial filler wires are yet available due the high susceptibility of solidification cracking as well as the necessary efforts to obtain acceptable mechanical properties. To address this need, we evaluated a novel filler wire based on AlMg0.7Si doped with a Ti5B1 master alloy to foster fine equiaxed grains within the deposited metal. The correlation between the process parameters and component quality was examined by analyzing the size and distribution of pores as well as the grain morphology. Furthermore, we evaluated the influence of different post-weld heat treatment strategies to achieve mechanical properties corresponding to the reference wrought material. We demonstrated that fine equiaxed grains in the weld metal reduced the susceptibility of solidification cracking significantly. The novel AlMg0.7Si-TiB (S Al 6063-TiB) filler wire facilitated wire arc additive manufacturing of high-strength aluminum components with mechanical properties that were almost as superior as the corresponding wrought base material. KW - Wire arc additive manufacturing KW - Precipitation hardening aluminum alloys KW - AlMg0.7SiTiB filler wire KW - Grain refinement KW - Mechanical properties PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538327 DO - https://doi.org/10.3390/met11081243 SN - 2075-4701 VL - 11 IS - 8 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-53832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Anja A1 - Buchberger, G. A1 - Stifter, D. A1 - Duchoslav, J. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Spatial Period of Laser-Induced Surface Nanoripples on PET Determines Escherichia coli Repellence JF - Nanomaterials N2 - Bacterial adhesion and biofilm formation on surfaces are associated with persistent microbial contamination, biofouling, and the emergence of resistance, thus, calling for new strategies to impede bacterial surface colonization. Using ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns), laser-induced periodic surface structures (LIPSS) featuring different submicrometric periods ranging from ~210 to ~610 nm were processed on commercial poly(ethylene terephthalate) (PET) foils. Bacterial adhesion tests revealed that these nanorippled surfaces exhibit a repellence for E. coli that decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Although chemical and structural analyses indicated a moderate laser-induced surface oxidation, a significant influence on the bacterial adhesion was ruled out. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the role of extracellular appendages in the bacterial repellence observed here. KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Polyethylene terephthalate KW - Biofilm formation KW - Cell appendages KW - Biomimetic KW - F pili PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537431 DO - https://doi.org/10.3390/nano11113000 VL - 11 IS - 11 SP - 3000 PB - MDPI AN - OPUS4-53743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Xin A1 - Hicke, Konstantin A1 - Breithaupt, Mathias A1 - Strangfeld, Christoph T1 - Distributed Humidity Sensing in Concrete Based on Polymer Optical Fiber JF - Polymers N2 - We present a preliminary investigation on distributed humidity monitoring during the drying process of concrete based on an embedded polymer optical fiber (POF). The water dissipated into the POF changes several properties of the fiber such as refractive index, scattering coefficient and attenuation factor, which eventually alters the Rayleigh backscattered light. The optical time Domain reflectometer (OTDR) technique is performed to acquire the backscattered signal at the wavelengths 650 nm and 500 nm, respectively. Experimental results show that the received signal increases at 650 nm while the fiber attenuation factor clearly increases at 500 nm, as the concrete dries out. In the hygroscopic range, the information retrieved from the signal change at 650 nm agrees well with the measurement result of the electrical humidity sensors also embedded in the concrete sample. KW - Distributed fiber optic sensing KW - Distributed humidity sensing KW - Polymer optical fibers KW - Concrete drying KW - Material moisture KW - Embedded humidity sensors PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537644 DO - https://doi.org/10.3390/polym13213755 SN - 2073-4360 VL - 13 IS - 21 SP - 3755 PB - MDPI CY - Basel, Switzerland AN - OPUS4-53764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - May, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Communication of Bichromophore Emission upon Aggregation – Aroyl-S,N-ketene Acetals as Multifunctional Sensor Merocyanines JF - Chemical European Journal N2 - Aroyl-S,N-ketene acetal-based bichromophores can be readily synthesized in a consecutive three-component synthesis in good to excellent yields by condensation of aroyl chlorides and an N-(p-bromobenzyl) 2-methyl benzothiazolium salt followed by a Suzuki coupling, yielding a library of 31 bichromophoric fluorophores with substitution patterntunable emission properties. Varying both chromophores enables different communication pathways between the chromophores, exploiting aggregation-induced emission (AIE) and energy transfer (ET) properties, and thus, furnishing aggregation-based fluorescence switches. Possible applications range from fluorometric analysis of alcoholic beverages to pH sensors. KW - Dye KW - Fluorescence KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531123 DO - https://doi.org/10.1002/chem.202102052 VL - 27 IS - 53 SP - 13426 EP - 13434 PB - Wiley-VCH AN - OPUS4-53112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Götze, J. P. A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores JF - Physical chemistry chemical physics: PCCP N2 - The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects. KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Theory KW - Quantum yield KW - Mechanism KW - Quantum chemistry KW - Modelling KW - Aggregation KW - Lifetime KW - Single particle KW - Microscopy KW - Solid KW - Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531138 DO - https://doi.org/10.1039/d1cp02534a SP - 1 EP - 9 PB - Royal Society of Chemistry AN - OPUS4-53113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana T1 - Recent developments of X-ray absorption spectroscopy as analytical tool for biological and biomedical applications JF - X-Ray Spectrometry N2 - X-ray absorption spectroscopy (XAS), in its various modalities, has gained exponential attention and applicability in the field of biological and biomedical systems. Particularly in this field, challenges like low concentration of analyte or proneness to radiation damage have certainly settle the basis for further analytical developments, when using X-ray based methods. Low concentration calls for higher sensitivity—by increasing the detection limits (DL); while susceptibility for radiation damage requires shorter measurement times and/or cryogenic sample environment possibilities. This manuscript reviews the latest analytical possibilities that make XAS more and more adequate to investigate biological or biomedical systems in the last 5 years. KW - Biological & biomedical applications KW - TXRF-XAS KW - HERFD-XAS KW - RXES KW - Quick-XAS KW - Dispersive-XAS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531206 DO - https://doi.org/10.1002/xrs.3254 SN - 0049-8246 VL - 51 IS - 3 SP - 1 EP - 10 PB - John Wiley & Sons Ltd AN - OPUS4-53120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kovacevic, E. A1 - Strunskus, T. A1 - Santhosh, N. M. A1 - Zavasnik, Z. A1 - Unger, Wolfgang A1 - Sauvage, T. A1 - Ammar, M.-R. A1 - Cvelbar, U. A1 - Berndt, J. T1 - Thermal stability studies of plasma deposited hydrogenated carbon nitride nanostructures JF - Carbon N2 - Thermally stable carbon nitride nanostructures have potential applications in surface coatings and automotive fields. In this work, hydrogenated nitrogen-rich carbon nitride nanoparticles have been synthesised via low-pressure low-power plasma vapour deposition technique from methane/Nitrogen gas mixture in a dry process. Thermal stability of the initially prepared hydrogenated carbon Nitride structures has been analysed by near-edge X-ray absorption fine-structure spectroscopy (NEXAFS, insitu), Raman spectroscopy, scanning and transmission electron microscopy and nuclear reaction Analysis (NRA). Thermal studies reveal the excellent stability of the material and nitrogen-rich characteristics (N/C ratio 0.5e0.2 ± 0.01). The obtained results suggest transformation of sp3-rich as-deposited carbon Nitride into sp2-carbon phase with more graphitic features upon thermal annealing. Such in-situ thermal studies of plasma deposited carbon nitrides confirm the conversion of sp3-rich phase to sp2-rich carbon phase at the critical temperature (about 450 K), without a huge loss in nitrogen content. The analysis revealed that the material is a stable plasma deposit after this critical temperature up to >1100 K. Additionally, super hydrophilic carbon nitride nanostructure transforms into a hydrophobic surface after thermal annealing. These thermally stable hydrophobic carbon nitride nanoparticles could be used as a promising material for the hydrophobic coatings for various applications, especially for harsh conditions. KW - Carbon nanoparticles KW - Hydrogenated nanostructures KW - Plasma deposition KW - NEXAFS KW - Thermal annealing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536163 DO - https://doi.org/10.1016/j.carbon.2021.08.008 SN - 0008-6223 VL - 184 SP - 82 EP - 90 PB - Elsevier Ltd. AN - OPUS4-53616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Aydin, Zeynep A1 - Adam, Christian T1 - Crystalline phase analysis and phosphorus availability after thermochemical treatment of sewage sludge ash with sodium and potassium sulfates for fertilizer production JF - Journal of Material Cycles and Waste Management N2 - Phosphorus rich sewage sludge ash is a promising source to produce phosphorus recycling fertilizer. However, the low plant availability of phosphorus in these ashes makes a treatment necessary. A thermochemical treatment (800–1000 °C) with alkali additives transforms poorly plant available phosphorus phases to highly plant available calcium alkali Phosphates (Ca,Mg)(Na,K)PO4. In this study, we investigate the use of K2SO4 as additive to produce a phosphorus potassium fertilizer in laboratory-scale experiments (crucible). Pure K2SO4 is not suitable as high reaction temperatures are required due to the high melting point of K2SO4. To overcome this barrier, we carried out series of experiments with mixtures of K2SO4 and Na2SO4 resulting in a lower economically feasible reaction temperature (900–1000 °C). In this way, the produced phosphorus potassium fertilizers (8.4 wt.% K, 7.6 wt.% P) was highly plant available for phosphorus indicated by complete extractable phosphorus in neutral ammonium citrate solution. The added potassium is, in contrast to sodium, preferably incorporated into silicates instead of phosphorus phases. Thus, the highly extractable phase (Ca,Mg)(Na,K)PO4 in the thermochemical products contain less potassium than expected. This preferred incorporation is confirmed by a pilot-scale trial (rotary kiln) and thermodynamic calculation. KW - Phosphorus recovery KW - Recycling fertilizer KW - Calcium alkali phosphate KW - Silicate PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536276 DO - https://doi.org/10.1007/s10163-021-01288-3 SN - 1611-8227 IS - 23 SP - 2242 EP - 2254 PB - Springer AN - OPUS4-53627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Senoner, M. A1 - Stockmann, Jörg M. A1 - Fernandez, V. A1 - Fairley, N. A1 - Passiu, C. A1 - Spencer, N. D. A1 - Rossi, A. T1 - Summary of ISO/TC 201 International Standard ISO 18516:2019 Surface chemical analysis - Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres and its implementation for imaging laboratory X-ray photoelectron spectrometers (XPS) JF - Surface and interface analysis N2 - ISO 18516:2019 Surface chemical analysis—Determination of lateral resolution and sharpness in beam-based methods with a range from nanometres to micrometres revises ISO 18516:2006 Surface chemical analysis—Auger electron spectroscopy and X-ray photoelectron spectroscopy—Determination of lateral resolution. It implements three different methods delivering parameters useful to express the lateral resolution: (1) the straight edge method, (2) the narrow line method and (3) the grating method. The theoretical background of these methods is introduced in ISO/TR 19319:2013 Surface chemical analysis—Fundamental approaches to determination of lateral resolution and sharpness in beam-based methods. The revised International Standard ISO 18516 delivers standardized procedures for the determination of the (1) effective lateral resolution by imaging of square-wave gratings, the (2) lateral resolution expressed as the parameter D12–88 characterizing the steepness of the sigmoidal edge spread function (ESF) determined by imaging a straight edge and (3) the lateral resolution expressed as the full width of half maximum of the line spread function (LSF), wLSF, determined by imaging a narrow line. The last method also delivers information on the shape of the LSF, which characterizes an individual imaging instrument. Finally, the implementation of all three standardized methods in the field of imaging laboratory X-ray photoelectron spectroscopy (XPS) is shortly presented. This part of the letter is based on the use of a new test sample developed at ETH Zurich, Switzerland. This test sample displays a micrometre scaled pattern motivated by the resolving power of recent imaging XPS instruments. KW - Grating method KW - Imaging AES KW - Imaging SIMS KW - Imaging XPS KW - Lateral resolution KW - Narrow line method KW - Noise in image KW - Resolution criterion KW - Straight edge method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536330 DO - https://doi.org/10.1002/sia.7025 SN - 1096-9918 VL - 54 IS - 4 SP - 320 EP - 327 PB - Wiley CY - Chichester AN - OPUS4-53633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smeir, E. A1 - Leberer, S. A1 - Blumrich, A. A1 - Vogler, G. A1 - Vasiliades, A. A1 - Dresen, S. A1 - Jaeger, Carsten A1 - Gloaguen, Y. A1 - Klose, C. A1 - Beule, D. A1 - Schulze, P. A1 - Bodmer, R. A1 - Foryst-Ludwig, A. A1 - Kintscher, U. T1 - Depletion of Cardiac Cardiolipin Synthase Alters Systolic and Diastolic Function JF - iScience N2 - Cardiolipin (CL) is a major cardiac mitochondrial phospholipid maintaining regular mitochondrial morphology and function in cardiomyocytes. Cardiac CL production includes ist biosynthesis and a CL-remodeling process. Here we studied the impact of CL-biosynthesis and the enzyme Cardiolipin Synthase (CLS) on cardiac function. CLS and cardiac CL-species were significantly downregulated in cardiomyocytes following catecholamine-induced cardiac damage in mice, accompanied by increased oxygen consumption rates, signs of oxidative stress and mitochondrial uncoupling. RNAi-mediated cardiomyocyte-specific knockdown of CLS in Drosophila melanogaster resulted in marked cardiac dilatation, severe impairment of systolic performance and slower diastolic filling velocity assessed by fluorescence-based heart imaging. Finally, we showed that CL72:8 is significantly decreased in cardiac samples from patients with heart failure with reduced ejection fraction (HFrEF). In summary, we identified CLS as a regulator of cardiac function. Considering the cardiac depletion of CL-species in HFrEF, pharmacological targeting of CLS may be a promising therapeutic approach.zeige mehrzeige weniger KW - High-resolution mass spectrometry KW - Nontarget analysis KW - Heart failure KW - Cardiolipins KW - Lipidomics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536833 DO - https://doi.org/10.1016/j.isci.2021.103314 VL - 24 IS - 11 SP - 103314 PB - Cell Press AN - OPUS4-53683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heeger, Felix A1 - Bourne, E. C. A1 - Wurzbacher, C. A1 - Funke, E. A1 - Lipzen, A. A1 - He, G. A1 - Ng, V. A1 - Grigoriev, I. V. A1 - Schlosser, D. A1 - Monaghan, M. T. T1 - Evidence for Lignocellulose-Decomposing Enzymes in the Genome and Transcriptome of the Aquatic Hyphomycete Clavariopsis aquatica JF - Journal of Funghi N2 - Fungi are ecologically outstanding decomposers of lignocellulose. Fungal lignocellulose degradation is prominent in saprotrophic Ascomycota and Basidiomycota of the subkingdom Dikarya. Despite ascomycetes dominating the Dikarya inventory of aquatic environments, genome and transcriptome data relating to enzymes involved in lignocellulose decay remain limited to terrestrial representatives of these phyla. We sequenced the genome of an exclusively aquatic ascomycete (the aquatic hyphomycete Clavariopsis aquatica), documented the presence of genes for the modification of lignocellulose and its constituents, and compared differential gene expression between C. aquatica cultivated on lignocellulosic and sugar-rich substrates. We identified potential peroxidases, laccases, and cytochrome P450 monooxygenases, several of which were differentially expressed when experimentally grown on different substrates. Additionally, we found indications for the regulation of pathways for cellulose and hemicellulose degradation. Our results suggest that C. aquatica is able to modify lignin to some extent, detoxify aromatic lignin constituents, or both. Such characteristics would be expected to facilitate the use of carbohydrate components of lignocellulose as carbon and energy sources. KW - Aquatic fungi KW - Differential expression KW - Lignocellulose KW - Laccase KW - RNA-Seq PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536843 DO - https://doi.org/10.3390/jof7100854 VL - 7 IS - 10 SP - 2 EP - 11 PB - MDPI CY - Basel, Schweiz AN - OPUS4-53684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fu, B. A1 - Shen, J. A1 - Suhuddin, U. A1 - Pereira, A. A1 - Maawad, E. A1 - dos Santos, J. A1 - Klusemann, B. A1 - Rethmeier, Michael T1 - Revealing joining mechanism in refill friction stir spot welding of AZ31 magnesium alloy to galvanized DP600 steel JF - Materials & Design N2 - The application of magnesium (Mg) inevitably involves dissimilar welding with steel. A novel solid state spot welding method, refill friction stir spot welding (refill FSSW), was utilized to weld AZ31 Mg alloy to galvanized DP600 steel. Although Mg/Fe is an immiscible alloy system, defect-free welds with high strength were successfully obtained in a wide parameter window. The results of microstructure, interfacial reactions, and mechanical properties are reported to reveal the underlying joining mechanism. Due to the melting of Zn coating and subsequent Mg-Zn reactions, Mg-Zn eutectic and intermetallic compounds were detected within welds. Heterogeneous interfacial reactions occur along Mg/steel interface, and the relationship between interfacial structure and fracture behavior was investigated. The joining mechanism is associated with Zn coating and Fe-Al layer: 1) the presence of Zn coating is beneficial for achieving high-quality welding between Mg and steel, it protects the interface from oxidation and contributes to brazing of the weld; 2) the Al present in Mg alloy reacts with Fe, resulting in the growth of Fe-Al layer, which contributes to the diffusion bonding in the interface. The overall results clearly show that Refill FSSW is a competitive welding method for joining Mg and galvanized steel. KW - Refill friction stir spot welding KW - Multi-materials joining KW - Magnesium alloy KW - Galvanized steel KW - Mechanical properties KW - Microstructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536878 DO - https://doi.org/10.1016/j.matdes.2021.109997 SN - 0264-1275 VL - 209 SP - 109997 PB - Elsevier Ltd. AN - OPUS4-53687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fu, B. A1 - Shen, J. A1 - Suhuddin, U. A1 - Chen, T. A1 - dos Santos, J. A1 - Klusemann, B. A1 - Rethmeier, Michael T1 - Improved mechanical properties of cast Mg alloy welds via texture weakening by differential rotation refill friction stir spot welding JF - Scripta Materialia N2 - Cast magnesium alloys welds produced by refill friction stir spot welding (refill FSSW) show low lap shear strength (LSS) and constantly fail in stirred zone (SZ) shear mode. The cause is most probably related to the heavily textured microstructure. Here, to re-engineer the resulting microstructure, we pro- pose a novel process variant, the differential rotation refill FSSW (DR-refill FSSW). DR-refill FSSW stim- ulates discontinuous dynamic recrystallization and produces a bimodal microstructure with weakened texture. Therefore, the deformation incompatibility between SZ and thermal-mechanically affected zone is avoided. The welds have 50% higher LSS than that of standard refill FSSW welds, and fail in a different failure mode, i.e., SZ pull-out mode. DR-refill FSSW provides a new and effective strategy for improving the performance of spot welds based on microstructural engineering. KW - Refill friction stir spot welding KW - Magnesium Alloy KW - Texture KW - EBSD KW - Plastic deformation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536885 DO - https://doi.org/10.1016/j.scriptamat.2021.114113 SN - 1359-6462 VL - 203 SP - 114113 PB - Elsevier Ltd. AN - OPUS4-53688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smekhova, A. A1 - Kuzmin, A. A1 - Siemensmeyer, K. A1 - Luo, C. A1 - Chen, K. A1 - Radu, F. A1 - Weschke, E. A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill T1 - Al-driven peculiarities of local coordination and magnetic properties in single-phase Alx-CrFeCoNi high-entropy alloys JF - Nano Research N2 - Modern design of superior multi-functional alloys composed of several principal components requires in-depth studies of their local structure for developing desired macroscopic properties. Herein, peculiarities of atomic arrangements on the local scale and electronic states of constituent elements in the single-phase face-centered cubic (fcc)- and body-centered cubic (bcc)-structured high-entropy Alx-CrFeCoNi alloys (x = 0.3 and 3, respectively) are explored by element-specific X-ray absorption spectroscopy in hard and soft X-ray energy ranges. Simulations based on the reverse Monte Carlo approach allow to perform a simultaneous fit of extended X-ray absorption fine structure spectra recorded at K absorption edges of each 3d constituent and to reconstruct the local environment within the first coordination shells of absorbers with high precision. The revealed unimodal and bimodal distributions of all five elements are in agreement with structure-dependent magnetic properties of studied alloys probed by magnetometry. A degree of surface atoms oxidation uncovered by soft X-rays suggests different kinetics of oxide formation for each type of constituents and has to be taken into account. X-ray magnetic circular dichroism technique employed at L2,3 absorption edges of transition metals demonstrates reduced magnetic moments of 3d metal constituents in the sub-Surface region of in situ cleaned fcc-structured Al0.3-CrFeCoNi compared to their bulk values. Extended to nanostructured versions of multicomponent alloys, such studies would bring new insights related to effects of high entropy mixing on low dimensions. KW - X-ray magnetic circular dichroism (XMCD) KW - High-entropy alloys KW - Reverse Monte Carlo KW - Magnetism KW - Element-specific spectroscopy KW - Extended X-ray absorption fine structure (EXAFS) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530668 DO - https://doi.org/10.1007/s12274-021-3704-5 SN - 1998-0124 VL - 15 IS - 6 SP - 4845 EP - 4858 PB - Springer AN - OPUS4-53066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, C. A1 - Breuckmann, M. A1 - Hampel, S. A1 - Kreyenschmidt, M. A1 - Ke, X. A1 - Beuermann, S. A1 - Schafner, K. A1 - Turek, T. A1 - Kunz, U. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Fittschen, U. E. A. T1 - Characterization of Dimeric Vanadium Uptake and Species in Nafion™ and Novel Membranes from Vanadium Redox Flow Batteries Electrolytes JF - Membranes N2 - A core component of energy storage systems like vanadium redox flow batteries (VRFB) is the polymer electrolyte membrane (PEM). In this work, the frequently used perfluorosulfonic-acid (PFSA) membrane Nafion™ 117 and a novel poly (vinylidene difluoride) (PVDF)-based Membrane are investigated. A well-known problem in VRFBs is the vanadium permeation through the membrane. The consequence of this so-called vanadium crossover is a severe loss of capacity. For a better understanding of vanadium transport in membranes, the uptake of vanadium ions from electrolytes containing Vdimer(IV–V) and for comparison also V(II), V(III), V(IV), and V(V) by both membranes was studied. UV/VIS spectroscopy, X-ray absorption near edge structure spectroscopy (XANES), total reflection X-ray fluorescence spectroscopy (TXRF), inductively coupled plasma optical emission spectrometry (ICP-OES), and micro X-ray fluorescence spectroscopy (microXRF) were used to determine the vanadium concentrations and the species inside the membrane. The results strongly support that Vdimer(IV–V), a dimer formed from V(IV) and V(V), enters the nanoscopic water-body of Nafion™ 117 as such. This is interesting, because as of now, only the individual ions V(IV) and V(V) were considered to be transported through the membrane. Additionally, it was found that the Vdimer(IV–V) dimer partly dissociates to the individual ions in the novel PVDF-based membrane. The Vdimer(IV–V) dimer concentration in Nafion™ was determined and compared to those of the other species. After three days of equilibration time, the concentration of the dimer is the lowest compared to the monomeric vanadium species. The concentration of vanadium in terms of the relative uptake λ = n(V)/n(SO3 ) are as follows: V(II) [λ = 0.155] > V(III) [λ = 0.137] > V(IV) [λ = 0.124] > V(V) [λ = 0.053] > Vdimer(IV–V) [λ = 0.039]. The results show that the Vdimer(IV–V) dimer Needs to be considered in addition to the other monomeric species to properly describe the transport of vanadium through Nafion™ in VRFBs. KW - MicroXRF KW - VRFB KW - PVDF-based membrane KW - UV/VIS KW - XANES KW - TXRF KW - ICP-OES PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530676 DO - https://doi.org/10.3390/membranes11080576 VL - 11 IS - 8 SP - 576 PB - MDPI AN - OPUS4-53067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered Glass Monoliths as New Supports for Affinity Columns T2 - Preprints N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 minute. Due to the glass material's excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nanofiltration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Glass KW - Purification KW - Antibodies KW - Solid support KW - HPLC KW - FPLC KW - Separation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529117 DO - https://doi.org/10.20944/preprints202103.0298.v1 SP - 1 PB - MDPI CY - Basel AN - OPUS4-52911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rieger, J. A1 - Colla, V. A1 - Matino, I. A1 - Branca, T. A. A1 - Stubbe, G. A1 - Panizza, A. A1 - Brondi, C. A1 - Falsafi, M. A1 - Hage, J. A1 - Wang, X. A1 - Voraberger, B. A1 - Fenzl, T. A1 - Masaguer, V. A1 - Faraci, E. L. A1 - di Sante, L. A1 - Cirilli, F. A1 - Loose, Florian A1 - Thaler, C. A1 - Soto, A. A1 - Frittella, P. A1 - Foglio, G. A1 - di Cecca, C. A1 - Tellaroli, M. A1 - Corbella, M. A1 - Guzzon, M. A1 - Malfa, E. A1 - Morillon, A. A1 - Algermissen, D. A1 - Peters, K. A1 - Snaet, D. T1 - Residue Valorization in the Iron and Steel Industries: Sustainable Solutions for a Cleaner and More Competitive Future Europe JF - Metals N2 - The steel industry is an important engine for sustainable growth, added value, and high-quality employment within the European Union. It is committed to reducing its CO2 emissions due to production by up to 50% by 2030 compared to 1990′s level by developing and upscaling the technologies required to contribute to European initiatives, such as the Circular Economy Action Plan (CEAP) and the European Green Deal (EGD). The Clean Steel Partnership (CSP, a public–private partnership), which is led by the European Steel Association (EUROFER) and the European Steel Technology Platform (ESTEP), defined technological CO2 mitigation pathways comprising carbon direct avoidance (CDA), smart carbon usage SCU), and a circular economy (CE). CE ap-proaches ensure competitiveness through increased resource efficiency and sustainability and consist of different issues, such as the valorization of steelmaking residues (dusts, slags, sludge) for internal recycling in the steelmaking process, enhanced steel recycling (scrap use), the use of secondary carbon carriers from non-steel sectors as a reducing agent and energy source in the steelmaking process chain, and CE business models (supply chain analyses). The current paper gives an overview of different technological CE approaches as obtained in a dedicated workshop called “Resi4Future—Residue valorization in iron and steel industry: sustainable solutions for a cleaner and more competitive future Europe” that was organized by ESTEP to focus on future challenges toward the final goal of industrial deployment. KW - Circular economy KW - Steelmaking residues KW - Clean steel PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530350 DO - https://doi.org/10.3390/met11081202 VL - 11 IS - 8 SP - 1202 PB - MDPI AN - OPUS4-53035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, X. A1 - Michalchuk, Adam A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Pulham, C. T1 - High-pressure reversibility in a plastically flexible coordination polymer crystal JF - Nature Communications N2 - Single crystals which exhibit mechanical flexibility are promising materials for advanced technological applications. Before such materials can be used, a detailed understanding of the mechanisms of bending is needed. Using single crystal X-ray diffraction and microfocus Raman spectroscopy, we study in atomic detail the high-pressure response of the plastically flexible coordination polymer [Zn(μ-Cl)2(3,5-dichloropyridine)2]n (1). Contradictory to three-point bending, quasi-hydrostatic compression of (1) is completely reversible, even following compression to over 9 GPa. A structural phase transition is observed at ca. 5 GPa. DFT calculations show this transition to result from the pressure-induced softening of low-frequency vibrations. This phase transition is not observed during three-point-bending. Microfocus synchrotron X-ray diffraction revealed that bending yields significant mosaicity, as opposed to compression. Hence, our studies indicate of overall disparate mechanical responses of bulk flexibility and quasi-hydrostatic compression within the same crystal lattice. We suspect this to be a general feature of plastically bendable materials. KW - High pressure KW - Density functional theory KW - Mechanically flexible crystals PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530360 DO - https://doi.org/10.1038/s41467-021-24165-x VL - 12 IS - 1 SP - 3871 AN - OPUS4-53036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Christopher, I A1 - Michalchuk, Adam A1 - Pulham, C. A1 - Morrison, C. T1 - Towards Computational Screening for New Energetic Molecules: Calculation of Heat of Formation and Determination of Bond Strengths by Local Mode Analysis JF - Frontiers in Chemistry N2 - The reliable determination of gas-phase and solid-state heats of formation are important considerations in energetic materials research. Herein, the ability of PM7 to calculate the gas-phase heats of formation for CNHO-only and inorganic compounds has been critically evaluated, and for the former, comparisons drawn with isodesmic equations and Atom equivalence methods. Routes to obtain solid-state heats of formation for a range of singlecomponent molecular solids, salts, and co-crystals were also evaluated. Finally, local vibrational mode analysis has been used to calculate bond length/force constant curves for seven different chemical bonds occurring in CHNO-containing molecules, which allow for rapid identification of the weakest bond, opening up great potential to rationalise decomposition pathways. Both metrics are important tools in rationalising the design of new energetic materials through computational screening processes. KW - Energetic materials KW - Density functional theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530371 DO - https://doi.org/10.3389/fchem.2021.726357 VL - 9 SP - 726357 AN - OPUS4-53037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moreno Torres, Benjamí A1 - Völker, Christoph A1 - Munsch, Sarah Mandy A1 - Hanke, T. A1 - Kruschwitz, Sabine ED - Tosti, F. T1 - An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering JF - Remote Sensing Special Issue “Data Fusion, Integration and Advances of Non-destructive Testing Methods in Engineering and Geosciences" N2 - Although measurement data from the civil engineering sector are an important basis for scientific analyses in the field of non-destructive testing (NDT), there is still no uniform representation of these data. An analysis of data sets across different test objects or test types is therefore associated with a high manual effort. Ontologies and the semantic web are technologies already used in numerous intelligent systems such as material cyberinfrastructures or research databases. This contribution demonstrates the application of these technologies to the case of the 1H nuclear magnetic resonance relaxometry, which is commonly used to characterize water content and porosity distri-bution in solids. The methodology implemented for this purpose was developed specifically to be applied to materials science (MS) tests. The aim of this paper is to analyze such a methodology from the perspective of data interoperability using ontologies. Three benefits are expected from this ap-proach to the study of the implementation of interoperability in the NDT domain: First, expanding knowledge of how the intrinsic characteristics of the NDT domain determine the application of semantic technologies. Second, to determine which aspects of such an implementation can be improved and in what ways. Finally, the baselines of future research in the field of data integration for NDT are drawn. KW - Ontology Engineering KW - Interoperability KW - Data-integration KW - NMR relaxometry KW - materials informatics PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529716 DO - https://doi.org/10.3390/rs13122426 SN - 2072-4292 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. VL - 13 IS - 12 SP - 2426 PB - Multidisciplinary Digital Publishing Institute (MDPI) CY - Basel, Switzerland AN - OPUS4-52971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herrmann, K. A1 - Pech May, Nelson Wilbur A1 - Retsch, M. T1 - Photoacoustic thermal characterization of low thermal diffusivity thin films JF - Photoacoustics N2 - The photoacoustic measurement technique is a powerful yet underrepresented method to characterize the thermal transport properties of thin films. For the case of isotropic low thermal diffusivity samples, such as glasses or polymers, we demonstrate a general approach to extract the thermal conductivity with a high degree of significance. We discuss in particular the influence of thermal effusivity, thermal diffusivity, and sample layer thickness on the significance and accuracy of this measurement technique. These fundamental thermal properties guide sample and substrate selection to allow for a feasible thermal transport characterization. Furthermore, our data evaluation allows us to directly extract the thermal conductivity from this transient technique, without separate determination of the volumetric heat capacity, when appropriate boundary conditions are fulfilled. Using silica, poly(methyl methacrylate) (PMMA) thin films, and various substrates (quartz, steel, and silicon), we verify the quantitative correctness of our analytical approach. KW - Thermal conductivity KW - Photoacoustic characterization KW - Thin film characterization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528743 DO - https://doi.org/10.1016/j.pacs.2021.100246 SN - 2213-5979 VL - 22 SP - 100246 PB - Elsevier AN - OPUS4-52874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blumrich, A. A1 - Vogler, G. A1 - Dresen, S. A1 - Diop, S. B. A1 - Jaeger, Carsten A1 - Leberer, S. A1 - Grune, J. A1 - Wirth, E. K. A1 - Hoeft, B. A1 - Renko, K. A1 - Foryst-Ludwig, A. A1 - Spranger, J. A1 - Sigrist, S. A1 - Bodmer, R. A1 - Kintscher, U. T1 - Fat-body brummer lipase determines survival and cardiac function during starvation in Drosophila melanogaster JF - iScience N2 - The cross talk between adipose tissue and the heart has an increasing importance for cardiac function under physiological and pathological conditions. This study characterizes the role of fat body lipolysis for cardiac function in Drosophila melanogaster. Perturbation of the function of the key lipolytic enzyme, brummer (bmm), an ortholog of themammalian ATGL (adipose triglyceride lipase) exclusively in the fly’s fat body, protected the heart against starvation-induced dysfunction. We further provide evidence that this protection is caused by the preservation of glycerolipid stores, resulting in a starvation-resistant maintenance of energy supply and adequate cardiac ATP synthesis. Finally, we suggest that alterations of lipolysis are tightly coupled to lipogenic processes, participating in the preservation of Lipid energy substrates during starvation. Thus, we identified the inhibition of adipose tissue lipolysis and subsequent energy preservation as a protective mechanism against cardiac dysfunction during catabolic stress. KW - High-resolution mass spectrometry KW - Nontarget analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528756 DO - https://doi.org/10.1016/j.isci.2021.102288 VL - 24 IS - 4 SP - 102288 AN - OPUS4-52875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Faßbender, Sebastian A1 - Rodiouchkina, K. A1 - Vanhaecke, F. A1 - Meermann, Björn T1 - Correction to: Method development for on-line species-specific sulfur T2 - Analytical and Bioanalytical Chemistry N2 - This is a corrigendum to the original article "Method development for on-line species-specific sulfur isotopic analysis by means of capillary electrophoresis/multicollector ICP-mass spectrometry" that was published in the journal "Analytical and Bioanalytical Chemistry", vol. 412 (202), no. 23, pp. 5637-5646. PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528796 DO - https://doi.org/10.1007/s00216-021-03474-6 SP - 1 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-52879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Albarrán Martínez, M. J. A1 - Ghigo, Tea T1 - The practice of writing inside an Egyptian monastic settlement JF - Heritage Science N2 - Over the last few years, the Federal Institute for material research (BAM, Berlin) together with the Centre for the Study of Manuscript Cultures (CSMC, University of Hamburg) have initiated a systematic material investigation of black inks produced from Late Antiquity to the Middle Ages (ca. fourth century CE–fourteenth/fifteenth centuries CE), aimed primarily at extending and complementing findings from previous sporadic studies. Part of this systematic investigation has focused on Egyptian Coptic manuscripts, and the present preliminary study is one of its outputs. It centres on a corpus of 45 Coptic manuscripts—43 papyri and 2 ostraca—preserved at the Palau-Ribes and Roca-Puig collections in Barcelona. The manuscripts come from the Monastery of Apa Apollo at Bawit, one of the largest monastic settlements in Egypt between the Late Antiquity and the Early Islamic Period (sixth–eighth centuries CE). The composition of their black inks was investigated in situ using near-infrared reflectography (NIRR) and X-ray fluorescence (XRF). The analyses determined that the manuscripts were written using different types of ink: pure carbon ink; carbon ink containing iron; mixed inks containing carbon, polyphenols and metallic elements; and iron-gall ink. The variety of inks used for the documentary texts seems to reflect the articulate administrative system of the monastery of Bawit. This study reveals that, in contrast to the documents, written mostly with carbon-based inks, literary biblical texts were written with iron-gall ink. The frequent reuse of papyrus paper for certain categories of documents may suggest that carbon-based inks were used for ephemeral manuscripts, since they were easy to erase by abrasion. KW - Papyrus KW - Ink analysis KW - Coptic manuscripts KW - Bawit KW - Mixed ink KW - Near-infrared refectography KW - X-ray fuorescence PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528833 DO - https://doi.org/10.1186/s40494-021-00541-0 SN - 2050-7445 VL - 9 IS - 1 SP - 1 EP - 15 PB - Springer Open CY - Rome, Italy AN - OPUS4-52883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - Reversible Polycondensations outside the Jacobson-Stockmayer Theory and a New Concept of Reversible Polycondensations JF - Polymer Chemistry N2 - L-Lactide was polymerized with tin(II)acetate, tin(II)2-ethyl hexanoate, diphenyltin dichloride and dibutyltin bis(pentafluorophenoxide) at 130 °C in bulk. When an alcohol was added as initiator, linear chains free of cycles were formed having a degree of polymerization (DP) according to the lactide/initiator (LA/In) ratio. Analogous polymerizations in the absence of an initiator yielded high molar mass cyclic polylactides. Quite similar results were obtained when ε-caprolactone was polymerized with or without initiator. Several transesterification experiments were conducted at 130 °C, either with polylactide or poly(ε-caprolactone) indicating that several transesterification mechanisms are operating under conditions that do not include formation of cycles by back-biting. Furthermore, reversible polycondensations (revPOCs) with low or moderate conversions were found that did not involve any kind of cyclization. Therefore, These results demonstrate the existence of revPOCs, which do neither obey the theory of irreversible polycondensation as defined by Flory nor the hypothesis of revPOCs as defined by Jacobson and Stockmayer. A new concept encompassing any kind of revPOCs is formulated in the form of a “polycondensation triangle”. KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530831 DO - https://doi.org/10.1039/d1py00704a VL - 12 IS - 35 SP - 5003 EP - 5016 PB - Royal Society for Chemistry AN - OPUS4-53083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, P. A1 - Ihlemann, J. A1 - Bonse, Jörn T1 - Editorial: Special issue "Laser-generated periodic nanostructures" JF - Nanomaterials N2 - The study of laser-fabricated periodic nanostructures is one of the leading topics of today’s photonics research. Such structures on the surface of metals, semiconductors, dielectrics, or polymers can generate new material properties with special functionalities. Depending on the specific material parameters and the morphology of the structures, new devices such as microlasers, optical nanoswitches, optical storage devices, sensors or antifraud features can be realized. Furthermore, laser-generated surface textures can be used to improve the tribological properties of surfaces in contact and in relative motion—to reduce friction losses or wear, to modify the wettability or the cell and biofilm growth properties of surfaces through bioinspired laser engineering, for emerging medical applications, or as decoration elements for the refinement of precious goods. This Special Issue “Laser-Generated Periodic Nanostructures” focuses on the latest experimental and theoretical developments and practical applications of laser-generated periodic structures that can be generated in a “self-organized” way (laser-induced periodic surface structures, LIPSS, ripples) or via laser interference-based direct ablation (often referred to as direct laser interference patterning, DLIP). We aimed to attract both academic and industrial researchers in order to collate the current knowledge of nanomaterials and to present new ideas for future applications and new technologies. By 8 August 2021, 22 scientific articles have been published in the Special Issue, see www.mdpi.com/journal/nanomaterials/special_issues/laser-generated_periodic. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser interference patterning (DLIP) KW - Surface functionalization KW - Laser ablation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530980 DO - https://doi.org/10.3390/nano11082054 SN - 2079-4991 VL - 11 IS - 8 SP - 1 EP - 7 PB - MDPI CY - Basel AN - OPUS4-53098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Ralf A1 - Behrens, Harald A1 - Ageo-Blanco, Boris A1 - Reinsch, Stefan A1 - Wirth, Thomas T1 - Foaming Species and Trapping Mechanisms in Barium Silicate Glass Sealants JF - Advanced Engineering Materials N2 - Barium silicate glass powders 4 h milled in CO2 and Ar and sintered in air are studied with microscopy, total carbon analysis, differential thermal Analysis (DTA), vacuum hot extraction mass spectroscopy (VHE-MS), Fourier-transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary-ion mass spectrometry (TOF-SIMS). Intensive foaming of powder compacts is evident, and VHE studies prove that foaming is predominantly caused by carbonaceous species for both milling gases. DTA Shows that the decomposition of BaCO3 particles mix-milled with glass powders occurs at similar temperatures as foaming of compacts. However, no carbonate at the glass surface could be detected by FTIR spectroscopy, XPS, and TOF-SIMS after heating to the temperature of sintering. Instead, CO2 molecules unable to rotate identified by FTIR spectroscopy after milling, probably trapped by mechanical dissolution into the glass bulk. Such a mechanism or microencapsulation in cracks and particle aggregates can explain the contribution of Ar to foaming after intense milling in Ar atmosphere. The amount of CO2 molecules and Ar, however, cannot fully explain the extent of foaming. Carbonates mechanically dissolved beneath the surface or encapsulated in cracks and micropores of particle aggregates are therefore probably the major foaming source. KW - Milling KW - Foaming KW - Glass powder KW - Sintering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531227 DO - https://doi.org/10.1002/adem.202100445 SN - 1438-1656 VL - 24 IS - 6 SP - 2100445-1 EP - 2100445-13 AN - OPUS4-53122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichenauer, F. A1 - Wang, Cui A1 - Förster, C. A1 - Boden, P. A1 - Ugur, N. A1 - Báez-Cruz, R. A1 - Kalmbach, J. A1 - Carrella, L. M. A1 - Rentschler, E. A1 - Ramanan, C. A1 - Niedner-Schatteburg, G. A1 - Gerhards, M. A1 - Seitz, M. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Strongly Red-Emissive Molecular Ruby [Cr(bpmp)2]3+ Surpasses [Ru(bpy)3]2+ JF - Journal of th American Chemical Society N2 - Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge Transfer states described by spatially separated orbitals, the energies of spinflip states cannot straightforwardly be predicted as Pauli Repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl) pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand’s methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and Ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues. KW - Fluorescence KW - Optical probe KW - Sensor KW - PH KW - Quantum yield KW - Quality assurance KW - Complex KW - Cr(III) KW - Lifetime KW - Ligand KW - Theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530548 DO - https://doi.org/10.1021/jacs.1c05971 VL - 143 IS - 30 SP - 11843 EP - 11855 PB - ACS Publications AN - OPUS4-53054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Fürstenwerth, Paul Christian A1 - Witte, J. F. A1 - Resch-Genger, Ute T1 - Synthesis and spectroscopic characterization of a fluorescent phenanthrene-rhodamine dyad for ratiometric measurements of acid pH values JF - New Journal of Chemistry N2 - We present the rational design, synthesis and spectroscopic characterization of a novel dual excitation, three color emitting, pH-responsive fluorescent probe consisting of two phenanthrene and one rhodamine B units linked by click chemistry. The rhodamine moiety, excitable at λEx = 315 nm and at λEx = 560 nm in its ring-opened form, provides the pH-responsive fluorophore, while the pH-insensitive phenanthrene, excited at λEx = 315 nm, serves as inert internal reference, The presence of two phenanthrene moieties enables a blue monomer and a blueish green excimer emission at 351 nm and 500 nm, respectively. Opening of the rhodamine B spirolactam ring at an acidic pH below 5.0 (pKa = 2.59 ± 0.04) switches on its emission at 580 nm. Simultaneously, the phenanthrene excimer emission decreases caused by a change in orientation of the phenanthrene units, while the monomer emission is barely affected. This sensor design enables ratiometric measurements in the low acidic pH range utilizing the intensity ratios of the rhodamine B and phenanthrene excimer emission at 580 nm and 500 nm. Alternatively, also the intensity ratios of the rhodamine B and the phenanthrene monomer emission could be exploited or the sum of the phenanthrene monomer and excimer fluorescence. To the best of our knowledge, this is the first report of ratiometric sensing utilizing such a versatile type of tricolor emissive dyad probe bearing phenanthrene moieties and showing phenanthrene monomer and excimer emission. KW - Fluorescence KW - Optical probe KW - Sensor KW - Dye KW - Rhodamine KW - Synthesis KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurance KW - Mechanism KW - Chemodosimeter KW - Phenanthrene KW - Ratiometric KW - Dyad PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530554 DO - https://doi.org/10.1039/d1nj01573g SN - 1144-0546 VL - 45 IS - 31 SP - 13755 EP - 13762 PB - Royal Society of Chemistry AN - OPUS4-53055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andresen, Elina A1 - Radunz, Sebastian A1 - Resch-Genger, Ute T1 - Novel PET-Operated Rosamine Sensor Dyes with Substitution Pattern-Tunable pKa Values and Temperature Sensitivity JF - New Journal of Chemistry N2 - We present the synthesis and characterization of a family of regioisomerically pure pH-sensitive rosamine fluorophores consisting of xanthene fluorophore cores, which determine the dyes’ photophysical properties such as excitation/emission wavelength, fluorescence quantum yield, and fluorescence lifetime, and differently substituted phenol moieties. The hydroxyl substituent of the phenol moiety introduces a pH sensitivity of the dyes’ fluorescence exploiting a photoinduced electron transfer (PET), that leads to a protonation-induced switching ON of the rosamine emission. Rational tuning of the pKa value of the rosamine fluorescence between 4 to 9 is achieved by altering the substitution pattern and degree of bromination of the phenolic subunits. Additionally, a temperature sensitivity of the fluorescence quantum yield is introduced or suppressed based upon the degree of rigidity of the xanthene scaffold. KW - Fluorescence KW - Optical probe KW - Sensor KW - Dye KW - Rosamine KW - Synthesis KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurancemechanism KW - temperature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530562 DO - https://doi.org/10.1039/d1nj02505h VL - 45 IS - 31 SP - 13934 EP - 13940 PB - Royal Society of Chemistry AN - OPUS4-53056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogler, Nico A1 - Drabetzki, Philipp A1 - Lindemann, Mathias A1 - Kühne, Hans-Carsten T1 - Description of the concrete carbonation process with adjusted depth resolved thermogravimetric analysis JF - Journal of Thermal Analysis and Calorimetry N2 - The thermal gravimetric analysis (TG) is a common method for the examination of the carbonation progress of cement-based materials. Unfortunately, the thermal properties of some components complicate the evaluation of TG results. Various hydrate phases, like ettringite (AFt), C-S-H and AFm decompose almost simultaneously in the temperature range up to 200 °C. Additionally, physical bound water is released in the same temperature range. In the temperature range between 450 °C and 600 °C the decomposition of calcium hydroxide and amorphous or weakly bound carbonates takes place simultaneously. Carbonates, like calcite, from limestone powder or other additives may be already contained in the noncarbonated sample material. For this research an attempt was made to minimise the influence of these effects. Therefore, differential curves from DTG-results of non-carbonated areas and areas with various states of carbonation of the same sample material were calculated and evaluated. Concretes based on three different types of cement were produced and stored under accelerated carbonation conditions (1 % CO2 in air). The required sample material was obtained by cutting slices from various depth of previously CO2-treated specimen and subsequent grinding. During the sample preparation, a special attention was paid that no additional carbonation processes took place. As reference method for the determination of the carbonation depth the sprayed application of phenolphthalein solution was carried out. Microscopic analysis where examined to confirm the assumptions made previously. Furthermore, the observed effect of encapsulation of calcium hydroxide by carbonates caused by the accelerated carbonation conditions was examined more closely. KW - Microscopy KW - Accelerated carbonation KW - Carbonation behaviour KW - Concrete KW - Thermal Analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530571 DO - https://doi.org/10.1007/s10973-021-10966-1 VL - 147 IS - 11 SP - 1 EP - 14 PB - Springer AN - OPUS4-53057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Przyklenk, A. A1 - Balsamo, A. A1 - O'Connor, D. A1 - Evans, Alexander A1 - Yandayan, T. A1 - Akgöz, S. A1 - Flys, O. A1 - Zeleny, V. A1 - Czułek, D. A1 - Meli, F. A1 - Ragusa, C. A1 - Bosse, H. T1 - New European Metrology Network for advanced manufacturing JF - Measurement Science and Technology N2 - Advanced manufacturing has been identified as one of the key enabling technologies with applications in multiple industries. The growing importance of advanced manufacturing is reflected by an increased number of publications on this topic in recent years. Advanced manufacturing requires new and enhanced metrology methods to assure the quality of manufacturing processes and the resulting products. However, a high-level coordination of the metrology community is currently absent in this field and consequently this limits the impact of metrology developments on advanced manufacturing. In this article we introduce the new European Metrology Network (EMN) for Advanced Manufacturing within EURAMET, the European Association of National Metrology Institutes (NMIs). The EMN is intended to be operated sustainably by NMIs and Designated Institutes in close cooperation with Stakeholders interested in advanced manufacturing. The objectives of the EMN are to set up a permanent stakeholder dialogue, to develop a Strategic Research Agenda for the metrology input required for advanced manufacturing technologies, to create and maintain a knowledge sharing programme and to implement a web-based service desk for stakeholders. The EMN development is supported by a Joint Network Project within the European Metrology Programme for Innovation and Research. KW - Stakeholder KW - Advanced manufacturing KW - Metrology KW - European Metrology Networks (EMNs) KW - Strategic Research Agenda (SRA), PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530618 DO - https://doi.org/10.1088/1361-6501/ac0d25 VL - 32 IS - 11 SP - 111001 PB - IOP Publishing AN - OPUS4-53061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nelson, G. A1 - Boehm, U. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Brown, C. M. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L, A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Alexopoulos, I. A1 - Aumayr, K. A1 - Avilov, S. A1 - Bakker, G.-J. A1 - Bammann, R. R. A1 - Bassi, A. A1 - Beckert, H. A1 - Beer, S. A1 - Belyaev, Y. A1 - Bierwagen, J. A1 - Birngruber, K. A. A1 - Bosch, M. A1 - Breitlow, J. A1 - Cameron, L. A. A1 - Chalfoun, J. A1 - Chambers, J. J. A1 - Chen, C.-L. A1 - Conde-Sousa, E. A1 - Corbett, A. D. A1 - Cordelieres, F. P. A1 - Del Nery, E. A1 - Dietzel, R. A1 - Eismann, F. A1 - Fazeli, E. A1 - Felscher, A. A1 - Fried, H. A1 - Gaudreault, N. A1 - Goh, W. I. A1 - Guilbert, T. A1 - Hadleigh, R. A1 - Hemmerich, P. A1 - Holst, G. A. A1 - Itano, M. S. A1 - Jaffe, C. B. A1 - Jambor, H. K. A1 - Jarvis, S. C. A1 - Keppler, A. A1 - Kirchenbuechler, D. A1 - Kirchner, M. A1 - Kobayashi, N. A1 - Krens, G. A1 - Kunis, S. A1 - Lacoste, J. A1 - Marcello, M. A1 - Martins, G. G. A1 - Metcalf, D. J. A1 - Mitchell, C. A. A1 - Moore, J. A1 - Mueller, T. A1 - Nelson, M. S. A1 - Ogg, S. A1 - Onami, S. A1 - Palmer, A. L. A1 - Paul-Gilloteaux, P. A1 - Pimentel, J. A. A1 - Plantard, L. A1 - Podder, S. A1 - Rexhepaj, E. A1 - Royon, A. A1 - Saari, M. A. A1 - Schapman, D. A1 - Schoonderwoert, V. A1 - Schroth-Diez, B. A1 - Schwartz, S. A1 - Shaw, M. A1 - Spitaler, M. A1 - Stoeckl, M. T. A1 - Sudar, D. A1 - Teillon, J. A1 - Terjung, S. A1 - Thuenauer, R. A1 - Wilms, C. D. A1 - Wright, G. D. A1 - Nitschke, R. T1 - QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy JF - Journal of microscopy N2 - A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated, quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist’s experiments, while more than half have even failed to reproduce their own experiments1. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique2,3. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g., DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE4), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common Standards and guidelines for quality assessment and reproducibility5. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative6 was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models7,8, and tools9,10, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper 1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; 2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of Stakeholders including, researchers, imaging scientists11, bioimage analysts, bioimage informatics developers, corporate partners, Funding agencies, standards organizations, scientific publishers, and observers of such; 3) outlines the current actions of the QUAREPLiMi initiative, and 4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics. KW - Fluorescence KW - Microscopy KW - Quality assurance KW - Comparability KW - Imaging KW - Standards KW - Reference materials KW - Reliability KW - Data KW - Reference data KW - Biology KW - Medicine KW - Life science PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530629 DO - https://doi.org/10.1111/jmi.13041 SN - 1365-2818 VL - 284 IS - 1 SP - 56 EP - 73 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-53062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diener, S. A1 - Zocca, Andrea A1 - Günster, Jens T1 - Literature review: Methods for achieving high powder bed densities in ceramic powder bed based additive manufacturing JF - Open Ceramics N2 - In additive manufacturing the powder bed based processes binder jetting and powder bed fusion are increasingly used also for the production of ceramics. Final part properties depend to a high percentage on the powder bed density. Therefore, the aim is to use the best combination of powder deposition method and powder which leads to a high packing of the particles. The influence of flowability, powder properties and deposition process on the powder bed density is discussed and the different deposition processes including slurry-based ones are reviewed. It turns out that powder bed density reached by slurry-based layer deposition exceeds conventional powder deposition, however, layer drying and depowdering are extra steps or more time-consuming for the slurry route. Depending on the material properties needed the most suitable process for the part has to be selected. KW - Additive Manufacturing KW - Powder-based processes KW - Powder bed density PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534992 DO - https://doi.org/10.1016/j.oceram.2021.100191 VL - 8 SP - 100191 PB - Elsevier Ltd. AN - OPUS4-53499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peruzzi, N. A1 - Galli, S. A1 - Helmholz, H. A1 - Kardjilov, N. A1 - Krüger, D. A1 - Markötter, Henning A1 - Moosmann, J. A1 - Orlov, D. A1 - Prgomet, Z. A1 - Willumeit-Römer, R. A1 - Wennerberg, A. A1 - Bech, M. T1 - Multimodal ex vivo methods reveal that Gd-rich corrosion byproducts remain at the implant site of biodegradable Mg-Gd screws JF - Acta Biomaterialia N2 - Extensive research is being conducted on magnesium (Mg) alloys for bone implant manufacturing, due to their biocompatibility, biodegradability and mechanical properties. Gadolinium (Gd) is among the most promising alloying elements for property control in Mg alloy implants; however, its toxicity is contro- versial. Investigating Gd behavior during implant corrosion is thus of utmost importance. In this study, we analyzed the degradation byproducts at the implant site of biodegradable Mg-5Gd and Mg-10Gd implants after 12 weeks healing time, using a combination of different imaging techniques: histology, energy-dispersive x-ray spectroscopy (EDX), x-ray microcomputed tomography (μCT) and neutron μCT. The main finding has been that, at the healing time in exam, the corrosion appears to have involved only the Mg component, which has been substituted by calcium and phosphorus, while the Gd remains localized at the implant site. This was observed in 2D by means of EDX maps and extended to 3D with a novel application of neutron tomography. X-ray fluorescence analysis of the main excretory organs also did not reveal any measurable accumulation of Gd, further reinforcing the conclusion that very limited or no removal at all of Gd-alloy happened during degradation. KW - Magnesium-gadolinium alloy KW - Biodegradable implant KW - Multimodal analysis KW - Energy-dispersive x-ray spectroscopy KW - Micro-computed tomography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535910 DO - https://doi.org/10.1016/j.actbio.2021.09.047 SN - 1742-7061 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-53591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lampronti, G. A1 - Michalchuk, Adam A1 - Mazzeo, P. A1 - Belenguer, Ana A1 - Sanders, J. K. M. A1 - Bacchi, A. A1 - Emmerling, Franziska T1 - Changing the game of time resolved X-ray diffraction on the mechanochemistry playground by downsizing JF - Nature Communications N2 - Time resolved in situ (TRIS) monitoring has revolutionised the study of mechanochemical transformations but has been limited by available data quality. Here we report how a combination of miniaturised grinding jars together with innovations in X-ray powder diffraction data collection and state-of-the-art analysis strategies transform the power of TRIS synchrotron mechanochemical experiments. Accurate phase compositions, comparable to those obtained by ex situ measurements, can be obtained with small sample loadings. Moreover, microstructural parameters (crystal size and microstrain) can be also determined with high confidence. This strategy applies to all chemistries, is readily implemented, and yields high-quality diffraction data even using a low energy synchrotron source. This offers a direct avenue towards the mechanochemical investigation of reactions comprising scarce, expensive, or toxic compounds. Our strategy is applied to model systems, including inorganic, metal-organic, and organic mechanosyntheses, resolves previously misinterpreted mechanisms in mechanochemical syntheses, and promises broad, new directions for mechanochemical research. KW - Mechanochemistry KW - Synchrotron radiation KW - Material synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535932 DO - https://doi.org/10.1038/s41467-021-26264-1 SN - 2041-1723 VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Publishing Group CY - London AN - OPUS4-53593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gernhard, M. A1 - Rautenberg, Max A1 - Hörner, G. A1 - Weber, B. A1 - Emmerling, Franziska A1 - Roth, C. T1 - Mechanochemical Synthesis as a Greener Way to ProduceIron-based Oxygen Reduction Catalysts JF - Zeitschrift für anorganische und allgemeine Chemie N2 - Iron-based catalysts have been reported manifold and studied as platinum group metal (PGM) free alternatives for the catalysis of the oxygen reduction reaction (ORR). However, their sustainable preparation by greener synthesis approaches is usually not discussed. In this work, we propose a new method for the sustainable preparation of such catalysts by using a mechanochemical approach, with no solvents and non-toxic chemicals. The materials obtained from low temperature carbonization (700 °C) exhibit considerable and stable catalytic performance for ORR in alkaline medium. A catalyst obtained from iron hydroxide, tryptophan, dicyandiamide, and ammonium nitrate shows the best electrocatalytic Performance with an overpotential of 921 mV vs. RHE at 0.1 mA/cm2 and an electron transfer number of 3.4. KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - AEMFC KW - Mössbauer Spectroscopy KW - Sustainable Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535326 DO - https://doi.org/10.1002/zaac.202100194 VL - 647 IS - 22 SP - 2080 EP - 2087 PB - Weinheim-VCH GmbH AN - OPUS4-53532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Rudic, S. A1 - Pulham, C. A1 - Morrison, C. T1 - Predicting the impact sensitivity of a polymorphic high explosive: the curious case of FOX-7 JF - Chemical Communications N2 - The impact sensitivity (IS) of FOX-7 polymorphs is predicted by phonon up-pumping to decrease as layers of FOX-7 molecules flatten. Experimental validation proved anomalous owing to a phase transition during testing, raising questions regarding Impact sensitivity measurement and highlighting the need for models to predict IS of polymorphic energetic materials. KW - Energetic materials KW - Density functional theory KW - Inelastic Neutron Scattering Spectroscopy KW - Impact Sensitivity PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535558 DO - https://doi.org/10.1039/d1cc03906g SN - 1364-548X VL - 57 IS - 85 SP - 11213 EP - 11216 PB - Royal Society of Chemistry AN - OPUS4-53555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Rurack, Knut A1 - Hecht, Mandy T1 - Loading and Release of Charged and Neutral Fluorescent Dyes into and from Mesoporous Materials: A Key Role for Sensing Applications JF - Micromachines N2 - The aim of this study is to determine the efficiency of loading and release of several zwitterionic, neutral, anionic and cationic dyes into/from mesoporous nanoparticles to find the optimum loading and release conditions for their application in detection protocols. The loading is carried out for MCM-41 type silica supports suspended in phosphate-buffered saline (PBS) buffer (pH 7.4) or in acetonitrile, involving the dyes (rhodamine B chloride, rhodamine 101 chloride, rhodamine 101 perchlorate, rhodamine 101 inner salt, meso-(4-hydroxyphenyl)-boron–dipyrromethene (BODIPY), sulforhodamine B sodium salt and fluorescein 27). As a general trend, rhodamine-based dyes are loaded with higher efficiency, when compared with BODIPY and fluorescein dyes. Between the rhodamine-based dyes, their charge and the solvent in which the loading process is carried out play important roles for the amount of cargo that can be loaded into the materials. The delivery experiments carried out in PBS buffer at pH 7.4 reveal for all the materials that anionic dyes are more efficiently released compared to their neutral or cationic counterparts. The overall best performance is achieved with the negatively charged sulforhodamine B dye in acetonitrile. This material also shows a high delivery degree in PBS buffer. KW - Mesoporous materials KW - Charged dyes KW - Neutral dyes KW - Dye loading optimisation KW - Dye release PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522596 UR - https://www.mdpi.com/2072-666X/12/3/249 DO - https://doi.org/10.3390/mi12030249 VL - 12 IS - 3 SP - 249 PB - MDPI AN - OPUS4-52259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Denkler, Tilman T1 - Accreditation in Europe: Benchmarking the operations of European accreditation bodies using an innovative management tool JF - Accreditation and Quality Assurance N2 - Accreditation is one of the pillars of a national Quality Infrastructure, as the competence of conformity assessment bodies is assured through accreditation performed by accreditation bodies. To compare the operation of accreditation bodies in Europe and to identify best practices, a management tool, the Process Maturity Benchmarking Tool, was developed and validated by applying it to European accreditation bodies. The benchmarking project comprised two major phases: In the first phase, the processes of accreditation bodies were systematically analyzed. A process map was developed, and processes of special relevance were identified and underpinned by indicators. In the second phase, the practical applicability of the theoretical model was demonstrated by analyzing the processes of eight European accreditation bodies. The results of this comparative assessment were subsequently discussed in a workshop with experts from those accreditation bodies, giving the opportunity to identify best practices. This article has a twofold objective. First, to present a method to benchmark European accreditation bodies, based on the European Foundation for Quality Management excellence model. The successful application of the Process Maturity Benchmarking Tool gives evidence that it is a suitable and capable management tool to assess the processes of the European accreditation bodies and to benchmark them. Second, the article presents the results of the first adaption of the Process Maturity Benchmarking Tool. A general trend of process maturity was identified: While processes based on stakeholder involvement tend to have an overall lower maturity on average, internal processes are more mature. KW - Accreditation KW - Benchmarking KW - Quality Infrastructure KW - EFQM Excellence Modell KW - Total Quality Management KW - Akkreditierung PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521706 DO - https://doi.org/10.1007/s00769-021-01459-7 VL - 26 IS - 1 SP - 47 EP - 57 PB - Springer Nature CY - Jersey City, NJ 07302, USA AN - OPUS4-52170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Long, Lijia A1 - Alcover, I. F. A1 - Thöns, Sebastian T1 - Utility analysis for SHM durations and service life extension of welds on steel bridge deck JF - Structure and Infrastructure Engineering Maintenance, Management, Life-Cycle Design and Performance Latest Articles N2 - Optimization of the duration of Structural Health Monitoring (SHM) campaigns is rarely performed. This article provides a utility-based solution to posteriorly determine: i) optimal monitoring Durations and ii) the extension of the service life of the welds on a steel bridge deck. The approach is Illustrated with a case study focusing on remaining fatigue life estimation of the welds on the orthotropic steel deck of the Great Belt Bridge, in Denmark. The identification of the optimal monitoring duration and the decision about extending the service life of the welds are modelled by maximizing the expected benefits and minimizing the structural risks. The results are a parametric analysis, mainly on the effect of the target probability, benefit, cost of failure, cost of rehabilitation, cost of monitoring and Discount rate on the posterior utilities of monitoring strategies and the choice of service life considering the risk variability and the costs and benefits models. The results show that the decision on short-term monitoring, i.e., 1 week every six months, is overall the most valued SHM strategy. In addition, it is found that the target probability is the most sensitive parameter affecting the optimal SHM Durations and service life extension of the welds. KW - Fatigue KW - Monitoring strategy KW - Orthotropic steel deck KW - Structural health monitoring KW - Utility and decision theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521719 DO - https://doi.org/10.1080/15732479.2020.1866026 SN - 1573-2479 VL - 18 IS - 4 SP - 492 EP - 504 PB - Taylor Francis Online AN - OPUS4-52171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anzt, H. A1 - Bach, F. A1 - Druskat, S. A1 - Löffler, F. A1 - Loewe, A. A1 - Renard, B. Y. A1 - Seemann, G. A1 - Struck, A. A1 - Achhammer, E. A1 - Aggarwal, P. A1 - Appel, F. A1 - Bader, M. A1 - Brusch, L. A1 - Busse, C. A1 - Chourdakis, G. A1 - Dabrowski, P. W. A1 - Ebert, P. A1 - Flemisch, B. A1 - Friedl, S. A1 - Fritzsch, B. A1 - Funk, M. D. A1 - Gast, V. A1 - Goth, F. A1 - Grad, J. A1 - Hegewald, J. A1 - Hermann, S. A1 - Hohmann, F. A1 - Janosch, S. A1 - Kutra, D. A1 - Linxweiler, J. A1 - Muth, Thilo A1 - Peters-Kottig, W. A1 - Rack, F. A1 - Raters, F. H. C. A1 - Rave, S. A1 - Reina, G. A1 - Reißig, M. A1 - Ropinski, T. A1 - Schaarschmidt, J. A1 - Seibold, H. A1 - Thiele, J. P. A1 - Uekermann, B. A1 - Unger, S. A1 - Weeber, R. T1 - An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action JF - F1000 Research N2 - Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin. KW - Research Software KW - Sustainable Software Development KW - Academic Software KW - Software Infrastructure KW - Software Training KW - Software Licensing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522029 DO - https://doi.org/10.12688/f1000research.23224.2 VL - 9 SP - 1 EP - 35 AN - OPUS4-52202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pech, S. A1 - Rehberg, M. A1 - Janke, R. A1 - Benndorf, D. A1 - Genzel, Y. A1 - Muth, Thilo A1 - Sickmann, A. A1 - Rapp, E. A1 - Reichl, U. T1 - Tracking changes in adaptation to suspension growth for MDCK cells: cell growth correlates with levels of metabolites, enzymes and proteins JF - Applied Microbiology and Biotechnology N2 - Adaptations of animal cells to growth in suspension culture concern in particular viral vaccine production, where very specific aspects of virus-host cell interaction need to be taken into account to achieve high cell specific yields and overall process productivity. So far, the complexity of alterations on the metabolism, enzyme, and proteome level required for adaptation is only poorly understood. In this study, for the first time, we combined several complex analytical approaches with the aim to track cellular changes on different levels and to unravel interconnections and correlations. Therefore, a Madin-Darby canine kidney (MDCK) suspension cell line, adapted earlier to growth in suspension, was cultivated in a 1-L bioreactor. Cell concentrations and cell volumes, extracellular metabolite concentrations, and intracellular enzyme activities were determined. The experimental data set was used as the input for a segregated growth model that was already applied to describe the growth dynamics of the parental adherent cell line. In addition, the cellular proteome was analyzed by liquid chromatography coupled to tandem mass spectrometry using a label-free protein quantification method to unravel altered cellular processes for the suspension and the adherent cell line. Four regulatory mechanisms were identified as a response of the adaptation of adherent MDCK cells to growth in suspension. These regulatory mechanisms were linked to the proteins caveolin, cadherin-1, and pirin. Combining cell, metabolite, enzyme, and protein measurements with mathematical modeling generated a more holistic view on cellular processes involved in the adaptation of an adherent cell line to suspension growth. KW - MDCK cell KW - Proteome KW - Metabolism KW - Enzyme activity KW - Suspension growth PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522070 DO - https://doi.org/10.1007/s00253-021-11150-z VL - 105 IS - 5 SP - 1861 EP - 1874 PB - Springer AN - OPUS4-52207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bevilacqua, N. A1 - Asset, T. A1 - Schmid, M. A. A1 - Markötter, Henning A1 - Manke, I. A1 - Atanassov, P. A1 - Zeis, R. T1 - Impact of catalyst layer morphology on the operation of high temperature PEM fuel cells JF - Journal of Power Sources Advances N2 - Electrochemical impedance spectroscopy (EIS) is a well-established method to analyze a polymer electrolyte membrane fuel cell (PEMFC). However, without further data processing, the impedance spectrum yields only qualitative insight into the mechanism and individual contribution of transport, kinetics, and ohmic losses to the overall fuel cell limitations. The distribution of relaxation times (DRT) method allows quantifying each of these polarization losses and evaluates their contribution to a given electrocatalyst's depreciated performances. We coupled this method with a detailed morphology study to investigate the impact of the 3D-structure on the processes occurring inside a high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). We tested a platinum catalyst (Pt/C), a platinum-cobalt alloy catalyst (Pt3Co/C), and a platinum group metal-free iron-nitrogen-carbon (Fe–N–C) catalyst. We found that the hampered mass transport in the latter is mainly responsible for its low performance in the MEA (along with its decreased intrinsic performances for the ORR reaction). The better performance of the alloy catalyst can be explained by both improved mass transport and a lower ORR resistance. Furthermore, single-cell tests show that the catalyst layer morphology influences the distribution of phosphoric acid during conditioning. KW - High-temperature polymer electrolyte membrane fuel cell KW - Platinum-free catalyst KW - Mass transport KW - Oxygen reduction reaction KW - Distribution of relaxation times analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520917 DO - https://doi.org/10.1016/j.powera.2020.100042 VL - 7 SP - 100042 PB - Elsevier Ltd. AN - OPUS4-52091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Marschall, Niklas A1 - Alig, I. A1 - Böhning, Martin T1 - A phenomenological criterion for an optical assessment of PE-HD fracture surfaces obtained from FNCT JF - Polymer Testing N2 - The full-notch creep test (FNCT) is a common test method to evaluate the environmental stress cracking (ESC) behavior of high-density polyethylene (PE-HD), e.g. for container materials. The test procedure as specified in ISO 16770 provides a comparative measure of the resistance against ESC using the time to failure of PE-HD specimens under constant mechanical load in a well-defined liquid test environment. Since the craze-crack damage mechanism underlying the ESC phenomenon is associated with brittle failure, the occurrence of a predominantly brittle fracture surface is a prerequisite to consider an FNCT measurement as representative for ESC, i.e. a time to failure dominated by craze-crack propagation. The craze-crack propagation continuously reduces the effective residual cross-sectional area of the specimen during the test, which results in a corresponding increase of the effective mechanical stress. Thus, a transition to ductile shear deformation is inevitable at later stages of the test, leading usually to a pronounced central ligament. Therefore, an optical evaluation of FNCT fracture surfaces concerning their brittleness is essential. An enhanced imaging analysis of FNCT fracture surfaces enables a detailed assessment of craze-crack Propagation during ESC. In this study, laser scanning microscopy (LSM) was employed to evaluate whether FNCT fracture surfaces are representative with respect to craze-crack propagation and ESC. Based on LSM height data, a phenomenological criterion is proposed to assess the validity of distinct FNCT measurements. This criterion is supposed to facilitate a quick evaluation of FNCT results in practical routine testing. Its applicability is verified on a sample basis for seven different commercial PE-HD container materials. KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Laser scanning microscopy (LSM) KW - Fracture surfaces KW - Optical criterion of brittleness PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521012 DO - https://doi.org/10.1016/j.polymertesting.2020.107002 VL - 94 SP - 107002 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -