TY - JOUR A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Yang, Fan A1 - Rethmeier, Michael T1 - Toward prediction and insight of porosity formation in laser welding: A physics-informed deep learning framework N2 - The laser welding process is an important manufacturing technology for metallic materials. However, its application is often hindered by the occurrence of porosity defects. By far, an accurate prediction of the porosity defects and an insight into its formation mechanism are still challenging due to the highly nonlinear physics involved. In this paper, we propose a physics-informed deep learning (PIDL) framework by utilizing mechanistic modeling and experimental data to predict the porosity level during laser beam welding of aluminum alloys. With a proper selection of the physical variables (features) concerning the solidification, liquid metal flow, keyhole stability, and weld pool geometry, the PIDL model shows great superiority in predicting the porosity ratio, with a reduction of mean square error by 41 %, in comparison with the conventional DL model trained with welding parameters. Furthermore, the selected variables are fused into dimensionless features with explicit physical meanings to improve the interpretability and extendibility of the PIDL model. Based on a well-trained PIDL model, the hierarchical importance of the physical variables/procedures on the porosity formation is for the first time revealed with the help of the Shapley Additive Explanations analysis. The keyhole ratio is identified as the most influential factor in the porosity formation, followed by the downward flow-driven drag force, which offers a valuable guideline for process optimization and porosity minimization. KW - Laser beam welding KW - Physics-informed deep learning KW - Porosity prediction KW - Feature fusion KW - Hierarchical importance PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624708 DO - https://doi.org/10.1016/j.actamat.2025.120740 VL - 286 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-62470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krahl, T. A1 - Beer, F. A1 - Relling, A. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Kemnitz, E. T1 - Toward Luminescent Composites by Phase Transfer of SrF2 :Eu3+ Nanoparticles Capped with Hydrophobic Antenna Ligands N2 - Transparent dispersions of hydrophobic SrF2 :Eu3+ nanoparticles in cyclohexane with up to 20% europium were obtained by fluorolytic sol-gel synthesis followed by Phase transfer into cyclohexane through capping with sodium dodecylbenzenesulfonate (SDBS). The particles were characterized by TEM, XRD and DLS as spherical objects with a diameter between 6 and 11 nm in dry state. 1H-13CP MAS NMR experiments revealed the binding of the anionic sulfonate head group to the particle surface. The particles show bright red luminescence upon excitation of the aromatic capping agents, acting as antennas for an Energy transfer from the benzenesulfonate unit to the Eu3+ centers in the particles. This synthesis method overcomes the current obstacle of the fluorolytic sol-gel synthesis that transparent dispersions can be obtained directly only in hydrophilic solvents. To demonstrate the potential of such hydrophobized alkaline-earth fluoride particles, transparent luminescent organic-inorganic composites with 10% SrF2 :Eu3+ embedded into polyTEGDMA, polyBMA, poly-BDDMA and polyD3MA, respectively, were prepared, endowing the polymers with the luminescence features of the nanoparticles. KW - Nanoparticles KW - Fluorides KW - Sol-gel process KW - Organic-inorganic hybrid composites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508668 DO - https://doi.org/10.1002/cnma.202000058 SP - 1 EP - 11 PB - Wiley AN - OPUS4-50866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Wan, Wei A1 - Rurack, Knut T1 - Toward Label-Free Optical Multiplexing of Analytes in Indicator Release Lateral Flow Assays via Detection Zones Containing Tailored Capture Materials N2 - The use of macromolecules and materials immobilized in the detection zone of test strips for indicator capture and focusing in label-free lateral flow assays (LFAs) is described, with emphasis on its future use in low number multiplexing. Several materials such as polyelectrolytes, functionalized mesoporous silica micro- and nanoparticles, chemically modified cellulose or glass fibre (GF) membranes and molecularly imprinted polymer gels coated onto membranes were studied in model assays, before the most promising materials were combined with antibody-gated indicator delivering (gAID) sensor materials. Cellulose, nitrocellulose and GF membranes were used as supports and highly fluorescent dyes of different charge states as model indicators. Combination of the best performing capture materials with gAID systems made it possible to distinctly increase the sensitivity and reduce the measurement uncertainty in the LFA testing of pentaerythritol tetranitrate (PETN) in aqueous samples. In addition, dual-plexing of PETN and 2,4,6-trinitrotoluene (TNT) was realized on a single test strip containing two dedicated capture zones. KW - Rapid tests KW - Vor-Ort-Analytik KW - Multiplexing KW - Teststreifen KW - Molecularly imprinted polymers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557873 DO - https://doi.org/10.1002/anse.202100062 VL - 2 IS - 4 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karapanagiotis, Christos A1 - Schukar, Marcus A1 - Breithaupt, Mathias A1 - Hicke, Konstantin T1 - Toward a Digital Twin of Hydrogen Pressure Vessels Enabled by Distributed Fiber Optic Sensors N2 - We present a digital replica of a hydrogen pressure vessel enabled by distributed fiber optic sensors (DFOS). This digital replica dynamically displays and updates the vessel’s structural condition by calculating strain residuals defined as the difference between the measured DFOS strain and the expected strain based on pressure data. As an example, we show the ability of the DFOS to detect and localize damage caused by drilling six holes into the vessel’s body. This digital replica represents a foundational step toward a fully integrated digital twin for predictive maintenance and remaining lifetime prognosis. T2 - Sensor and Measurement Science International (SMSI) 2025 CY - Nuremberg, Germany DA - 06.05.2025 KW - fiber optic sensors KW - digital twin KW - structural health monitoring KW - hydrogen KW - machine learning PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-633885 UR - https://www.ama-science.org/proceedings/details/5962 SN - 978-3-910600-06-5 DO - https://doi.org/10.5162/SMSI2025/C6.1 SP - 165 EP - 166 PB - AMA Service GmbH CY - Wunstorf AN - OPUS4-63388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Nasrabadi, Hossein A1 - Hanke, T. A1 - Weber, M. A1 - Eisenbart, M. A1 - Bauer, F. A1 - Meissner, R. A1 - Dziwis, G. A1 - Tikana, L. A1 - Chen, Yue A1 - Skrotzki, Birgit T1 - Toward a digital materials mechanical testing lab N2 - To accelerate the growth of Industry 4.0 technologies, the digitalization of mechanical testing laboratories as one of the main data-driven units of materials processing industries is introduced in this paper. The digital lab infrastructure consists of highly detailed and standard-compliant materials testing knowledge graphs for a wide range of mechanical testing processes, as well as some tools that enable the efficient ontology development and conversion of heterogeneous materials’ mechanical testing data to the machine-readable data of uniform and standardized structures. As a basis for designing such a digital lab, the mechanical testing ontology (MTO) was developed based on the ISO 23718 and ISO/IEC 21838-2 standards for the semantic representation of the mechanical testing experiments, quantities, artifacts, and report data. The trial digitalization of materials mechanical testing lab was successfully performed by utilizing the developed tools and knowledge graph of processes for converting the various experimental test data of heterogeneous structures, languages, and formats to standardized Resource Description Framework (RDF) data formats. The concepts of data storage and data sharing in data spaces were also introduced and SPARQL queries were utilized to evaluate how the introduced approach can result in the data retrieval and response to the competency questions. The proposed digital materials mechanical testing lab approach allows the industries to access lots of trustworthy and traceable mechanical testing data of other academic and industrial organizations, and subsequently organize various data-driven research for their faster and cheaper product development leading to a higher performance of products in engineering and ecological aspects. KW - General Engineering KW - General Computer Science PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582698 DO - https://doi.org/10.1016/j.compind.2023.104016 SN - 0166-3615 VL - 153 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-58269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Halisch, M. A1 - Dlugosch, R. A1 - Prinz, Carsten T1 - Toward a better understanding of low-frequency electrical relaxation - An enhanced pore space characterization N2 - Relaxation phenomena observed in the electrical low-frequency range (approximately 1 mHz-10 kHz) of natural porous media like sandstones is often assumed to be directly related to the dominant (modal) pore throat sizes measured, for instance, with mercury intrusion porosimetry. Attempts to establish a universally valid relationship between pore size and peak Spectral Induced Polarization (SIP) relaxation time have failed, considering sandstones from very different origins and featuring great variations in textural and chemical compositions as well as in geometrical pore space properties. In addition working with characteristic relaxation times determined in Cole-Cole or Debye decomposition fits to build the relationship have not been successful. In particular, samples with narrow pore throats are often characterized by long SIP relaxation times corresponding to long “characteristic length scales” in these media, assuming that the diffusion coefficients along the electrical double layer were constant. Based on these observations, three different types of SIP relaxation can be distinguished. We present a new way of assessing complex pore spaces of very different sandstones in a multi-methodical approach to combine the benefits of mercury intrusion porosimetry, micro-computed tomography, and nuclear magnetic resonance. In this way, we achieve much deeper insight into the pore space due to the different resolutions and sensitivities of the applied methods to both pore constrictions (throats) and wide pores (pore bodies). We experimentally quantify pore aspect ratios and volume distributions within the two pore regions. We clearly observe systematic differences between three SIP relaxation types identified previously and can attribute the SIP peak relaxation times to measured characteristic length scales within our materials. We highlight selected results for a total of nine sandstones. It seems that SIP relaxation behavior depends on the size difference of the narrow pore throats to the wide pore bodies, which increases from SIP Type 1 to Type 3. KW - µ-CT KW - Spectral induced polarization KW - Nuclear magnetic resonance KW - Pore space PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509763 DO - https://doi.org/10.1190/GEO2019-0074.1 SN - 0016-8033 VL - 85 IS - 4 SP - MR257 EP - MR270 PB - Society of Exploration Geophysicists AN - OPUS4-50976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Rooch, Ludwig A1 - Hassenstein, Christian A1 - Ziegler, Mathias ED - Sakagami, T. ED - Inoue, H. T1 - Total Focusing in the Virtual Wave Domain: 3D Defect Reconstruction Using Spatially Structured Laser Heating N2 - Classical active thermographic testing of industrial goods has mostly been limited to generating 2D defect maps. While for surface or near-surface defect detection, this is a desired result, for deeply buried defects, a 3D reconstruction of the defect geometry is coveted. This general trend can also be well observed in widely used NDT methods (radiography, ultrasonic testing), where the progression from 2D to 3D reconstruction methods has already made profound progress (CT, UT phased array transducers). Achieving a fully 3D defect reconstruction in active thermographic testing suffers from the diffusive nature of thermal processes. One possible solution to deal with thermal diffusion is the application of the virtual-wave concept, which, by solving an inverse problem, allows the diffusiveness to be extracted from the thermographic data in the post-processing stage. What is left follows propagating-wave physics, enabling the usage of well-known algorithms from ultrasonic testing. In this work, we present our progress in the 3D reconstruction of deeply buried defects using spatially structured laser heating in conjunction with applying the well-known total focusing method (TFM) in the virtual-wave domain. T2 - 18th International Workshop on Advanced Infrared Technology and Applications (AITA 2025) CY - Kobe, Japan DA - 15.09.2025 KW - Non-destructive testing KW - Virtual wave concept KW - Laser thermography KW - Thermal thomography PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641463 DO - https://doi.org/10.3390/proceedings2025129054 VL - 129 IS - 1 SP - 1 EP - 5 PB - MDPI CY - Basel AN - OPUS4-64146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van Tran, K. A1 - Woracek, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Abou-Ras, D. A1 - Puplampu, S. A1 - Förster, C. A1 - Penumadu, D. A1 - Dahlberg, C. F. O. A1 - Banhart, J. A1 - Manke, I. T1 - Torsion of a rectangular bar: Complex phase distribution in 304L steel revealed by neutron tomography N2 - Metastable austenitic stainless steel (304L) samples with a rectangular cross-section were plastically deformed in torsion during which they experienced multiaxial stresses that led to a complex martensitic phase distribution owing to the transformation induced plasticity effect. A three-dimensional characterization of the phase distributions in these cm-sized samples was carried out by wavelength-selective neutron tomography. It was found that quantitatively correct results are obtained as long as the samples do not exhibit any considerable preferential grain orientation. Optical microscopy, electron backscatter diffraction, and finite element modeling were used to verify and explain the results obtained by neutron tomography. Altogether, neutron tomography was shown to extend the range of microstructure characterization methods towards the meso- and macroscale. KW - Neutron tomography KW - Phase distribution KW - Rectangular cross-section KW - Torsion KW - Geometrical effect PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561649 DO - https://doi.org/10.1016/j.matdes.2022.111037 SN - 0264-1275 VL - 222 SP - 111037 PB - Elsevier Ltd. AN - OPUS4-56164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tran, K. V. A1 - Woracek, R. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Abou-Ras, D. A1 - Puplampu, S. A1 - Förster, C. A1 - Penumadu, D. A1 - Dahlberg, C. F. O. A1 - Banhart, J. A1 - Manke, I. T1 - Torsion of a rectangular bar: Complex phase distribution in 304L steel revealed by neutron tomography N2 - Metastable austenitic stainless steel (304L) samples with a rectangular cross-section were plastically deformed in torsion during which they experienced multiaxial stresses that led to a complex martensitic phase distribution owing to the transformation induced plasticity effect. A three-dimensional characterization of the phase distributions in these cm-sized samples was carried out by wavelength-selective neutron tomography. It was found that quantitatively correct results are obtained as long as the samples do not exhibit any considerable preferential grain orientation. Optical microscopy, electron backscatter diffraction, and finite element modeling were used to verify and explain the results obtained by neutron tomography. Altogether, neutron tomography was shown to extend the range of microstructure characterization methods towards the meso- and macroscale. KW - Neutron tomography KW - Phase distribution KW - Rectangular cross-section KW - Torsion KW - Geometrical effect PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569101 DO - https://doi.org/10.1016/j.matdes.2022.111037 VL - 222 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-56910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, Julien A1 - Schröpfer, Dirk A1 - Hamacher, M. A1 - Michels, H. A1 - Hamm, C. A1 - Appelt, M. A1 - Börner, Andreas A1 - Kannengießer, Thomas T1 - Tool development for hybrid finishing milling of iron aluminides N2 - The importance of high-temperature materials made of iron aluminides (FeAl) has been increasing in light weight applications, e.g., airplane turbines, due to the high material’s specific strength. However, the highly economic production by means of permanent mold casting involves special microstructures for Fe26Al4Mo0.5Ti1B alloy components leading to difficult machinability for subsequent finishing milling and low surface qualities. Major effects of tool and machining parameter variation incorporating ultrasonic assistance on the milling process and surface integrity are shown. Loads for tool and component surface are significantly adjustable to enable an economic process chain regarding the surface integrity of safety-relevant components. KW - Ultrasonic-assisted milling KW - Iron aluminide KW - Surface integrity KW - Tool wear PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566294 DO - https://doi.org/10.1016/j.procir.2022.03.123 SN - 2212-8271 VL - 108 SP - 793 EP - 798 PB - Elsevier B.V. AN - OPUS4-56629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Dural, Esra A1 - Dey, R. A1 - Ullrich, M. S. A1 - Huth, Christian A1 - Thomson, C. A1 - Schartel, Bernhard T1 - Together We Can: Synergistic Flame Retardancy by Melamine Polyphosphate and Phosphorylated Microalgae in Polylactide Biocomposites N2 - A strategy for enhancing the sustainable flame retardancy of polylactide (PLA) composites by partially replacing melamine polyphosphate (MPP), a commercial flame retardant proposed for PLA, with wastewater polyphosphate-enriched microalgae (P-Algae) has been explored. The incorporation of P-Algae at a 1:1 ratio with MPP leads to a notable synergistic effect, surpassing the expected additive behavior of the individual components. Comprehensive characterization encompassing thermogravimetric analysis coupled with FTIR, pyrolysis combustion flow calorimeter (PCFC), cone calorimeter, oxygen index (LOI), UL-94 tests, and rheological measurements—demonstrates that the presence of this biomaterial can significantly enhance flame retardant performance. Replacing 50% of MPP with P-Algae in PLA resulted in a 17% reduction in peak heat release rate (pHRR) and maintained a V-0 rating in UL-94 testing. The use of P-Algae does not compromise the flame retardancy of PLA but rather contributes positively, offering a promising path toward more sustainable flame-retardant systems. By leveraging naturally derived biomass, this approach aligns with the growing demand for novel eco-friendly technologies in polymer engineering. Insights into an innovative renewable additive as a functional and effective component in flame-retardant biocomposites have been achieved. KW - Flame retardancy KW - Melamine polyphosphate KW - Phosphorus- enriched microalgae KW - Polylactide PLA KW - Synergism PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-640539 DO - https://doi.org/10.1002/pat.70350 SN - 1099-1581 SN - 1042-7147 VL - 36 IS - 9 SP - e70350 PB - John Wiley & Sons Ltd. AN - OPUS4-64053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scharek, Vera M. A1 - Pfeifer, Jens A1 - Vogl, Jochen A1 - Traub, Heike A1 - Meermann, Björn T1 - Tin fractionation analysis in sediment samples via on-line ID ETV/ICP-MS N2 - We report a quantification approach for directly determining total tin and tin-based pollutants/species in sediments via electrothermal vaporization/inductively coupled plasma-mass spectrometry (ETV/ICP-MS) utilizing an on-line isotope dilution mass spectrometry (IDMS) approach. The method was developed and validated using an estuarine sediment reference material (BCR-277R), yielding a recovery of 106%. A relative standard deviation (RSD) of 14%, comparable to published data using a similar method, was obtained. A limit of quantification (LOQ) was estimated at 0.008 mg Sn kg−1 and sufficient for quantifying the total tin mass fraction of surface sediments along the tidal River Elbe course. Hereby, a decrease towards the river mouth, presumably due to dilution effects by less polluted marine sediment, was observed. Besides total tin, monitoring of organotin compounds (OTCs)/species is of interest in sediments due to their toxic effects on aquatic life. The method’s capability was extended by separating an OTC fraction in a sediment certified reference material (CRM) through the ETV temperature program. While spiking experiments with OTC standards confirmed the assignment, only a small fraction of the total certified OTC amount (3%), likely due to matrix effects, was recovered. However, applying the method to real-world samples, OTCs were detectable along the River Elbe course. By this, we demonstrated the potential of our method as a complementary fast-screening approach to species-specific analysis procedures. KW - ETV KW - Sn-Speciation KW - Sediment PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-640137 DO - https://doi.org/10.1007/s00216-025-06064-y SN - 1618-2642 SP - 1 EP - 10 PB - Springer Science and Business Media LLC AN - OPUS4-64013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Pfretzschner, B. A1 - Taparli, Ugur Alp A1 - Kardjilov, N. T1 - Time-Resolved Neutron Bragg-Edge Imaging: A Case Study by Observing Martensitic Phase Formation in Low Temperature Transformation (LTT) Steel during GTAW N2 - Polychromatic and wavelength-selective neutron transmission radiography were applied during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization of austenitization upon welding and subsequent α’-martensite formation during cooling could be achieved with a temporal resolution of 2 s for monochromatic imaging using a single neutron wavelength and of 0.5 s for polychromatic imaging using the full spectrum of the beam (white beam). The spatial resolution achieved in the experiments was approximately 200 µm. The transmitted monochromatic neutron beam intensity at a wavelength of λ = 0.395 nm was significantly reduced during cooling below the martensitic start temperature Ms since the emerging martensitic phase has a ~10% higher attenuation coefficient than the austenitic phase. Neutron imaging was significantly influenced by coherent neutron scattering caused by the thermal motion of the crystal lattice (Debye–Waller factor), resulting in a reduction in the neutron transmission by approx. 15% for monochromatic and by approx. 4% for polychromatic imaging. KW - Austenite-to-martensite transformation KW - Neutron radiography KW - Bragg-edge imaging KW - Gas tungsten arc welding (GTAW) KW - Debye–Waller factor KW - Low transformation temperature (LTT) steel PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538016 DO - https://doi.org/10.3390/app112210886 VL - 11 IS - 22 SP - 10886 PB - MDPI CY - Basel AN - OPUS4-53801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Taparli, Ugur Alp A1 - Kardjilov, N. T1 - Time-Resolved Neutron Bragg-Edge Imaging: A Case Study by Observing Martensitic Phase Formation in Low Temperature Transformation (LTT) Steel during GTAW N2 - Polychromatic and wavelength-selective neutron transmission radiography were applied during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization of austenitization upon welding and subsequent α’-martensite formation during cooling could be achieved with a temporal resolution of 2 s for monochromatic imaging using a single neutron wavelength and of 0.5 s for polychromatic imaging using the full spectrum of the beam (white beam). The spatial resolution achieved in the experiments was approximately 200 µm. The transmitted monochromatic neutron beam intensity at a wavelength of λ = 0.395 nm was significantly reduced during cooling below the martensitic start temperature M s since the emerging martensitic phase has a ~10% higher attenuation coefficient than the austenitic phase. Neutron imaging was significantly influenced by coherent neutron scattering caused by the thermal motion of the crystal lattice (Debye–Waller factor), resulting in a reduction in the neutron transmission by approx. 15% for monochromatic and by approx. 4% for polychromatic imaging. KW - Neutron radiography KW - Debye–Waller factor KW - Austenite-to-martensite transformation KW - Low transformation temperature (LTT) steel KW - Bragg-edge imaging KW - Gas tungsten arc welding (GTAW) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559077 DO - https://doi.org/10.3390/app112210886 VL - 11 IS - 22 PB - MDPI AN - OPUS4-55907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kabelitz, Anke A1 - de Oliveira Guilherme Buzanich, Ana A1 - Joester, Maike A1 - Reinholz, Uwe A1 - Radtke, Martin A1 - Bienert, Ralf A1 - Schulz, K. A1 - Schmack, R. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Time-resolved in situ studies on the formation mechanism of iron oxide nanoparticles using combined fast-XANES and SAXS N2 - The reaction of iron chlorides with an alkaline reagent is one of the most prominent methods for the synthesis of iron oxide nanoparticles. We studied the particle formation mechanism using triethanolamine as reactant and stabilizing agent. In situ fast-X-ray absorption near edge spectroscopy and small-angle X-ray scattering provide information on the oxidation state and the structural information at the same time. In situ data were complemented by ex situ transmission electron microscopy, wide-angle X-ray scattering and Raman analysis of the formed nanoparticles. The formation of maghemite nanoparticles (γ-Fe2O3) from ferric and ferrous chloride was investigated. Prior to the formation of these nanoparticles, the formation and conversion of intermediate phases (akaganeite, iron(II, III) hydroxides) was observed which undergoes a morphological and structural collapse. The thus formed small magnetite nanoparticles (Fe3O4) grow further and convert to maghemite with increasing reaction time. KW - oxidation state KW - structural information KW - maghemite PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-351376 DO - https://doi.org/10.1039/C5CE01585E SN - 1466-8033 VL - 17 IS - 44 SP - 8463 EP - 8470 CY - London, UK AN - OPUS4-35137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karapanagiotis, Christos A1 - Wosniok, Aleksander A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Time-Efficient Convolutional Neural Network-Assisted Brillouin Optical Frequency Domain Analysis N2 - To our knowledge, this is the first report on a machine-learning-assisted Brillouin optical frequency domain analysis (BOFDA) for time-efficient temperature measurements. We propose a convolutional neural network (CNN)-based signal post-processing method that, compared to the conventional Lorentzian curve fitting approach, facilitates temperature extraction. Due to its robustness against noise, it can enhance the performance of the system. The CNN-assisted BOFDA is expected to shorten the measurement time by more than nine times and open the way for applications, where faster monitoring is essential. KW - Fiber-optic sensors KW - Machine learning KW - Temperature and strain monitoring KW - Brillouin distributed sensing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524631 DO - https://doi.org/10.3390/s21082724 VL - 21 IS - 8 SP - 2724 PB - MDPI AN - OPUS4-52463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Örnek, C. A1 - Léonard, Fabien A1 - McDonald, S. A1 - Prajapati, A A1 - Withers, P. J. A1 - Engelberg, D. T1 - Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires N2 - Corrosion rates of strained grade UNS S32202 (2202) and UNS S32205 (2205) duplex stainless steel wires have been measured, in situ, using time-lapse X-ray computed tomography. Exposures to chloride-containing (MgCl2) atmospheric environments at 50 °C (12–15 M Cl− and pH ~5) with different mechanical elastic and elastic/plastic loads were carried out over a period of 21 months. The corrosion rates for grade 2202 increased over time, showing selective dissolution with shallow corrosion sites, coalescing along the surface of the wire. Corrosion rates of grade 2205 decreased over time, showing both selective and pitting corrosion with more localised attack, growing preferentially in depth. The nucleation of stress corrosion cracking was observed in both wires. KW - X-ray computed tomography KW - Time-lapse X-ray computed tomography PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444153 UR - https://www.nature.com/articles/s41529-018-0030-9 DO - https://doi.org/10.1038/s41529-018-0030-9 SN - 2397-2106 VL - 2 SP - Article 10, 1 EP - 15 PB - Nature CY - London AN - OPUS4-44415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, Stefan A1 - Kunkel, Benny A1 - Cakir, Cafer Tufan A1 - Kabelitz, Anke A1 - Witte, Steffen A1 - Bernstein, Thomas A1 - Bartling, Stephan A1 - Radtke, Martin A1 - Emmerling, Franziska A1 - Abdel-Mageed, Ali Mohamed A1 - Wohlrab, Sebastian A1 - de Oliveira Guilherme Buzanich, Ana T1 - Time-, space- and energy-resolved in situ characterization of catalysts by X-ray absorption spectroscopy N2 - A novel setup for dispersive X-ray absorption spectroscopy (XAS) with simultaneous resolution of space, time and energy for in situ characterization of solid materials is demonstrated. KW - Dispersive XAS KW - Catalysis KW - In situ KW - Structure analysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584924 DO - https://doi.org/10.1039/d3cc03277a SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska T1 - Time- & spatial-resolved X-ray absorption fine structure (XAFS) spectroscopy in a single-shot – new analytical possibilities for in situ material characterization N2 - A new concept that comprises both time- and lateral-resolved X-ray absorption fine-structure information simultaneously in a single shot is presented. This uncomplicated set-up was tested at the BAMline at BESSY-II (Berlin, Germany). The primary broadband beam was generated by a double multilayer monochromator. The transmitted beam through the sample is diffracted by a convexly bent Si (111) crystal, producing a divergent beam. This, in turn, is collected by either an energy-sensitive area detector, the so-called color X-ray camera, or by an area-sensitive detector based on a CCD camera, in θ-2θ geometry. The first tests were performed with thin metal foils and some iron oxide mixtures. A time resolution of lower than 1 s together with a spatial resolution in one dimension of at least 50 µm is achieved. KW - Time resolution KW - Single-shot XAFS PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370892 DO - https://doi.org/10.1107/S1600577516003969 SN - 1600-5775 IS - 23 SP - 769 EP - 776 PB - International Union of Crystallography CY - Chester, UK AN - OPUS4-37089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Holger A1 - Beckmann, Jörg A1 - Boehm, Rainer T1 - THz-ToF techniques for the detection of inherent discontinuities in dielectric materials based on a SAFT – and an optical layer reconstruction algorithm N2 - Electromagnetic waves with frequencies between 0.1 and 10 THz are described as THz-radiation (T-ray). The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. THz-Time Domain Spectroscopy Systems (THz-TDS) are available on the market today which operates with THz-pulses transmitted and received by optically pumped semiconductor antennas. In THz-TDS the travelling time (ToF) and shape of the pulse is changed if it interacts with the dielectric material and its inherent discontinuities. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. Otherwise, planar discontinuities like cracks in plastics or delaminated layers in composites can be abstracted as layers located at any angle in relation to the outer sample surface direction. A tomogram from the scanned sample can then be reconstructed in case the interactions of electromagnetic pulses with the existing inherent interfaces are detectable and a model is assumed which describes the device under the test as multilayer structure composed of thin layers with different dielectric properties. A short description of both the SAFT – and Optical Layer algorithm for the reconstruction of the inherent structure is initially given. Measurements on representative samples with a variety of artificially produced small and large scale. Reconstructed tomograms are presented to discuss and evaluate the benefits and limits of the two different reconstruction approaches. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - Munich, Germany DA - 13.06.2016 KW - THz SAFT Optical layer reconstruction PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365866 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 10 AN - OPUS4-36586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kömmling, Anja A1 - Grelle, Tobias A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar T1 - Three-dimensional thermal expansion of neat and irradiated (U)HMWPE materials at elevated temperatures N2 - The thermal expansion of polymeric parts can be an issue in many applications where the available space is limited, or exact dimensions of the part are required. For this study, a device was designed and built that allowed measuring the thermal expansion simultaneously in all three spatial directions on cubic samples with real-scale dimensions (78 mm edge length). The results are shown between 25 °C and 125 °C for two PE materials, one HMWPE and one tempered UHMWPE, for non-irradiated samples as well as cubes that have been irradiated with 100 and 400 kGy. The results measured with the new device were very similar to those measured with conventional thermo-mechanical analysis equipment and to literature data of UHMWPE. The HMWPE material shows a much larger thermal expansion coefficient in one direction compared to the other two directions during the first heating due to frozen stresses from the pressing step during material manufacturing. These stresses are mostly released by the expansion during the first heating, so that the expansion during the second heating is more uniform. The overall volumetric expansion is the same for both heating runs. By contrast, the tempered UHMWPE material shows no significant difference between first and second heating run, as the stresses from processing could already relax in the tempering step. The irradiation treatment does not affect the values significantly for the given test set-up. KW - Lupolen KW - Ultra high molecular weight polyethylene KW - GUR KW - Coefficient of thermal expansion KW - High temperature PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563987 DO - https://doi.org/10.1016/j.polymertesting.2022.107841 SN - 0142-9418 VL - 117 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-56398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manke, I. A1 - Kardjilov, N. A1 - Schäfer, R. A1 - Hilger, A. A1 - Grothausmann, R. A1 - Strobl, M. A1 - Dawson, M. A1 - Grünzweig, C. A1 - Tötzke, C. A1 - David, C. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Banhart, J. T1 - Three-dimensional imaging of magnetic domains with neutron grating interferometry N2 - This paper gives a brief overview on3D imaging of magnetic domains with shearing grating neutron tomography. We investigated the three-dimensional distribution of magnetic domain walls in the bulk of a wedge-shaped FeSi single crystal. The width of the magnetic domains wasanalyzed at different locations within the crystal. Magnetic domains close to the tip of the wedge are much smaller than in the bulk. Furthermore, the three-dimensional shape of individual domains wasinvestigated. We discuss prospects and limitations of the applied measurement technique. KW - Neutron imaging KW - Tomography KW - Magnetic domains KW - Grating interferometry KW - Darkfield imaging KW - Shearing gratings KW - Talbot-Lau KW - Three-dimensional data quantification KW - Tomographic reconstruction PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-341919 DO - https://doi.org/10.1016/j.phpro.2015.07.057 SN - 1875-3892 VL - 69 SP - 404 EP - 412 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - De la Hoz Alford, L. A1 - Pecanha de Souza, C. G. A1 - Paciornik, S. A1 - d` Almeida, J. R. M. A1 - Santos Leite, B. A1 - Avila, H. C. A1 - Léonard, F. A1 - Bruno, Giovanni T1 - Three-Dimensional Characterization of Polyurethane Foams Based on Biopolyols N2 - Two biopolyol-based foams derived from banana leaves (BL) or stems (BS) were produced, and their compression mechanical behavior and 3D microstructure were characterized. Traditional compression and in situ tests were performed during 3D image acquisition using X-ray microtomography. A methodology of image acquisition, processing, and analysis was developed to discriminate the foam cells and measure their numbers, volumes, and shapes along with the compression steps. The two foams had similar compression behaviors, but the average cell volume was five times larger for the BS foam than the BL foam. It was also shown that the number of cells increased with increasing compression while the average cell volume decreased. Cell shapes were elongated and did not change with compression. A possible explanation for these characteristics was proposed based on the possibility of cell collapse. The developed methodology will facilitate a broader study of biopolyol-based foams intending to verify the possibility of using these foams as green alternatives to the typical petrol-based foams. KW - Compression mechanical KW - Biopolyol KW - Banana KW - 3D microstructure KW - X-ray microtomography PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571982 DO - https://doi.org/10.3390/ma16052118 SN - 1996-1944 VL - 16 IS - 5 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-57198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Gohlke, Dirk A1 - Heckel, Thomas T1 - Three dimensional examination of directivity pattern in immersion tank testing N2 - High resolution examination of safety-relevant parts in immersion tank testing with focussing probes is forming a main topic of modern non-destructive testing. For the usage of complex reconstruction methods and algorithms, an individual and detailed knowledge about the transmission behaviour of the used probes is essential, as this has a significant influence on the results of data reconstruction. Especially the knowledge about position and diameter of the focal point is needed to achieve the highest possible sensitivity. Through the individual position of the beam axis within the examined volume, a four dimensional metro logical determination of the acoustical pressure (x, y, z, t) is necessary. With the measured data it is possible to draw interferences about the sound field and acoustical pressure distribution. The presented work realized a method of automatic determination of the beam axis, the position of focal point and the focal diameter to support individual testing setups and transducer characterization. T2 - 7th International Symposium on NDT in Aerospace CY - Bremen, Germany DA - 16.11.2015 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-339995 AN - OPUS4-33999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, Jan A1 - Dudziak, Mateusz A1 - Falkenhagen, Jana A1 - Rockel, Daniel A1 - Reimann, H.-A A1 - Schartel, Bernhard T1 - This is the way: An evidence based route to phytic-acid–based flame retardant poly(lactide acid) N2 - A systematic sequence of materials was investigated to develop phytic-acid (Phyt)–based flame retarded poly (lactide acid) (PLA), while factoring in molecular weight (MW), crystallinity and mechanical properties. Synergistic approaches were developed based on combinations with lignin and expandable graphite (EG), as well as by applying different Phyt salts of melamine (Mel), piperazine (Pip), and arginine (Arg). Compounds were twin screw extruded, injection molded, hot pressed and investigated with thermal analysis, size exclusion chromatography, infrared spectroscopy, tensile testing, limited oxygen index (LOI), UL 94, cone calorimeter, and scanning electron microscope. 16.7 wt.% flame retardant (FR) slightly enhances crystallization while MW remains unchanged in PLA Phyt Arg and PLA Phyt Mel. LOI was improved to 43.7 vol.% for PLA Phyt Arg, UL 94 V0 achieved for PLA Phyt Pip. Cone calorimeter results show total heat evolved reduced by 14 %, maximum average rate of heat emission 43 % lower, and peak heat release rate reduced by 50 % for PLA Phyt Mel. Phyt Mel combined with EG increased the char yield of PLA to 20 wt.% and 15.5 wt.% at 600 and 900 ◦C, respectively. Phyt is exploited to enhance char yield, stabilize the intumescent char, and lower the apparent effective heat of combustion. The combination of Phyt Mel and EG was proposed as an efficient FR for PLA via an evidence based developing route. KW - Polylactide acid KW - Intumescent flame retardant KW - Phosphorous flame retardant KW - Phytic acid KW - Expandable graphite KW - Melamine PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626395 DO - https://doi.org/10.1016/j.polymdegradstab.2025.111242 SN - 1873-2321 SN - 0141-3910 VL - 234 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-62639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valderrey, Virginia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics N2 - Bifunctional fluorescent molecular oxoanion probes based on the benzoxadiazole (BD) chromophore are described which integrate a thiourea binding motif and a polymerizable 2-aminoethyl methacrylate unit in the 4,7-positions of the BD core. Concerted charge transfer in this electron donor-acceptor-donor architecture endows the dyes with strongly Stokes shifted (up to >250 nm) absorption and fluorescence. Binding of electron-rich carboxylate guests at the thiourea receptor leads to further analyte-induced red-shifts of the emission, shifting the fluorescence maximum of the complexes to ≥700 nm. Association constants for acetate are ranging from 1–5×105 M−1 in acetonitrile. Integration of one of the fluorescent probes through its polymerizable moiety into molecularly imprinted polymers (MIPs) grafted from the surface of submicron silica cores yielded fluorescent MIP-coated particle probes for the selective detection of antibiotics containing aliphatic carboxylate groups such as enoxacin (ENOX) at micromolar concentrations in highly polar solvents like acetonitrile. KW - Molecular imprinting KW - Anion recognition KW - Antibiotics KW - Benzoxadiazole dyes KW - Charge transfer KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545027 DO - https://doi.org/10.1002/chem.202104525 SN - 1521-3765 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Plajer, A. J. T1 - Thioanhydride/isothiocyanate/epoxide ring-opening terpolymerisation: sequence selective enchainment of monomer mixtures and switchable catalysis N2 - We report a new sequence selective terpolymerisation in which three monomers (butylene oxide (BO) A, PhNCS B and phtalic thioanhydride (PTA) C) are selectively enchained into an (ABA′C)n sequence. PTA/PhNCS/BO ring-opening terpolymerisation ROTERP can be coupled with CS2 ROTERP to generate tetrapolymers and with εDL ROP in switchable catalysis for blockpolymer synthesis. KW - Blockcopolymer KW - 1H-NMR KW - TGA KW - DSC KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552339 DO - https://doi.org/10.1039/d2py00629d SP - 1 EP - 5 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-55233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, C.-H. A1 - Peng, R. L. A1 - Luzin, V. A1 - Sprengel, Maximilian A1 - Calmunger, M. A1 - Lundgren, J.-E. A1 - Brodin, H. A1 - Kromm, Arne A1 - Moverare, J. T1 - Thin-wall effects and anisotropic deformation mechanisms of an additively manufactured Ni-based superalloy N2 - Laser powder bed fusion (LPBF) of Ni-based superalloys shows great potential for high temperature applications, for example, as a burner repair application for gas turbines where the thin-walled structure is important. It motivates this work to investigate the evolution of microstructure and the anisotropic mechanical behavior when plate-like specimens are built with a thickness from 4 mm down to 1 mm. By performing texture analysis using neutron diffraction, a clear transition in fiber texture from <011> to <001> is indicated when the specimen becomes thinner. The residual stress shows no thickness dependence, and at the subsurface the residual stress reaches the same level as the yield strength. Due to the rough as-built surface, a roughness compensation method for mechanical properties of thin-walled structures is outlined and demonstrated. Tensile tests from room temperature up to 700 ◦C have been carried out. Anisotropic mechanical behavior is found at all temperatures, which is strongly related to the anisotropic texture evolution. Stronger texture evolution and grain rotations are discovered when the tensile loading is applied along the building direction. The mechanical behavior has been compared to a wrought material, where the high dislocation density and the subgrain structure of the LPBF material result in a higher yield strength. Combining the statistical texture analysis by neutron diffraction with mechanical testing, EBSD grain orientation mapping and the investigation of dislocation structures using transmission electron microscopy, this work illustrates the significance of texture for the thin-wall effect and anisotropic mechanical behavior of LPBF materials. KW - Hastelloy X KW - Hot tensile test KW - Crystallographic texture KW - Roughness KW - Residual stress KW - Dislocation density PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518759 DO - https://doi.org/10.1016/j.addma.2020.101672 VL - 36 SP - 101672 PB - Elsevier B.V. AN - OPUS4-51875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lanzino, Maria Carolina A1 - Le, Long-Quan R. V. A1 - Wilbig, Janka A1 - Rheinheimer, Wolfgang A1 - Seidenstuecker, Michael A1 - Günster, Jens A1 - Killinger, Andreas T1 - Thin GB14 coatings on implants using HVSFS N2 - Enhancing osseointegration, the process by which medical implants securely bond to bone, is crucial for improving patient outcomes in orthopedics and dental surgery. Calcium alkali orthophosphates, with their superior bioactivity, resorbability, and chemical resemblance to bone minerals, have emerged as promising candidates for implant coatings. These materials offer improved solubility and lower melting points due to the substitution of calcium with potassium and sodium, along with the addition of magnesium oxide. This study investigates GB14 calcium alkali orthophosphate coatings applied via High Velocity Suspension Flame Spraying (HVSFS), a technique that enables precise control over coating properties. A porosity target of &gt;10% was set to promote bone growth, and we achieved porosities up to 13%, ensuring better cell penetration and stability at the implant-bone interface. Coatings were produced using different gas parameters and distances, with their microstructure and phase composition analyzed using scanning electron microscope (SEM), Vickers hardness testing and X-ray diffraction (XRD). Additionally, roughness and porosity were also assessed. Different coating’s microstructures were achieved by varying stand-off distance and gas parameters. Increasing stand-off distance while reducing gas stoichiometry enabled the production of calcium alkali orthophosphate coatings with fewer cracks, higher porosity and a hardness level comparable to that of state-of-the-art tricalcium phosphate (TCP) coatings. The sample with optimized properties in terms of achieved microstructure and topography was selected for in vitro testing using MG63 osteosarcoma cells to evaluate cell proliferation and adhesion. WST (I) assay, LDH assay, and live/dead staining confirmed the biocompatibility of the coatings, highlighting the potential of HVSFS to enhance osseointegration and outperform conventional methods in implantology. No relevant cytotoxicity could be shown and cells show a good proliferation over time. These results highlight thus the potential of HVSFS to produce thin, bioactive and resorbable coatings to enhance osseointegration. KW - Bio ceramics KW - Spray coating PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623983 DO - https://doi.org/10.3389/fmats.2024.1522447 SN - 2296-8016 VL - 11 IS - 1522447 SP - 1 EP - 14 PB - Frontiers Media SA AN - OPUS4-62398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P. A1 - Nitsche, A. T1 - Thickness and microstructure effect on hydrogen diffusion in creep‑resistant 9% Cr P92 steel and P91 weld metal N2 - Martensitic 9% Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. Limited data on room temperature diffusion coefficients reported in literature vary widely by several orders of magnitude (mostly attributed to variation in microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. From the results obtained, diffusion coefficients were calculated using to different methods, time-lag, and inflection point. Results show that, despite microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. KW - Creep-resistant steel KW - Diffusion KW - Hydrogen assisted cracking KW - Welding KW - Electrochemical permeation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540645 DO - https://doi.org/10.1007/s40194-021-01218-9 SN - 0043-2288 SP - 1 EP - 16 PB - Springer Nature Switzerland AG AN - OPUS4-54064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Hetaba, W. A1 - Skrotzki, Birgit T1 - Thickening of T-1 Precipitates during Aging of a High Purity Al–4Cu–1Li–0.25Mn Alloy N2 - The age hardening response of a high-purity Al–4Cu–1Li–0.25Mn alloy (wt. %) during isothermal aging without and with an applied external load was investigated. Plate shaped nanometer size T1 (Al2CuLi) and θ′ (Al2Cu) hardening phases were formed. The precipitates were analyzed with respect to the development of their structure, size, number density, volume fraction and associated transformation strains by conducting transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) studies in combination with geometrical Phase analysis (GPA). Special attention was paid to the thickening of T1 phase. Two elementary types of single-layer T1 precipitate, one with a Li-rich (Type 1) and another with an Al-rich (Defect Type 1) central layer, were identified. The results show that the Defect Type 1 structure can act as a precursor for the Type 1 structure. The thickening of T1 precipitates occurs by alternative stacking of These two elementary structures. The thickening mechanism was analyzed based on the magnitude of strain associated with the precipitation transformation normal to its habit plane. Long-term aging and aging under load resulted in thicker and structurally defected T1 precipitates. Several types of defected precipitates were characterized and discussed. For θ′ precipitates, a ledge mechanism of thickening was observed. Compared to the normal aging, an external load applied to the peak aged state leads to small variations in the average sizes and volume fractions of the precipitates. KW - Al-Cu-Li-alloy KW - Precipitation KW - T1 precipitate KW - Microstructure evolution KW - Thickening KW - Creep KW - Volume fraction KW - Number density KW - Strain difference PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471207 DO - https://doi.org/10.3390/ma12010030 SN - 1996-1944 VL - 12 IS - 1 SP - 30, 1 EP - 23 PB - MDPI AN - OPUS4-47120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chaudhuri, Somsubhro A1 - Purayil, Sruthi Krishna Kunji A1 - Kruse, Julius A1 - Madia, Mauro A1 - Nielsen, Sören T1 - Thermography-Assisted Mechanical Testing of Cold-Spray (AM) Repair N2 - Cold Spray Additive Manufacturing (CSAM) is a solid-state process that is being increasingly used for structural repairs in aerospace and energy sectors. It enables the deposition of dense material at low temperatures by accelerating metal particles to supersonic velocities, thereby reducing thermal distortion. However, the structural integrity of CSAM repairs—particularly at the interface between the deposited layer and the substrate—remains a critical concern. Various post-treatments and characterization methods have been explored to optimize performance. While X-ray Computed Tomography (XCT) is effective for sub-surface inspection, it cannot be applied in situ during mechanical testing. Digital Image Correlation (DIC), a surface-based method, also lacks sub-surface sensitivity. To address this, Infrared Thermography (IRT) was employed alongside DIC during the tensile and fatigue testing of aluminum CSAM-repaired specimens. A cooled IRT camera operating at 200 FPS captured thermal data, with lock-in processing subsequently applied in post-processing. IRT successfully detected early interfacial damage and enabled the tracking of crack propagation, which was later confirmed through fracture surface analysis. This extended abstract presents findings from fatigue tests using IRT. T2 - 18th International Workshop on Advanced Infrared Technology and Applications (AITA 2025) CY - Kobe, Japan DA - 15.09.2025 KW - Thermography KW - Thermografie KW - Thermal stress analysis KW - Cold spray KW - Damage detection PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642299 DO - https://doi.org/10.3390/proceedings2025129018 VL - 129 IS - 1 SP - 1 EP - 5 PB - MDPI CY - Basel AN - OPUS4-64229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Worzewski, Tamara A1 - Doroshtnasir, Manoucher T1 - Thermographic rotor blade inspection from larger distances – a promising tool for the maintenance of wind turbines N2 - The permanently increasing number of wind turbines requires suited inspection and monitoring methods to ensure liability and security. Concerning the inspection of ro-tor blades, only manual inspections are state of the art. Thermographic Testing (TT) has the potential to detect typical failures and damages on rotor blades. The paper presents some results of onsite measurements carried out as “passive thermogra-phy”, i.e. without a defined heating procedure. Due the totally contactless meas-urement principle, TT can be applied to rotating blades as well as to resting blades. Both methods will be compared with respect to their possible realization. T2 - WCNDT 2016 CY - Munich, Germany DA - 13.06.2016 KW - Wind turbine rotor blade KW - Thermographic inspection KW - Passive thermography KW - Nondestructive testing PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366331 SN - 978-3-940283-78-8 SP - We.4.D.4., 1 EP - 8 AN - OPUS4-36633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lecompagnon, Julien A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Rupprecht, C. A1 - Ziegler, Mathias T1 - Thermographic detection of internal defects using 2D photothermal super resolution reconstruction with sequential laser heating N2 - Thermographic photothermal super resolution reconstruction enables the resolution of internal defects/inhomogeneities below the classical limit, which is governed by the diffusion properties of thermal wave propagation. Based on a combination of the application of special sampling strategies and a subsequent numerical optimization step in post-processing, thermographic super resolution has already proven to be superior to standard thermographic methods in the detection of one-dimensional defect/inhomogeneity structures. In our work, we report an extension of the capabilities of the method for efficient detection and resolution of defect cross sections with fully two-dimensional structured laser-based heating. The reconstruction is carried out using one of two different algorithms that are proposed within this work. Both algorithms utilize the combination of several coherent measurements using convex optimization and exploit the sparse nature of defects/inhomogeneities as is typical for most nondestructive testing scenarios. Finally, the performance of each algorithm is rated on reconstruction quality and algorithmic complexity. The presented experimental approach is based on repeated spatially structured heating by a high power laser. As a result, a two-dimensional sparse defect/inhomogeneity map can be obtained. In addition, the obtained results are compared with those of conventional thermographic inspection methods that make use of homogeneous illumination. Due to the sparse nature of the reconstructed defect/inhomogeneity map, this comparison is performed qualitatively. KW - Thermography KW - Super resolution KW - NDT KW - Inspection KW - Internal defects PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548351 DO - https://doi.org/10.1063/5.0088102 SN - 1089-7550 VL - 131 IS - 18 SP - 1 EP - 12 PB - AIP Publishing AN - OPUS4-54835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unnikrishnakurup, Sreedhar A1 - Myrach, Philipp A1 - Polomski, Benjamin A1 - Le Claire, Elisabeth A1 - Vengara, N. A1 - Balasubramaniam, Krishnan A1 - Ziegler, Mathias T1 - Thermographic crack detection in hot steel surfaces N2 - The detection and characterization of surface cracks in steel specimens prior to damage is a technologically and economically highly significant task and is of utmost importance when it comes to safety-relevant structures. In steel production where steel billets at high temperatures have to be inspected while moving a number of well-established NDT methods cannot be applied. Laser thermography however is a promising candidate to serve as a fast, non-contact and remote tool in this case. We present a study that shows that the crack detection capabilities of laser thermography can be extended also to specimens at high temperature. A combination of inductive and laser heating allows to systematically study the contrast formation as well as the optimization of the important measurement parameters. The experiments are accompanied by FEM simulations that provide a better insight of the physical correlations and support the experimental developments. The aim of these studies is to develop a system with high inspection speed and detection performance to be in-line operated under the hostile environment of steel production lines. T2 - 19th World Conference on Non-Destructive Testing (WCNDT 2016) CY - Munich, Germany DA - 13.06.2016 KW - In-line Monitoring KW - Laser Infrared thermography KW - Cracks KW - Induction heating KW - Steel billets KW - FEM simulation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389161 UR - http://ndt.net/?id=19573 SN - 1435-4934 VL - 21 IS - 7 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-38916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Wallis, Theophilus A1 - Maaß, Robert A1 - Darvishi Kamachali, Reza T1 - Thermodynamics of grain boundary segregation transition and their relevance for liquid metal embrittlement in Fe-Zn system N2 - Grain boundaries (GBs) are common sites of failure in polycrystalline materials. Recently, a massive Zn segregation transition at Fe GBs was discovered and shown to act as a potent precursor of liquid metal embrittlement (LME) in the Fe-Zn system (Kamachali et al., Scripta Materialia 238 (2024) 115758). In this study, we elaborate on how temperature, GB type and the chemo-structurally coupled phase decomposition at the GB impact this segregation transition. CALPHAD and atomistic simulation data were utilized as inputs to conduct quantitative density-based thermodynamic modeling and phase-field simulations across various GBs, alloy compositions, and temperatures. We reveal that once the segregation transition becomes possible, the GB structural variation stabilizes spinodally formed Zn-rich phases within the GB region, with a higher tendency in disordered GBs. GB phase diagrams were constructed to identify and analyze the range of critical temperatures and alloy compositions associated with the segregation transition. The phase diagrams reveal that the miscibility gap for more disordered GB expands and, although the segregation transition is inevitable and occurs for all GBs, the barrier to triggering it is lower for more disordered GBs. Based on our thermodynamic analyses, potential processing modifications and GB engineering strategies for mitigating segregation-induced LME are thoroughly discussed. KW - Thermodynamics KW - Phase-Field Modelling KW - Steels PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634145 DO - https://doi.org/10.1016/j.actamat.2025.121134 SN - 1359-6454 VL - 296 SP - 1 EP - 11 PB - Elsevier BV AN - OPUS4-63414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Grevel, K.-D. A1 - Emmerling, Franziska A1 - Dachs, E. A1 - Benisek, A. A1 - Adam, Christian A1 - Majzlan, J. T1 - Thermodynamic properties of calcium alkali phosphates Ca(Na,K)PO4 N2 - Calcium alkali phosphates Ca(Na,K)PO4 are main constituents of bioceramics and thermochemically produced phosphorus fertilizers because of their bioavailability. Sparse thermodynamic data are available for the endmembers CaNaPO4 and CaKPO4. In this work, the missing data were determined for the low-temperature phase modifications of the endmembers CaNaPO4 and CaKPO4 and three intermediate Ca(Na,K)PO4 compositions. Standard enthalpy of formation ranges from - 2018.3 ± 2.2 kJ mol-1 to - 2030.5 ± 2.1 kJ mol-1 and standard entropy from 137.2 ± 1.0 J mol-1 K-1 to 148.6 ± 1.0 J mol-1 K-1 from sodium endmember b-CaNaPO4 to potassium endmember b0-CaKPO4. Thermodynamic functions are calculated up to 1400 K for endmembers and the sodium-rich intermediate phase b-Ca(Na0.93K0.07)PO4. Functions above 640 K are extrapolated because of the phase transition from low- to high-temperature phase. Impurities in the synthesized intermediate phases c-Ca(Na0.4K0.6)PO4 and c-Ca Na0.35K0.65)PO4 and one additional phase transition around 500 K impeded the determination of high-temperature thermodynamic functions. In general, data for phase transition temperatures agree with the previously reported phase diagrams. KW - Formation enthalpy KW - Heat capacity KW - Phase transformation KW - Bioceramics KW - Phosphorus fertilizer KW - Entropy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507640 DO - https://doi.org/10.1007/s10853-020-04615-5 VL - 55 SP - 8477 EP - 8490 PB - Springer AN - OPUS4-50764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Thermodynamic prediction of precipitations behaviour in HAZ of a gas metal arc welded S690QL with varying Ti and Nb content N2 - For a significant increase in the strength of high-strength fine-grained structural steels with a nominal yield strength ≥690 MPa, the addition of microalloying elements such as Nb and Ti is required. The standard specifications for the chemical composition of these steels (e.g., in EN 10025-6) often only give the manufacturer limit contents to achieve the defined properties. The effect of the alloying elements in the heat affected zone (HAZ) is sometimes completely contrary. This makes it difficult to adequately predict the batch dependency regarding weldability and the load-bearing behaviour of the welded joint. Three different micro-alloyed steels of the grade S690QL were produced on a laboratory scale, focusing on different Nb and Ti contents. To investigate the tempering effect, these were gas metal arc welded in three layers. In addition to metallographic investigations of individual HAZ areas, thermodynamic phase calculations were carried out using Thermo-Calc, following variations in the chemical composition. This provides an understanding of phase transformation, precipitation growth, and dissolution during welding as a function of temperature and cooling conditions. The results show a divergent metallurgical behaviour in the HAZ of the three different micro-alloyed steels. Thereby, the Ti micro-alloyed grade showed a strong softening of the HAZ in contrast to the Nb micro-alloyed grade. This can be attributed to a contrary precipitation behaviour during welding. KW - High-strength structural steel KW - Gas metal arc welding KW - HAZ-softening KW - Microalloying influences KW - Thermodynamic simulation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579988 DO - https://doi.org/10.1007/s40194-023-01550-2 SN - 0043-2288 SP - 1 EP - 10 PB - Springer AN - OPUS4-57998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lozano-Martín, D. A1 - Tuma, Dirk A1 - Kipphardt, Heinrich A1 - Khanipour, Peyman A1 - Chamorro, C. R. T1 - Thermodynamic characterization of the (H2 + C3H8) system significant for the hydrogen economy: Experimental (p, rho, T) determination and equation-of-state modelling N2 - For the gradual introduction of hydrogen in the energy market, the study of the properties of mixtures of hydrogen with typical components of natural gas (NG) and liquefied petroleum gas (LPG) is of great importance. This work aims to provide accurate experimental (p, rho, T) data for three hydrogen-propane mixtures with nominal compositions (amount of substance, mol/mol) of (0.95 H2 + 0.05 C3H8), (0.90 H2 + 0.10 C3H8), and (0.83 H2 + 0.17 C3H8), at temperatures of 250, 275, 300, 325, 350, and 375 K, and pressures up to 20 MPa. A single-sinker densimeter was used to determine the density of the mixtures. Experimental density data were compared to the densities calculated from two reference equations of state: the GERG-2008 and the AGA8-DC92. Relative deviations from the GERG-2008 EoS are systematically larger than those from the AGA8-DC92. They are within the ±0.5% band for the mixture with 5% of propane, but deviations are higher than 0.5% for the mixtures with 10% and 17% of propane, especially at low temperatures and high pressures. Finally, the sets of new experimental data have been processed by the application of two different statistical equations of state: the virial equation of state, through the second and third virial coefficients, B(T, x) and C(T, x), and the PC-SAFT equation of state. KW - Hydrogen-containing gas mixture KW - Density data KW - Equation of state KW - Virial coefficients PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570056 DO - https://doi.org/10.1016/j.ijhydene.2022.11.170 SN - 0360-3199 VL - 48 IS - 23 SP - 8645 EP - 8667 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-57005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lozano-Martín, D. A1 - Pazoki, F. A1 - Kipphardt, Heinrich A1 - Khanipour, P. A1 - Tuma, Dirk A1 - Horillo, A. A1 - Chamorro, C. R. T1 - Thermodynamic (p, ρ, T) characterization of a reference high-calorific natural gas mixture when hydrogen is added up to 20 % (mol/mol) N2 - The injection of hydrogen into the natural-gas grid is an alternative during the process of a gradual decarbonization of the heat and power supply. When dealing with hydrogen-enriched natural gas mixtures, the performance of the reference equations of state habitually used for natural gas should be validated by using high-precision experimental thermophysical data from multicomponent reference mixtures prepared with the lowest possible uncertainty in composition. In this work, we present experimental density data for an 11-compound high-calorific (hydrogen-free) natural gas mixture and for two derived hydrogen-enriched natural gas mixtures prepared by adding (10 and 20) mol-% of hydrogen to the original standard natural gas mixture. The three mixtures were prepared gravimetrically according to ISO 6142–1 for maximum precision in their composition and thus qualify for reference materials. A single-sinker densimeter was used to determine the density of the mixtures from (250–350) K and up to 20 MPa. The experimental density results of this work have been compared to the densities calculated by three different reference equations of state for natural gas related mixtures: the AGA8-DC92 EoS, the GERG-2008 EoS, and an improved version of the GERG-2008 EoS. While relative deviations of the experimental density data for the hydrogen-free natural gas mixture are always within the claimed uncertainty of the three considered equations of state, larger deviations can be observed for the hydrogen-enriched natural gas mixtures from any of the three equations of state, especially for the lowest temperature and the highest pressures. KW - Hydrogen-enriched natural gas KW - Single-sinker densimeter KW - High-pressure density KW - Equations of state PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604742 DO - https://doi.org/10.1016/j.ijhydene.2024.05.028 SN - 0360-3199 VL - 70 SP - 118 EP - 135 PB - Elsevier BV CY - Amsterdam AN - OPUS4-60474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leers, K. A1 - Arnold, U. A1 - Herzel, Hannes A1 - Adam, Christian A1 - Burkhardt, J. T1 - Thermochemically Treated Sewage Sludge Ash From Pilot-Scale Production as P-Fertilizer for Spring Wheat and Maize in Different Soil Conditions N2 - Background P-fertilizers made from sewage sludge ash (SSA) may be suitable substitutes for rock phosphate (RP)-based fertilizers and contribute to sustainable use of waste. In this context, the thermochemical AshDec treatment of SSA (TC-SSA) has been continuously improved and has emerged as a possible method to produce plant-available and low-pollutant P-fertilizers. Aim Evaluation of the P-fertilizer efficacy of TC-SSA produced in pilot trials in vegetation experiments with different plants, soils, and fertilizer doses. Methods TC-SSA was tested in pot experiments for spring wheat and maize on different soils and at two doses (0.2 and 0.4 g fertilizer P pot−1) and is compared to untreated SSA (USSA), RP, Struvite, triple superphosphate (TSP), and a control without P-fertilization (Zero P). Pot experiments are complemented by an analysis of fertilizer P-solubility. Results P-solubility of SSA with different extraction methods increased due to the thermochemical treatment, whereas the water-insoluble property remained. In contrast to RP or USSA, TC-SSA enriched calcium–acetate–lactate extractable soil P to the same extent as TSP. Plant biomass and P-uptake increased with TC-SSA compared to Zero P, RP, and USSA and were in most cases equal to TSP fertilization under different soil conditions. In contrast, the effects of RP and USSA varied among soils but, mostly, did not exceed plant biomass and P-uptake of the unfertilized control. Conclusion TC-SSA has an increased fertilizer efficacy compared to USSA and is an effective P-fertilizer for spring wheat and maize in different soil conditions. KW - Phosphorus KW - Fertilizer KW - Thermochemical KW - Maize PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648251 DO - https://doi.org/10.1002/jpln.70035 SN - 1522-2624 VL - 189 IS - 1 SP - 81 EP - 93 PB - Wiley-VCH AN - OPUS4-64825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smol, M. A1 - Adam, Christian A1 - Kugler, Stefan T1 - Thermochemical Treatment of Sewage Sludge Ash (SSA)—Potential and Perspective in Poland N2 - Phosphorus (P) recovery from sewage sludge ash (SSA) is one of the most promising approaches of phosphate rock substitution in mineral fertilizers and might be a sustainable way to secure supply of this raw material in the future. In the current investigation, the process of thermochemical treatment of SSA was applied to SSA coming from selected mono-incineration plants of municipal sewage sludge in Poland (Cracow, Gdansk, Gdynia, Lodz, Kielce and Szczecin). The Polish SSA was thermochemically converted in the presence of sodium (Na) additives and a reducing agent (dried sewage sludge) to obtain secondary raw materials for the production of marketable P fertilizers. The process had a positive impact on the bioavailability of phosphorus and reduced the content of heavy metals in the obtained products. The P solubility in neutral Ammonium citrate, an indicator of its bioavailability, was significantly raised from 19.7–45.7% in the raw ashes and 76.5–100% in the thermochemically treated SSA. The content of nutrients in the recyclates was in the range of 15.7–19.2% P2O5, 10.8–14.2% CaO, 3.5–5.4% Na2O, 2.6–3.6% MgO and 0.9–1.3% K2O. The produced fertilizer raw materials meet the Polish norms for trace elements covered by the legislation: the content of lead was in the range 10.2–73.1 mg/kg, arsenic 4.8–22.7 mg/kg, Cadmium 0.9–2.8 mg/kg and mercury <0.05 mg/kg. Thus, these products could be potentially directly used for fertilizer production. This work also includes an analysis of the possibilities of using ashes for fertilizer purposes in Poland, based on the assumptions indicated in the adopted strategic and planning documents regarding waste management and fertilizer production. KW - Sewage Sludge Ashes KW - Critical raw materials KW - Phosphorus KW - Fertilizer KW - Sewage Sludge PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514468 DO - https://doi.org/10.3390/en13205461 VL - 13 IS - 20 SP - 5461 AN - OPUS4-51446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmalz, Alina A1 - Eby, Charles Gaston A1 - Moss, Caitlin A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska T1 - Thermally Robust 1D Cu(I) Phosphonate Coordination Polymer Exhibiting Enhanced Proton Conductivity via Humidity‐Driven Pathways N2 - The development of thermally stable solid-state proton conductors (SSPCs) is crucial for advancing energy-conversion devices such as proton-exchange membrane fuel cells (PEMFCs). In this work, we report the solvothermal synthesis and characterization of a novel, 1D Cu(I) coordination polymer, {Cu(ADP)0.5(BPY)}n (BAM-5), based on anthracenediylphosphonate (H2ADP) and 4,40 -bipyridine (BPY). Single-crystal X-ray diffraction revealed that BAM-5 crystallizes in the triclinic space group P1 and shows a 1D ladder structure connected by the H2ADP and organic BPY linkers, which is assembled into a 2D layer via O−H···O hydrogen bonding interactions between uncoordinated oxygen and the O−H of the phosphonate group. Thermogravimetric and dynamic water sorption analysis demonstrated exceptional thermal robustness of BAM-5 until 230°C and notable water affinity. Proton conductivity measurements found increasing proton conductive properties with increasing temperature and relative humidity.The latter is correlated with the material’s water uptake since the structure itself does not contain any permanent lattice water molecules. A maximum proton conductivity of 6.6 × 10−6 S cm−1 was found at 80°C and 98% RH. To the best of our knowledge, no dense, nonporous 1D coordination polymer without lattice or coordinated solvent molecules has shown comparable proton con� ductivity. The high activation energy suggests a combination of both, a Grotthuss-type proton hopping through the hydrogen� bonded framework, and a vehicular process, in which protons are carried along with absorbed water molecules. KW - Coordination polymers KW - Phosphonate ligand KW - Proton conduction KW - X-ray diffraction PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651382 DO - https://doi.org/10.1002/zaac.202500187 SN - 0044-2313 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-65138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szczerba, Wojciech A1 - Schott, M. A1 - Riesemeier, Heinrich A1 - Thünemann, Andreas A1 - Kurth, D.G. T1 - Thermally induced structural rearrangement of the Fe(II) coordination geometry in metallo-supramolecular polyelectrolytes N2 - Rigid rod-type metallo-supramolecular coordination polyelectrolytes with Fe(II) centres (Fe-MEPEs) are produced via the self-assembly of the ditopic ligand 1,4-bis(2,2':6',2''-terpyridine-4'-yl)benzene (tpy-ph-tpy) and Fe(II) acetate. Fe-MEPEs exhibit remarkable electrochromic properties; they change colour from blue to transparent when an electric potential is applied. This electrochemical process is generally reversible. The blue colour in the ground state is a result of a metal-to-ligand charge transfer at the Fe(II) centre ion in a quasi-octahedral geometry. When annealed at temperatures above 100 °C, the blue colour turns into green and the formerly reversible electrochromic properties are lost, even after cooling down to room temperature. The thermally induced changes in the Fe(II) coordination sphere are investigated in situ during annealing of a solid Fe-MEPE using X-ray absorption fine structure (XAFS) spectroscopy. The study reveals that the thermally induced transition is not accompanied by a redox process at the Fe(II) centre. From the detailed analysis of the XAFS spectra, the changes are attributed to structural changes in the coordination sphere of the Fe(II) site. In the low temperature state, the Fe(II) ion rests in a quasi-octahedral coordination environment surrounded by six nitrogen atoms of the pyridine rings. The axial Fe–N bond length is 1.94 Å, while the equatorial bond length amounts to 1.98 Å. In the high temperature state, the FeN6-site exhibits a distortion with the axial Fe–N bonds being shortened to 1.88 Å and the equatorial Fe–N bonds being elongated to 2.01 Å. KW - Metallo-supramolecular polyelectrolytes KW - Electrochromism KW - XANES KW - EXAFS KW - Local structure KW - Thermal stability PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-317331 DO - https://doi.org/10.1039/c4cp01187b SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 36 SP - 19694 EP - 19701 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-31733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kovacevic, E. A1 - Strunskus, T. A1 - Santhosh, N. M. A1 - Zavasnik, Z. A1 - Unger, Wolfgang A1 - Sauvage, T. A1 - Ammar, M.-R. A1 - Cvelbar, U. A1 - Berndt, J. T1 - Thermal stability studies of plasma deposited hydrogenated carbon nitride nanostructures N2 - Thermally stable carbon nitride nanostructures have potential applications in surface coatings and automotive fields. In this work, hydrogenated nitrogen-rich carbon nitride nanoparticles have been synthesised via low-pressure low-power plasma vapour deposition technique from methane/Nitrogen gas mixture in a dry process. Thermal stability of the initially prepared hydrogenated carbon Nitride structures has been analysed by near-edge X-ray absorption fine-structure spectroscopy (NEXAFS, insitu), Raman spectroscopy, scanning and transmission electron microscopy and nuclear reaction Analysis (NRA). Thermal studies reveal the excellent stability of the material and nitrogen-rich characteristics (N/C ratio 0.5e0.2 ± 0.01). The obtained results suggest transformation of sp3-rich as-deposited carbon Nitride into sp2-carbon phase with more graphitic features upon thermal annealing. Such in-situ thermal studies of plasma deposited carbon nitrides confirm the conversion of sp3-rich phase to sp2-rich carbon phase at the critical temperature (about 450 K), without a huge loss in nitrogen content. The analysis revealed that the material is a stable plasma deposit after this critical temperature up to >1100 K. Additionally, super hydrophilic carbon nitride nanostructure transforms into a hydrophobic surface after thermal annealing. These thermally stable hydrophobic carbon nitride nanoparticles could be used as a promising material for the hydrophobic coatings for various applications, especially for harsh conditions. KW - Carbon nanoparticles KW - Hydrogenated nanostructures KW - Plasma deposition KW - NEXAFS KW - Thermal annealing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536163 DO - https://doi.org/10.1016/j.carbon.2021.08.008 SN - 0008-6223 VL - 184 SP - 82 EP - 90 PB - Elsevier Ltd. AN - OPUS4-53616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Amano, Kofi Owusu Ansah A1 - Tschirschwitz, Rico A1 - Gimadieva, Elena A1 - Köhler, Florian A1 - Krause, Ulrich T1 - Thermal runaway and explosibility of the gas release from 18650 sodium-ion cells of NFM chemistry N2 - The present study investigates the thermal runaway behaviour and explosibility of the gas mixture released from sodium-ion batteries (SIBs). A total of 30 tests comprising two test series were performed using 18650 SIBs with a NaNi1/3Fe1/3Mn1/3O2 (NFM) chemistry. The cells of SOC level = 0 %, 25 %, 50 %, 75 % and 100 % were subjected to thermal abuse inside a 10 L pressurized reaction vessel. In test series 1, the tests were performed in an air atmosphere. In test series 2, an inert atmosphere was used. First, the total amount of gas released from the SIBs was calculated based on the temperature and pressure measured in the reaction vessel. Subsequently, a gas composition analysis was performed using a Fourier-transformed infrared (FTIR) spectrometer. This study revealed that the thermal runaway in SIBs could be categorized into four phases. At the onset of thermal runaway, the thermal runaway-induced explosion of the cells resulted in a rate of temperature rise ranging from 2 K/s to 70 K/s. The investigation further revealed a peak reaction temperature of 415 ◦C and a maximum pressure of 4 bar could be reached at thermal runaway in the 10 L vessel. The gas release of up to 5 ± 0.3 L (4 ± 0.2 L/Ah, 1.3 ± 0.1 L/Wh) from test series 1 and 2.4 ± 0.2 L (2 ± 0.1 L/Ah, 0.53 ± 0.04 L/Wh) from test series 2 showed a dependence on SOC and failure environment used. By applying Le Chatelier's mixing rule, the measured gas release from the air atmosphere showed a calculated lower explosion limit and upper explosion limit values of 4.8 % and 24 % in volume fraction, respectively. KW - Sodium-ion battery KW - Thermal runaway KW - Gas release KW - Gas explosion KW - Explosion limit PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631782 DO - https://doi.org/10.1016/j.est.2025.116614 SN - 2352-152X VL - 122 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-63178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - zur Nedden, Philipp Maximilian A1 - von Saldern, Jakob Georg Raimund A1 - Beuth, Jan Paul A1 - Orchini, Alessandro T1 - Thermal Radiation Of Inclined Large Scale Hydrogen Jet Flames N2 - In order to assess the thermal radiation emanating from hydrogen jet flames, experiments under real scale conditions were carried out at the Test Site Technical Safety of BAM. Herein, the behavior of inclined hydrogen jet flames was investigated. The aim of the work is to determine the Surface Emissive Power (SEP) and radiant heat fraction of these flames and to provide a reliable dataset for model evaluation purposes. Since the aforementioned values are not directly measurable, the incident heat radiation was measured at defined distances from the flame, as well as the flame’s shape and size. The required values were then derived from these measurements. The hydrogen releases ranged from 0.0125 kg/s to 0.175 kg/s with a 30 mm orifice. The mass flows were held constant during the releases, nevertheless a transient behavior of the flame could be observed since the experiments were carried out under open field conditions, with unsteady wind fields. In the literature, the flame lengths are often determined using visible light imaging, either by injecting coloring substances in the low light emitting hydrogen jet flame or by carrying out the measurements in darkness. In this work the jet flames were visualized using infrared (IR) and OH* imaging. The recorded flame shapes and resulting flame lengths are compared. Results from this showed that the flame lengths determined with OH* and IR recordings differ greatly. A flame length ratio lf OH*/lf IR in the range of 0.47–0.62 can be found. In addition, the SEP differ also in the range of 10 kW/m2–16 kW/m2 (IR) and 40 kW/m2–80 kW/m2 (OH*) for hydrogen jet flames due to differences in the determined flame surface. Conclusions regarding the determined xRAD values for IR and OH* result in approximately the same range of 0.031–0.043. T2 - 11th Iinternational conference on hydrogen safety 2025 CY - Seoul, Republic of Korea DA - 22.09.2025 KW - Hydrogen safety KW - Jet flames KW - Thermal radiation KW - Large scale experiment PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655181 DO - https://doi.org/10.58895/hysafe.27 SN - 2943-5935 VL - 3 IS - 1 SP - 39 EP - 50 PB - Karlsruhe Institute of Technology Library AN - OPUS4-65518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Chaudry, Mohsin Ali A1 - Scheuschner, Nils A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Thermal history transfer from complex components to representative test specimens in laser powder bed fusion N2 - Additively manufactured components are characterized by heterogeneous mechanical properties due to variations of the microstructure, flaws and residual stresses resulting from the inhomogeneous fabrication process. The large number of influencing factors poses a further challenge in understanding the correlation between material properties, process parameters and component geometry. Therefore, the qualification of components based on witness specimens produced within the same job is questionable. This work aims to present a new strategy for the characterization of PBF-LB/M components based on representative specimens. The key assumption is the feasibility of a transfer of the thermal history from a component to a specimen. It is assumed that similar material properties are determined for components and specimens produced adopting a similar thermal history. After the definition of a region of interest in the component, a combination of thermal analyses by means of finite elements and in-situ experimental determination of the thermal history through infrared thermography is used to produce test coupons with a similar thermal history. The effectiveness of the procedure is demonstrated on a pressure vessel for applications in the chemical industry. KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Process simulation KW - Representative specimens PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602651 DO - https://doi.org/10.1007/s40964-024-00689-8 SN - 2363-9512 SN - 2363-9520 SP - 1 EP - 16 PB - Springer CY - Cham, Switzerland AN - OPUS4-60265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lunkenheimer, P. A1 - Loidl, A. A1 - Riechers, Birte A1 - Zaccone, A. A1 - Samwer, K. T1 - Thermal expansion and the glass transition N2 - Melting is well understood in terms of the Lindemann criterion, which essentially states that crystalline materials melt when the thermal vibrationsof their atoms become so vigorous that they shake themselves free of the binding forces. This picture does not necessarily have to hold for glasses, where the nature of the solid–liquid cross-over is highly debated. The Lindemann criterion implies that the thermal expansion coefficients of crystals are inversely proportional to their melting temperatures. Here we find that, in contrast, the thermal expansion coefficient of glasses decreases more strongly with increasing glass temperature, which marks the liquid–solid cross-over in this material class. However, this proportionality returns when the thermal expansion coefficient is scaled by the fragility, a measure of particle cooperativity. Therefore, for a glass to become liquid, it is not sufficient to simply overcome the interparticle binding energies. Instead, more energy must be invested to break up the typical cooperative particle network that is common to glassy materials. The thermal expansion coefficient of the liquid phase reveals similar anomalous behaviour and is universally enhanced by a constant factor of approximately 3. These universalities allow the estimation of glass temperatures from thermal expansion and vice versa. KW - Glass transition KW - Lindemann criterion KW - Thermal expansion KW - Glass PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570267 DO - https://doi.org/10.1038/s41567-022-01920-5 SN - 1745-2473 SP - 1 EP - 7 PB - Nature Publishing Group CY - London AN - OPUS4-57026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pittrich, Tim A1 - Jansen, Daniel A1 - Weise, Frank A1 - Stelzner, Ludwig A1 - Dehn, Frank T1 - Thermal decomposition in blended cement systems and its effect on fire-induced concrete spalling: Insights from XRD and TGA N2 - Blended cements are gaining increasing popularity due to their lower CO2-footprint in comparison to ordinary Portland cement (OPC). However, this growing use raises the potential risk of buildings made with blended cement concrete being exposed to fire, which can lead to heavy damages caused by explosive concrete spalling. It has already been shown that the cement type strongly influences the fire-induced concrete spalling and the thermally induced moisture transport, however, to understand the mechanisms behind these findings the thermal decomposition behavior of the cementitious matrix must be investigated more systematically. Therefore, the phase content of three blended cement pastes (CEM II/A-LL, CEM III/A and CEM II/B-Q) was studied in comparison with a Portland cement paste (CEM I) after temperature exposure to 20 ◦C, 105 ◦C, 300 ◦C and 500 ◦C. Clear differences in the initial phase composition and their dehydration behavior between the individual cement types were recognized. In conclusion, blended cements showed lower amounts of AFt and AFm phases and additionally lower amounts of portlandite and C-(A)-S-H were found in CEM III/A and CEM II/B-Q pastes. The results suggest that higher AFt and AFm contents in CEM I, which are associated with greater water release at relatively low temperatures may ultimately reduce the spalling risk. Furthermore, C-(A)-S-H in CEM III/A and CEM II/B-Q showed increased thermal stability and large amounts of non-hydrated phases were found in every blended cement paste. Both of those aspects might contribute to thermomechanical spalling and the overall increased spalling susceptibility observed in blended cement concrete. KW - Fire concrete spalling KW - High temperatures KW - Blended cements KW - Dehydration KW - XRD KW - TGA PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653698 DO - https://doi.org/10.1016/j.cscm.2026.e05784 SN - 2214-5095 VL - 24 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-65369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller-Elmau, Johanna A1 - Göbel, Artur A1 - Junge, Paul A1 - Müller, Julian A1 - Rousseau, Tom A1 - Görke, Oliver A1 - Nikasch, Christian A1 - Kiliani, Stefan T1 - Thermal cycling of YAG infiltration and plasma sprayed coatings as environmental barrier coating on ceramic heat shields for use in hydrogen operating gas turbines N2 - Environmental barrier coatings (EBC) are intended to protect alumina ceramic tiles in hot water vapor conditions, enabling gas turbines to operate with higher hydrogen content or even pure hydrogen. For these operating conditions, yttrium aluminum garnet (YAG) promises the highest protection against hydrolysis, which can be applied via atmospheric plasmaspraying (APS). To enhance the protection efficiency, the coating is combined with a prior infiltration of the base material. The obtained design acts as in-depth protection even if the coating exhibits cracks. KW - Thermal shock KW - Thermal cycles KW - Environmental barrier coating (EBC) KW - Water vapor corrosion PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639829 DO - https://doi.org/10.1016/j.oceram.2025.100837 VL - 23 SP - 1 EP - 7 PB - Elsevier Ltd. AN - OPUS4-63982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Werder, Julia A1 - Simon, Sebastian A1 - Gardei, André A1 - Fontana, P. A1 - Meng, Birgit T1 - Thermal and hydrothermal treatment of UHPC: influence of the process parameters on the phase composition of ultra-high performance concrete N2 - Several studies show that thermal and hydrothermal treatment can further improve the excellent properties of UHPC in terms of mechanical strength and durability. While for the thermal treatment the increase in strength is attributed to an intensified pozzolanic and hydraulic reaction, for the hydrothermal treatment previous studies accredited it mostly to the formation of tobermorite. In the presented study thermal and hydrothermal treatment of UHPC samples was systematically varied and the phase formation analysed related to the strength development of a reference sample cured for 28 days in water. For the thermal treatment the results show that the strength increase depends on the protection against desiccation and can be ascribed to an improved pozzolanic reaction of the siliceous fillers. To achieve a significant enhancement of strength, a pre-storage time of few days and a long dwell time at elevated temperature/pressure are required. For the hydrothermal treatment already heating the specimens up to 185 °C in saturated steam followed by an immediate cooling leads to a substantial increase in compressive strength. Pre-storage time did not affect the result as far as a minimum of several hours is guaranteed. The improved performance is due to an increase in the pozzolanic and hydraulic reaction. Surprisingly, tobermorite was only found within a very thin layer at the surface of the sample, but not in the bulk. Sulphate and aluminium stemming from the decomposition of the ettringite are bound in the newly formed phases hydroxylellestadite and hydrogarnet. KW - UHPC KW - Thermal treatment KW - Hydrothermal treatment KW - Compressive strength KW - Phase development KW - Durability KW - Tobermorite KW - Hydroxylellestadite KW - Hydrogarnet PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523402 DO - https://doi.org/10.1617/s11527-021-01633-w SN - 1871-6873 SN - 1359-5997 VL - 54 IS - 1 SP - Article 44 PB - Springer Nature AN - OPUS4-52340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Helman-Wasny, Agnieszka T1 - The Zhangzhung Nyengyü 'Tsakalis': A Cross-Disciplinary Analysis N2 - The publication focuses on a unique set of tsakali associated with the Zhangzhung Nyengyü cycle of Dzogchen teachings, a lineage preserved within the Kama tradition of oral transmission. Unlike Terma (Revealed Treasures), which are discovered texts often concealed for future revelation, the Zhangzhung Nyengyü has been transmitted in an unbroken line from teacher to disciple over centuries. This study, edited by Agnieszka Helman-Ważny, represents a pioneering interdisciplinary investigation into these rare and culturally significant objects. Through the integration of textual and iconographic analysis with material science methodologies – including the examination of paper, pigments, ink and script – the work offers new perspectives on the historical and ritual functions of tsakali. This innovative approach bridges important gaps in the study of Tibetan material culture and contributes meaningfully to our broader understanding of the religious, artistic and intellectual history of Tibet and the Himalayas. KW - Cultural heritage KW - Manuscript cultures KW - Tibet PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651885 SN - 978-3-11-162317-7 SN - 978-3-11-162321-4 VL - 45 SP - 1 EP - 227 PB - Walter de Gruyter GmbH CY - Berlin AN - OPUS4-65188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tantardini, C. A1 - Michalchuk, Adam A1 - Samtsevich, A. A1 - Rota, C. A1 - Kvashnin, A. G. T1 - The Volumetric Source Function: Looking Inside van der Waals Interactions N2 - The study of van der Waals interactions plays a central role in the understanding of bonding across a range of biological, chemical and physical phenomena. The presence of van der Waals interactions can be identified through analysis of the reduced density gradient, a fundamental parameter at the core of Density Functional Theory. An extension of Bader’s Quantum Theory of Atoms in Molecules is developed here through combination with the analysis of the reduced density gradient. Through this development, a new quantum chemical topological tool is presented: the volumetric source function. This technique allows insight into the atomic composition of van der Waals interactions, offering the first route towards applying the highly successful source function to these disperse interactions. A new algorithm has been implemented in the open-source code, CRITIC2, and tested on acetone, adipic and maleic acids molecular crystals, each stabilized by van der Waals interactions. This novel technique for studying van der Waals interactions at an atomic level offers unprecedented opportunities in the fundamental study of intermolecular interactions and molecular design for crystal engineering, drug design and bio-macromolecular processes. KW - Noncovalent interactions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507911 DO - https://doi.org/10.1038/s41598-020-64261-4 VL - 10 IS - 1 SP - 7816 AN - OPUS4-50791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Natsopoulou, M. E. A1 - McMahon, Dino Peter A1 - Doublet, V. A1 - Frey, E. A1 - Rosenkranz, P. A1 - Paxton, R. J. T1 - The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honeybee worker loss N2 - Bees are considered to be threatened globally, with severe overwinter losses of the most important commercial pollinator, the Western honeybee, a major concern in the Northern Hemisphere. Emerging infectious diseases have risen to prominence due to their temporal correlation with colony losses. Among these is Deformed wing virus (DWV), which has been frequently linked to colony mortality. We now provide evidence of a strong statistical association between overwintering colony decline in the field and the presence of DWV genotype-B (DWV-B), a genetic variant of DWV that has recently been shown to be more virulent than the original DWV genotype-A. We link the prevalence of DWV-B directly to a quantitative measure of overwinter decline (workforce mortality) of honeybee colonies in the field. We demonstrate that increased prevalence of virus infection in individual bees is associated with higher overwinter mortality. We also observed a substantial reduction of infected colonies in the spring, suggesting that virus-infected individuals had died during the winter. Our findings demonstrate that DWV-B, plus possible A/B recombinants exhibiting DWV-B at PCR primer binding sites, may be a major cause of elevated overwinter honeybee loss. Its potential emergence in naïve populations of bees may have far-reaching ecological and economic impacts. KW - Honeybee KW - Loss KW - Virulence KW - Virus PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-410446 DO - https://doi.org/10.1038/s41598-017-05596-3 SN - 2045-2322 IS - 7 SP - 5242, 1 EP - 5242, 9 AN - OPUS4-41044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinrich, Thomas A1 - Traulsen, Christoph Hans-Henning A1 - Darlatt, Erik A1 - Richter, S. A1 - Poppenberg, J. A1 - Traulsen, N.L. A1 - Linder, I. A1 - Lippitz, Andreas A1 - Dietrich, Paul A1 - Dib, B. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - The versatility of 'Click' reactions at surfaces: Molecular recognition at interfaces N2 - In order to investigate molecular recognition on surfaces, an azide-functionalized monolayer was deposited on gold. The monolayer was characterized by X-ray photoelectron spectroscopy (XPS) and angle-resolved near-edge X-ray absorption fine structure (NEXAFS) experiments and the decomposition of the azide upon irradiation with X-ray beams was investigated. Subsequently, various alkyne-functionalized host and guest molecules were attached to the azide by 1,3-dipolar cycloaddition. These modified surfaces and their host–guest chemistry were analysed by XPS and angle-resolved NEXAFS. The reversibility of guest binding was shown for one example as a proof of principle. KW - 'Click' reaction KW - Azide-terminated surfaces KW - SAMs KW - Host guest molecules KW - Molecular recognition at interfaces PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-306463 DO - https://doi.org/10.1039/C4RA01730G SN - 2046-2069 VL - 4 IS - 34 SP - 17694 EP - 17702 PB - RSC Publishing CY - London AN - OPUS4-30646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen T1 - The triple-isotope calibration approach: a universal and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements N2 - The theory of a new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements without the use of any standard has been developed. The calibration approach basically uses the difference in the instrumental isotope fractionation of two different types of mass spectrometers, leading to two different fractionation lines in a three-isotope diagram. When measuring the same sample with both mass spectrometers, the different fractionation lines have one point in common: this is the ‘true’ logarithmized isotope ratio pair of the sample. Thus, the intersection of both fractionation lines provides us with the absolute isotope ratios of the sample. This theory has been tested in practice by measuring Cd and of Pb isotope ratios in the certified reference materials BAM-I012 and NIST SRM981 by thermal ionization mass spectrometry and by inductively coupled plasma mass spectrometry while varying the ionization conditions for both mass spectrometers. With this experiment, the theory could be verified, and absolute isotope ratios were obtained, which were metrologically compatible with the certified isotope ratios. The so-obtained absolute isotope ratios are biased by − 0.5% in average, which should be improved with further developments of the method. This calibration approach is universal, as it can be applied to all elements with three or more isotopes and it is not limited to the type of mass spectrometers applied; it can be applied as well to secondary ion mass spectrometry or others. Additionally, this approach provides information on the fractionation process itself via the triple-isotope fractionation exponent θ. KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Mass spectrometry KW - Calibration KW - Uncertainty PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516364 DO - https://doi.org/10.1007/s00216-020-03050-4 VL - 413 IS - 3 SP - 821 EP - 826 PB - Springer Verlag AN - OPUS4-51636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Mohrbacher, H. T1 - The tribological and mechanical properties of niobium carbides (NbC) bonded with cobalt of Fe3Al N2 - The tribological and mechanical properties of niobium carbide bonded with 8 vol.-% (NbC-8Co), 12 vol.-% of cobalt (NbC-12Co) or 12 vol.-% of Fe3Al (NbC-12Fe3Al) are presented. Rotating discs made of metal-bonded niobium carbide were mated against alumina (99.7%) under unlubricated (dry) unidirectional sliding tests (0.1 m/s to 12.0 m/s; 22 °C and 400 C) as well as in oscillation tests (f=20 Hz, Δx=0.2 mm, 2/50/98% rel. humidity, n=105/106 cycles). Microstructure and phase compositions were determined as well. The tribological data obtained were benchmarked with different ceramics, cermets, hard metals and thermally sprayed coatings, where NbC bonded with 8% and 12% Co presented above 7 m/s the lowest wear rates so far in such a benchmark. Binderless NbC (HP-NbC1) and the metal-bonded NbCs exhibited low wear rates under dry sliding associated with P·V high load carrying capacities. NbC-based hard metal bonded with 12 vol.-% of Fe3Al resulted in a higher hardness level than for 12 vol.-% cobalt. The tribological profile established revealed a strong position of NbC-bearing materials under tribological considerations and for closed tribosystems against established reference tribo-couples. KW - Sliding KW - Ceramic KW - Oscillation KW - Strength KW - Modulus KW - High temperatures KW - Friction KW - Wear KW - NbC KW - Niobium carbide KW - Cobalt KW - Fe3Al KW - Hard metal PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-316129 DO - https://doi.org/10.1016/j.wear.2014.09.007 SN - 0043-1648 VL - 321 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-31612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bente, Klaas T1 - The thermoacoustic effect and its application in air-coupled testing of composite structures N2 - Airborne ultrasonic testing of lightweight, structured composite materials enables fast and contact-free non-destructive testing in aerospace and avoids material degradation due to contact with a coupling liquid. Established resonant air-coupled transducers consist of piezocomposite materials and several matching layers or more advanced materials like charged cellular polypropylene. The relaxation time and the specific frequency of such mechanical ultrasound emitters limit the spectrum of applications for each device. A short pulse length is key for reliable defect detection and each component at test can be best characterized at material- and geometry-specific frequencies. Here we show that focused thermoacoustic transducers are suited for testing lightweight, structured composite plates. Since the ultrasound is generated in air, these transducers show no resonance behavior and emit a broadband acoustic spectrum between 1.2 kHz and 1 MHz. Composite specimens of 3 mm to 9 mm thickness made of polylactide with a honeycomb structure were tested. Flat bottom holes were introduced to quantify the spatial resolution of the imaging method inside the strongly anisotropic specimen. As no broadband receivers are available yet, cellular polypropylene transducers were used as receivers, which limits the bandwidth of the method towards the bandwidth of the receiver. Nevertheless, we demonstrate the competitiveness of the thermoacoustic transducer compared to mechanical emitters at their respective resonance frequencies. Because a thermoacoustic transmitter features a nearly ideal pulse width, a single transmitter can be coupled with receivers with different resonance frequencies. With the development of broadband ultrasound receivers, air-coupled ultrasound spectroscopy will likely be possible in the near future. The analysed transducer holds the potential to speed up testing during production and maintenance in aerospace and automotives. Its combination with a broadband receiver could also expand the application field of air-coupled ultrasonic testing from a qualitative error detection towards a quantitative, spatially resolved analysis of mechanical material properties. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 24.10.2018 KW - Thermoacoustics KW - Ultrasonic Testing KW - Broadband KW - Ultrasound Emission PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464677 SN - 978-3-940283-96-2 SP - 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-46467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Eileen A. A1 - Brandhorst, Antonia K. M. A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - The Tet‑on system for controllable gene expression in the rock‑inhabiting black fungus Knufia petricola N2 - Knufia petricola is a black fungus that colonizes sun-exposed surfaces as extreme and oligotrophic environments. As ecologically important heterotrophs and biofilm-formers on human-made surfaces, black fungi form one of the most resistant groups of biodeteriorating organisms. Due to its moderate growth rate in axenic culture and available protocols for its transformation and CRISPR/Cas9-mediated genome editing, K. petricola is used for studying the morpho-physiological adaptations shared by extremophilic and extremotolerant black fungi. In this study, the bacteria-derived tetracycline (TET)-dependent promoter (Tet-on) system was implemented to enable controllable gene expression in K. petricola. The functionality i.e., the dose-dependent inducibility of TET-regulated constructs was investigated by using GFP fluorescence, pigment synthesis(melanin and carotenoids) and restored uracil prototrophy as reporters. The newly generated cloning vectors containing the Tet-on construct, and the validated sites in the K. petricola genome for color-selectable or neutral insertion of expression constructs complete the reverse genetics toolbox. One or multiple genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides, e.g., for localizing proteins and protein complexes in the K. petricola cell or for using K. petricola as host for the expression of heterologous genes. KW - Microcolonial fungi KW - Inducible promoter KW - Bimolecular fluorescence complementation KW - 2A peptide KW - CRISPR/ Cas9-mediated genome editing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607672 DO - https://doi.org/10.1007/s00792-024-01354-2 VL - 28 IS - 38 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-60767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Menga, D. A1 - Low, Jian Liang A1 - de Oliveira Guilherme Buzanich, Ana A1 - Paulus, B. A1 - Fellinger, Tim-Patrick T1 - The Tetrapyrollic Motif in Nitrogen Doped Carbons and M-N-C Electrocatalysts as Active Site in the Outer-Sphere Mechanism of the Alkaline Oxygen Reduction Reaction N2 - Development and fundamental understanding of precious-group-metal-free electrocatalysts is hampered by limitations in the quantification of the intrinsic activity of different catalytic sites and understanding the different reaction mechanisms. Comparing isomorphic nitrogen-doped carbons, Zn-N-Cs and Fe-N-Cs with the common tetrapyrrolic motif, a catalyst-independent outer-sphere rate-determining step in the alkaline oxygen reduction reaction is observed. Density functional theory (DFT) simulations on tetrapyrrolic model structures indicate the highest occupied molecular orbital (HOMO) level as a good descriptor for the catalytic activity. Contour plots suggest that the electron transfer occurs directly from the tetrapyrrolic coordination site, rather than from the metal center. Metal-free tetrapyrrolic N4 sites are discovered to be highly active oxygen reduction reaction (ORR) active sites in alkaline that reach turnover frequencies (TOF) of 0.33 and 1.84 s−1 at 0.80 and 0.75 VRHE in the order of magnitude of tetrapyrrolic Fe–N4 sites in the acidic ORR. While Zn-coordination lowers the HOMO level and therefore the catalytic activity, Fe-coordination lifts the HOMO level resulting in TOF values of 0.4 and 4 s−1 for tetrapyrrolic Fe–N4 sites at 0.90 and 0.85 VRHE, respectively. At higher mass activities, the peroxide reduction becomes rate-limiting, where highest peroxide production rates are observed for the nitrogen-doped carbon. KW - Tetrapyrollic KW - Motif KW - Nitrogen KW - Carbons KW - Alkaline Oxygen PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606239 DO - https://doi.org/https://doi.org/10.1002/aenm.202400482 SN - 1614-6832 VL - 2024 SP - 1 EP - 8 PB - Wiley-VCH AN - OPUS4-60623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - MacLean, J. A1 - Mayanna, S. A1 - Benning, L. G. A1 - Horn, F. A1 - Bartholomäus, A. A1 - Wiesner, Yosri A1 - Wagner, D. A1 - Liebner, S. T1 - The terrestrial plastisphere: Diversity and polymer-colonizing potential of plastic-associated microbial communities in soil N2 - The concept of a ‘plastisphere microbial community’ arose from research on aquatic plastic debris, while the effect of plastics on microbial communities in soils remains poorly understood. Therefore, we examined the inhabiting microbial communities of two plastic debris ecosystems with regard to their diversity and composition relative to plastic-free soils from the same area using 16S rRNA amplicon sequencing. Furthermore, we studied the plastic-colonizing potential of bacteria originating from both study sites as a measure of surface adhesion to UV-weathered polyethylene (PE) using high-magnification field emission scanning electron microscopy (FESEM). The high plastic content of the soils was associated with a reduced alpha diversity and a significantly different structure of the microbial communities. The presence of plastic debris in soils did not specifically enrich bacteria known to degrade plastic, as suggested by earlier studies, but rather shifted the microbial community towards highly abundant autotrophic bacteria potentially tolerant to hydrophobic environments and known to be important for biocrust formation. The bacterial inoculates from both sites formed dense biofilms on the surface and in micrometer-scale surface cracks of the UV-weathered PE chips after 100 days of in vitro incubation with visible threadlike EPS structures and cross-connections enabling surface adhesion. High-resolution FESEM imaging further indicates that the microbial colonization catalyzed some of the surface degradation of PE. In essence, this study suggests the concept of a ‘terrestrial plastisphere’ as a diverse consortium of microorganisms including autotrophs and other pioneering species paving the way for those members of the consortium that may eventually break down the plastic compounds. KW - Soil microbial community KW - Polyethylene colonization KW - Plastic pollution PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542790 DO - https://doi.org/10.3390/microorganisms9091876 VL - 9 IS - 9 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-54279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schütz, R. A1 - Maragh, J. A1 - Weaver, J. A1 - Rabin, Ira A1 - Masic, A. T1 - The Temple Scroll: Reconstructing an ancient manufacturing practice N2 - The miraculously preserved 2000-year-old Dead Sea Scrolls, ancient texts of invaluable historical significance, were discovered in the mid-20th century in the caves of the Judean desert. The texts were mainly written on parchment and exhibit vast diversity in their states of preservation. One particular scroll, the 8-m-long Temple Scroll is especially notable because of its exceptional thinness and bright ivory color. The parchment has a layered structure, consisting of a collagenous base material and an atypical inorganic overlayer. We analyzed the chemistry of the inorganic layer using x-ray and Raman spectroscopies and discovered a variety of evaporitic sulfate salts. This points toward a unique ancient production technology in which the parchment was modified through the addition of the inorganic layer as a writing surface. Furthermore, understanding the properties of these minerals is particularly critical for the development of suitable conservation methods for the preservation of these invaluable historical documents. KW - Temple Scroll KW - Dead Sea Scrolls PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-495314 DO - https://doi.org/10.1126/sciadv.aaw7494 VL - 5 IS - 9 SP - 1 EP - 9 PB - AAAS AN - OPUS4-49531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Coplen, T. B. A1 - Holden, N. E. A1 - Ding, T. A1 - Meijer, H. A. J. A1 - Vogl, Jochen A1 - Zhu, X. T1 - The Table of Standard Atomic Weights—An exercise in consensus N2 - The present Table of Standard Atomic Weights (TSAW) of the elements is perhaps one of the most familiar data sets in science. Unlike most parameters in physical science whose values and uncertainties are evaluated using the “Guide to the Expression of Uncertainty in Measurement” (GUM), the majority of standard atomic weight values and their uncertainties are consensus values, not GUM-evaluated values. The Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) regularly evaluates the literature for new isotopic-abundance measurements that can lead to revised standard atomic-weight values, Ar(E) for element E. The Commission strives to provide utmost clarity in products it disseminates, namely the TSAW and the Table of Isotopic Compositions of the Elements (TICE). In 2016, the Commission recognized that a guideline recommending the expression of uncertainty listed in parentheses following the standard atomic-weight value, for example, Ar(Se) = 78.971(8), did not agree with the GUM, which suggests that this parenthetic notation be reserved to express standard uncertainty, not the expanded uncertainty used in the TSAW and TICE. In 2017, to eliminate this noncompliance with the GUM, a new format was adopted in which the uncertainty value is specified by the “±” symbol, for example, Ar(Se) = 78.971 ± 0.008. To clarify the definition of uncertainty, a new footnote has been added to the TSAW. This footnote emphasizes that an atomic-weight uncertainty is a consensus (decisional) uncertainty. Not only has the Commission shielded users of the TSAW and TICE from unreliable measurements that appear in the literature as a result of unduly small uncertainties, but the aim of IUPAC has been fulfilled by which any scientist, taking any natural sample from commerce or research, can expect the sample atomic weight to lie within Ar(E) ± its uncertainty almost all of the time. KW - Atomic weight KW - Standard atomic weight KW - Uncertainty PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551299 DO - https://doi.org/10.1002/rcm.8864 SN - 1097-0231 VL - 36 IS - 15 SP - 1 EP - 15 PB - Wiley AN - OPUS4-55129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titirici, M. A1 - Baird, S. G. A1 - Sparks, T. D. A1 - Yang, S. M. A1 - Brandt-Talbot, A. A1 - Hosseinaei, O. A1 - Harper, D. P. A1 - Parker, R. M. A1 - Vignolini, S. A1 - Berglund, L. A. A1 - Li, Y. A1 - Gao, H.-L. A1 - Mao, L.-B. A1 - Yu, S.-H. A1 - Díez, N. A1 - Ferrero, G. A. A1 - Sevilla, M. A1 - Szilágyi, P. Á. A1 - Stubbs, C. J. A1 - Worch, J. C. A1 - Huang, Y. A1 - Luscombe, C. K. A1 - Lee, K.-Y. A1 - Luo, H. A1 - Platts, M. J. A1 - Tiwari, D. A1 - Kovalevskiy, D. A1 - Fermin, D. J. A1 - Au, H. A1 - Alptekin, H. A1 - Crespo-Ribadeneyra, M. A1 - Ting, V. P. A1 - Fellinger, Tim-Patrick A1 - Barrio, J. A1 - Westhead, O. A1 - Roy, C. A1 - Stephens, I. E. L. A1 - Nicolae, S. A. A1 - Sarma, S. C. A1 - Oates, R. P. A1 - Wang, C.-G. A1 - Li, Z. A1 - Loh, X. J. A1 - Myers, R. J. A1 - Heeren, N. A1 - Grégoire, A. A1 - Périssé, C. A1 - Zhao, X. A1 - Vodovotz, Y. A1 - Earley, B. A1 - Finnveden, G. A1 - Björklund, A. A1 - Harper, G. D. J. A1 - Walton, A. A1 - Anderson, P. A. T1 - The sustainable materials roadmap N2 - Our ability to produce and transform engineered materials over the past 150 years is responsible for our high standards of living today, especially in the developed economies. Yet, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of economy, energy, and climate. We are at the point where something must drastically change, and it must change NOW. We must create more sustainable materials alternatives using natural raw materials and inspiration from Nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments based on reliable and relevant data to quantify sustainability. KW - Electrochemistry KW - Fe-N-C catalysts KW - Fuel cells KW - Catalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550126 DO - https://doi.org/10.1088/2515-7639/ac4ee5 SN - 2515-7639 VL - 5 IS - 3 SP - 1 EP - 98 PB - IOP Publishing CY - Bristol AN - OPUS4-55012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Manuel A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - The structure and in situ synthesis investigation of isomorphic mononuclear molecular metal phenylphosphonates N2 - We describe a fast and effective synthesis for molecular metal phosphonates. Isomorphic compounds [M(II)(HO₃PPh)₂(H₂O₃PPh)₂(H₂O)₂] (M = Mn (1), Co (2), Ni (3); Ph = C₆H₅) were obtained by grinding. The complexes are mononuclear compounds containing neutral and monodeprotonated phenylphosphonic acid and water as ligands. The crystal structures were determined using powder X-ray diffraction (PXRD) data and validated by extended X-ray absorption fine structure (EXAFS) data. Combined synchrotron XRD measurements and Raman spectroscopy were conducted for investigating the reactions in situ. Based on these data, the intermediates were characterized and the formation mechanism was derived. KW - Mechanochemistry KW - Metal phosphonate KW - In situ KW - XRD PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-363944 DO - https://doi.org/10.1039/c6dt00787b SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 45 IS - 23 SP - 9460 EP - 9467 AN - OPUS4-36394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mouiya, M. A1 - Martynyuk, M. A1 - Kupsch, Andreas A1 - Laquai, R. A1 - Müller, Bernd R. A1 - Doyen, N.T. A1 - Tamraoui, Y. A1 - Serrano-Munoz, Itziar A1 - Huger, M. A1 - Kachanov, M. A1 - Bruno, Giovanni T1 - The stress–strain behavior of refractory microcracked aluminum titanate: The effect of zigzag microcracks and its modeling N2 - The stress–strain behavior of ceramics, such as aluminum titanate, has certain features that are unusual for brittle materials—in particular, a substantial nonlinearity under uniaxial tension, and load–unload hysteresis caused by the sharp increase of the incremental stiffness at the beginning of unloading. These features are observed experimentally and are attributed to microcracking. Here we compare different degrees of stress–strain nonlinearity of aluminum titanate materials and quantitatively model them. We use advanced mechanical testing to observe the mechanical response at room and high temperature; electron microscopy, and X-ray refraction radiography to observe the microstructural changes. Experiments show that two types of microcracks can be distinguished: (i) microcracks induced by cooling from the sintering temperature (due to heterogeneity and anisotropy of thermal expansion), with typical sizes of the order of grain size, and (ii) much larger microcracks generated by the mechanical loading. The two microcrack types produce different effects on the stress–strain curves. Such microcracks and the features of the stress–strain behavior depend on the density of the cooling-induced microcracks and on the distribution of grain sizes. They are modeled analytically and numerically. KW - Hystersis KW - Nonlinear stress-strain curve KW - Refractory KW - Stiffness KW - X-ray refraction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580517 DO - https://doi.org/10.1111/jace.19325 SN - 1551-2916 VL - 106 SP - 6995 EP - 7008 PB - Wiley-Blackwell CY - Oxford [u.a.] AN - OPUS4-58051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lucassen, F. A1 - Pritzkow, Wolfgang A1 - Rosner, M. A1 - Sepulveda, F. A1 - Vasquez, P. A1 - Wilke, H. A1 - Kasemann, S. A. T1 - The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile – Marine sources and diagenetic effects N2 - Seabird excrements (guano) have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy) of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic signatures towards very heavy values generate a compositionally unique material. These compositions trace the presence of guano in natural ecosystems and its use as fertilizer in present and past agriculture. KW - Isotope ratio KW - VPDB KW - Fishmeal KW - Elemental analyser KW - Vario EL III KW - Casein standard KW - ICP-OES KW - Accelerator mass spectrometry PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-407911 DO - https://doi.org/10.1371/journal.pone.0179440 SN - 1932-6203 VL - 12 IS - 6 SP - Article e0179440, 1 EP - 25 PB - PLOS CY - San Francisco, California, US AN - OPUS4-40791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - The role of transesterifications in reversible polycondensations and a reinvestigation of the Jacobson-Beckmann-Stockmayer experiments N2 - The polycondensations of adipic acid and 1,10-decanediol catalyzed by toluene sulfonic acid (TSA) were reinvestigated using MALDI TOF mass spectrometry and NMR spectroscopy. Unexpected reactions of TSA were detected along with incomplete conversion of the monomers. Furthermore, transesterification reactions of end-capped poly(1,10-decanediol adipate) and end-capped poly(ε-caprolactone) catalyzed by TSA were studied. Despite the quite different (ionic) reaction mechanisms, it was found that for polycondensations performed in bulk intermolecular transesterification is more efficient than the intramolecular “back-biting”; this scenario was not considered in the Jacobson–Stockmayer theory of reversible polycondensations. These results also confirm that the Jacobson–Stockmayer explanation of reversible polycondensations solely on the basis of ring chain equilibration is not only devoid of any experimental evidence, but also in contradiction to the results elaborated in this work. KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543402 DO - https://doi.org/10.1039/d1py01679b SN - 1759-9962 SP - 1 EP - 9 PB - RSC Publ. CY - Cambridge AN - OPUS4-54340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Déziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - The role of the laser-induced oxide layer in the formation of laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS) are often present when processing solid targets with linearly polarized ultrashort laser pulses. The different irradiation parameters to produce them on metals, semiconductors and dielectrics have been studied extensively, identifying suitable regimes to tailor its properties for applications in the fields of optics, medicine, fluidics and tribology, to name a few. One important parameter widely present when exposing the samples to the high intensities provided by these laser pulses in air environment, that generally is not considered, is the formation of a superficial laser-induced oxide layer. In this paper, we fabricate LIPSS on a layer of the oxidation prone hard-coating material chromium nitride in order to investigate the impact of the laser-induced oxide layer on its formation. A variety of complementary surface analytic techniques were employed, revealing morphological, chemical and structural characteristics of well-known high-spatial frequency LIPSS (HSFL) together with a new type of low-spatial frequency LIPSS (LSFL) with an anomalous orientation parallel to the laser polarization. Based on this input, we performed finite-difference time-domain calculations considering a layered system resembling the geometry of the HSFL along with the presence of a laser-induced oxide layer. The simulations support a scenario that the new type of LSFL is formed at the interface between the laser-induced oxide layer and the non-altered material underneath. These findings suggest that LSFL structures parallel to the polarization can be easily induced in materials that are prone to oxidation. KW - Laser-induced oxide layer KW - Laser-induced periodic surface structures (LIPSS) KW - Surface chemistry KW - Femtosecond laser processing KW - Nanostructuring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502530 DO - https://doi.org/10.3390/nano10010147 SN - 2079-4991 VL - 10(1) IS - Special issue "Laser-generated periodic nanostructures" SP - 147-1 EP - 147-18 PB - MDPI CY - Basel AN - OPUS4-50253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, P. A1 - Morales-Marquez, R. A1 - Cervas, G. A1 - Hernandez Medel, A. A1 - Ogayar, M. P. A1 - Jimenez de Aberasturi, D. A1 - de Isidro-Gomez, A. I. A1 - Torres-Padro, A. A1 - Palomares, F. J. A1 - Garcia-Orrit, S. A1 - Sousa, C. T. A1 - Espinosa, A. A1 - Telle, H. H. A1 - Ortgies, D. H. A1 - Vega-Mayoral, V. A1 - Cabanillas-Gonzalez, J. A1 - Rodriguez, E. M. A1 - Resch-Genger, Ute A1 - Wegner, Karl David A1 - Juarez, B. H. T1 - The role of temperature in the photoluminescence quantum yield (PLQY) of Ag2S-based nanocrystals N2 - Highly emissive Ag2S nanocrystals (NCs) passivated with a gradated shell incorporating Se and Zn were synthesized in air, and the temperature dependence of their photoluminescence quantum yield (PLQY) was quantified in both organic and aqueous media at B1200 nm. The relevance of this parameter, measured at physiological temperatures, is highlighted for applications that rely on the near infrared (NIR) photoluminescence of NCs, such as deep NIR imaging or luminescence nanothermometry. Hyperspectral NIR imaging shows that Ag2S-based NCs with a PLQY in organic media of about 10% are inefficient for imaging at 40 8C through 20 mm thick tissue with low laser irradiation power densities. In contrast, water-transferred Ag2S-based NCs with an initial PLQY of 2% in water exhibit improved robustness against temperature changes, enabling improved imaging performance. KW - Quantum dots KW - Ag2S KW - Fluorescence KW - Nanomaterial design KW - Advanced nanomaterials KW - Shortwave infrared (SWIR) KW - Temperature sensing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613877 DO - https://doi.org/10.1039/D4MH01016G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-61387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Skrotzki, Birgit A1 - Stegemann, Robert A1 - Löwe, Peter A1 - Kreutzbruck, M. T1 - The role of surface topography on deformation-induced magnetization under inhomogeneous elastic-plastic deformation N2 - It is widely accepted that the magnetic state of a ferromagnetic material may be irreversibly altered by mechanical loading due to magnetoelastic effects. A novel standardized nondestructive testing (NDT) technique uses weak magnetic stray fields, which are assumed to arise from inhomogeneous deformation, for structural health monitoring (i.e., for detection and assessment of damage). However, the mechanical and microstructural complexity of damage has hitherto only been insufficiently considered. The aim of this study is to discuss the phenomenon of inhomogeneous “self-magnetization” of a polycrystalline ferromagnetic material under inhomogeneous deformation experimentally and with stronger material-mechanical focus. To this end, notched specimens were elastically and plastically deformed. Surface magnetic states were measured by a three-axis giant magnetoresistant (GMR) sensor and were compared with strain field (digital image correlation) and optical topography measurements. It is demonstrated that the stray fields do not solely form due to magnetoelastic effects. Instead, inhomogeneous plastic deformation causes topography, which is one of the main origins for the magnetic stray field formation. Additionally, if not considered, topography may falsify the magnetic signals due to variable lift-off values. The correlation of magnetic vector components with mechanical tensors, particularly for multiaxial stress/strain states and inhomogeneous elastic-plastic deformations remains an issue. KW - Magnetic stray fields KW - Magnetomechanical effect KW - Damage KW - Topography KW - Multiaxial deformation KW - Notch KW - Plastic deformation KW - Metal magnetic memory KW - Digital image correlation KW - Structural steel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457878 DO - https://doi.org/10.3390/ma11091518 SN - 1996-1944 VL - 11 IS - 9 SP - 1518, 1 EP - 26 PB - MDPI CY - Basel, Switzerland AN - OPUS4-45787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Österle, Werner ED - Österle, Werner ED - Zhang, G. T1 - The role of solid lubricants for brake friction materials N2 - This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about tribofilm structures formed during automotive braking was reviewed comprehensively. Finally, a model for simulating the sliding behavior of tribofilms is suggested and a review on modelling efforts with different model structures related to real tribofilms will be presented. Although the variety of friction composites involved in commercial brake systems is very broad, striking similarities were observed in respect to tribofilm nanostructures. Thus a generalization of the tribofilm nanostructure is suggested and prerequisites for smooth sliding performance and minimal wear rates have been identified. A minimum of 13 vol.% of soft inclusions embedded in an iron oxide based tribofilm is crucial for obtaining the desired properties. As long as the solid lubricants or their reaction products are softer than magnetite, the main constituent of the tribofilm, the model predicts smooth sliding and a minimum of wear. KW - Solid lubricant KW - Friction KW - Automotive braking KW - Tribofilm KW - Sliding simulation KW - MCA-modeling PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-355973 UR - www.mdpi.com/journal/lubricants DO - https://doi.org/10.3390/lubricants4010005 SN - 2075-4442 VL - 4 IS - 1 SP - 5 EP - 26 PB - MDPI CY - Basel, Switzerland AN - OPUS4-35597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimiaei, E. A1 - Farooq, M. A1 - Szymoniak, Paulina A1 - Ahmadi, Shayan A1 - Babaeipour, S. A1 - Schönhals, Andreas A1 - Österberg, M. T1 - The role of lignin as interfacial compatibilizer in designing lignocellulosic-polyester composite films N2 - Advancing nanocomposites requires a deep understanding and careful design of nanoscale interfaces, as interfacial interactions and adhesion significantly influence the physical and mechanical properties of these materials. This study demonstrates the effectiveness of lignin nanoparticles (LNPs) as interfacial compatibilizer between hydrophilic cellulose nanofibrils (CNF) and a hydrophobic polyester, polycaprolactone (PCL). In this context, we conducted a detailed analysis of surface-to-bulk interactions in both wet and dry conditions using advanced techniques such as quartz crystal microbalance with dissipation (QCM-D), atomic force microscopy (AFM), water contact angle (WCA) measurements, broadband dielectric spectroscopy (BDS), and inverse gas chromatography (IGC). QCM-D was employed to quantify the adsorption behavior of LNPs on CNF and PCL surfaces, demonstrating LNPs’ capability to interact with both hydrophilic and hydrophobic phases, thereby enhancing composite material properties. LNPs showed extensive adsorption on a CNF model film (1186 ± 178 ng.cm−2) and a lower but still significant adsorption on a PCL model film (270 ± 64 ng.cm−2). In contrast, CNF adsorption on a PCL model film was the lowest, with a sensed mass of only 136 ± 35 ng.cm−2. These findings were further supported by comparing the morphology and wettability of the films before and after adsorption, using AFM and WCA analyses. Then, to gain insights into the molecular-level interactions and molecular mobility within the composite in dry state, BDS was employed. The BDS results showed that LNPs improved the dispersion of PCL within the CNF network. To further investigate the impact of LNPs on the composites’ interfacial properties, IGC was employed. This analysis showed that the composite films containing LNPs exhibited lower surface energy compared to those composed of only CNF and PCL. The presence of LNPs likely reduced the availability of surface hydroxyl groups, thus modifying the physicochemical properties of the interface. These changes were particularly evident in the heterogeneity of the surface energy profile, indicating that LNPs significantly altered the interfacial characteristics of the composite materials. Overall, these findings emphasize the necessity to control the interfaces between components for next-generation nanocomposite materials across diverse applications. KW - Lignin KW - Nanocomposites PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-615098 DO - https://doi.org/10.1016/j.jcis.2024.10.083 SN - 0021-9797 VL - 679 SP - 263 EP - 275 PB - Elsevier Inc. AN - OPUS4-61509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breitenbach, Romy A1 - Gerrits, Ruben A1 - Dementyeva, Polina A1 - Knabe, Nicole A1 - Schumacher, Julia A1 - Feldmann, Ines A1 - Radnik, Jörg A1 - Ryo, M. A1 - Gorbushina, Anna T1 - The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering N2 - The roles extracellular polymeric substances (EPS) play in mineral attachment and weathering were studied using genetically modified biofilms of the rock-inhabiting fungus Knufia petricola strain A95. Mutants deficient in melanin and/or carotenoid synthesis were grown as air-exposed biofilms. Extracted EPS were quantified and characterised using a combination of analytical techniques. The absence of melanin affected the quantity and composition of the produced EPS: mutants no longer able to form melanin synthesised more EPS containing fewer pullulan-related glycosidic linkages. Moreover, the melanin-producing strains attached more strongly to the mineral olivine and dissolved it at a higher rate. We hypothesise that the pullulan-related linkages, with their known adhesion functionality, enable fungal attachment and weathering. The released phenolic intermediates of melanin synthesis in the Δsdh1 mutant might play a role similar to Fe-chelating siderophores, driving olivine dissolution even further. These data demonstrate the need for careful compositional and quantitative analyses of biofilm-created microenvironments. KW - Biofilms PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-549025 DO - https://doi.org/10.1038/s41529-022-00253-1 SN - 2397-2106 VL - 6 SP - 1 EP - 11 PB - Springer Nature CY - London AN - OPUS4-54902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Qiang A1 - Heuchel, Matthias A1 - Thünemann, Andreas A1 - Machatscheck, Rainhard T1 - The role of diffusion in the hydrolytic degradation of poly(lactic-co-glycolic acid): A molecular perspective N2 - This research emphasizes the importance of internal surface erosion as a key factor in the hydrolytic degradation of PLGA (poly(D,L-lactic-co-glycolic acid)) providing an alternative view of the established surface and bulk erosion degradation modes. Using molecular dynamics (MD) simulations, this study reveals the role of water and oligomer diffusion during the degradation of PLGA and highlights the importance of water channels formed as the overall water content increases. We found that these continuous water channels play a crucial role in accelerating the transport of water and the release of degradation products from the polymer matrix, as the diffusion coefficients of water and small oligomers exhibit significant differences spanning 2 to 3 orders of magnitude between the water and polymer phases. Water follows a different diffusion mechanism than polymer fragments. The diffusion rate of the fragments up to a size of octamers was found to be size-dependent and reasonably well approximated by a 1/N behavior, in line with the Rouse model. KW - Small-angle X-ray scattering KW - SAXS KW - Nanostructure KW - PLGA PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-621250 DO - https://doi.org/10.1016/j.polymdegradstab.2024.111119 VL - 232 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-62125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - The Ring-Opening Polymerisation-Polycondensation (ROPPOC) Approach to cyclic Polymers N2 - A new concept called “Ring-Opening Polymerization (ROP) combined with simultaneous POlyCondensation” (ROPPOC) is presented and discussed. This synthetic strategy is based on the intermediate formation of chains having two end groups that can react with each other. The ROPPOC syntheses are subdivided into three groups according to the nature of the chain ends: two ionic end groups, one ionic and one covalent chain end and a combination of two reactive covalent end groups may be involved, depending on the catalyst. The usefulness for the preparation of cyclic polymers is discussed with a review of numerous previously published examples. These examples concern to following classes of cyclic polymers: polypeptides, polyamides, polyesters, including polycarbonates, and cyclic polysiloxanes. It is demonstrated, that the results of certain ROPPOC syntheses are in contradiction to the Jacobson-Stockmayer theory. Finally, the usefulness of ROPPOCs for the detection of polydisperse catenanes is discussed. KW - Ring-opening Polymerisation KW - MALDI-TOF MS KW - ROPPOC KW - Cyclic PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508509 DO - https://doi.org/10.1002/marc.202000152 SP - 2000152 PB - Wiley AN - OPUS4-50850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano-Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - The residual stress in as‑built Laser Powder Bed Fusion IN718 alloy as a consequence of the scanning strategy induced microstructure N2 - The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2°) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS. KW - Additive manufacturing KW - LPBF KW - Residual stress KW - Inconel 718 KW - Kernel average misorientation KW - Texture PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511769 DO - https://doi.org/10.1038/s41598-020-71112-9 VL - 10 IS - 1 SP - 14645 AN - OPUS4-51176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - The quantification of anisotropy in graphene/natural rubber nanocomposites: Evaluation of the aspect ratio, concentration, and crosslinking N2 - In the processing of nanocomposites, high shear stresses at elevated tempera-tures orient two-dimensional nanoparticles like graphene. This orientationleads to anisotropic mechanical, thermal or barrier properties of the nanocom-posite. This anisotropy is addressed in this study by comparing graphene (few-layer graphene, FLG) with a nanoscaled carbon black (nCB) at a filler contentof 3 phr, by varying the vulcanization, and by comparing different FLG con-tents. Transmission electron microscopy gives insight into the qualitative ori-entation in the nanocomposite with FLG or nCB. The storage moduli paralleland normal to the orientation reveal the direction dependency of reinforce-ment through dynamic mechanical analysis (DMA). Dimensional swellingmeasurements show a restriction of the expansion parallel to the FLG orienta-tion, and an increased expansion normal to the orientation. The vulcanizationsystem and crosslinking determine the respective level of property values, andhigher crosslinking densities increase the anisotropy in DMA resulting invalues of up to 2.9 for the quantified anisotropy factor. With increasing FLGcontent, the anisotropy increases. A comparison of the results reveals swellingmeasurements as the most suitable method for the determination of anisot-ropy. Compared to recent literature, the presented processing induces higheranisotropy, leading to higher reinforcing effects in the direction of orientation KW - Natural rubber KW - Graphene KW - Nanocomposite KW - Mechanical properties KW - Swelling PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571522 DO - https://doi.org/10.1002/app.53753 SN - 1097-4628 VL - 140 IS - 16 SP - 1 EP - 15 PB - Wiley online library CY - Hoboken, New Jersey (USA) AN - OPUS4-57152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Santos de Freitas, M. A1 - Araghi, R. R. A1 - Brandenburg, E. A1 - Leiterer, Jork A1 - Emmerling, Franziska A1 - Folmert, K. A1 - Gerling-Driessen, U. I. M. A1 - Bardiaux, B. A1 - Böttcher, C. A1 - Pagel, K. A1 - Diehl, A. A1 - v. Berlepsch, H. A1 - Oschkinat, H. A1 - Koksch, B. T1 - The protofilament architecture of a de novo designed coiled coil-based amyloidogenic peptide N2 - Amyloid fibrils are polymers formed by proteins under specific conditions and in many cases they are related to pathogenesis, such as Parkinson’s and Alzheimer’s diseases. Their hallmark is the presence of a β-sheet structure. High resolution structural data on these systems as well as information gathered from multiple complementary analytical techniques is needed, from both a fundamental and a pharmaceutical perspective. Here, a previously reported de novo designed, pH-switchable coiled coil-based peptide that undergoes structural transitions resulting in fibril formation under physiological conditions has been exhaustively characterized by transmission electron microscopy (TEM), cryo-TEM, atomic force microscopy (AFM), wide-angle X-ray scattering (WAXS) and solid-state NMR (ssNMR). Overall, a unique 2-dimensional carpet-like assembly composed of large coexisiting ribbon-like, tubular and funnel-like structures with a clearly resolved protofilament substructure is observed. Whereas electron microscopy and scattering data point somewhat more to a hairpin model of β-fibrils, ssNMR data obtained from samples with selectively labelled peptides are in agreement with both, hairpin structures and linear arrangements. KW - Amyloid KW - Elektronenmikroskopie PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458713 UR - https://www.sciencedirect.com/science/article/pii/S1047847718301333 DO - https://doi.org/10.1016/j.jsb.2018.05.009 SN - 1047-8477 VL - 203 IS - 3 SP - 263 EP - 272 PB - Elsevier AN - OPUS4-45871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - The Protocol Gap N2 - Although peer review is considered one of the main pillars of modern science, experimental methods and protocols seem to be not a rigorous subject of this process in many papers. Commercial equipment, test kits, labeling kits, previously published concepts, and standard protocols are often considered to be not worth a detailed description or validation. Even more disturbing is the extremely biased citation behavior in this context, which sometimes leads to surrogate citations to avoid low-impact journals, preprints, or to indicate traditional practices. This article describes some of these surprising habits and suggests some measures to avoid the most unpleasant effects, which in the long term may undermine the credibility of science as a whole. KW - Validation KW - Peer review KW - Experiment KW - Documentation KW - Scientific publication KW - Reproducibility crisis KW - Replication crisis KW - Trust KW - Citation KW - References KW - Surrogate citations KW - Impact PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521440 DO - https://doi.org/10.3390/mps4010012 SN - 2409-9279 VL - 4 IS - 1 SP - 1 EP - 5 PB - MDPI CY - Basel AN - OPUS4-52144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Albarrán Martínez, M. J. A1 - Ghigo, Tea T1 - The practice of writing inside an Egyptian monastic settlement N2 - Over the last few years, the Federal Institute for material research (BAM, Berlin) together with the Centre for the Study of Manuscript Cultures (CSMC, University of Hamburg) have initiated a systematic material investigation of black inks produced from Late Antiquity to the Middle Ages (ca. fourth century CE–fourteenth/fifteenth centuries CE), aimed primarily at extending and complementing findings from previous sporadic studies. Part of this systematic investigation has focused on Egyptian Coptic manuscripts, and the present preliminary study is one of its outputs. It centres on a corpus of 45 Coptic manuscripts—43 papyri and 2 ostraca—preserved at the Palau-Ribes and Roca-Puig collections in Barcelona. The manuscripts come from the Monastery of Apa Apollo at Bawit, one of the largest monastic settlements in Egypt between the Late Antiquity and the Early Islamic Period (sixth–eighth centuries CE). The composition of their black inks was investigated in situ using near-infrared reflectography (NIRR) and X-ray fluorescence (XRF). The analyses determined that the manuscripts were written using different types of ink: pure carbon ink; carbon ink containing iron; mixed inks containing carbon, polyphenols and metallic elements; and iron-gall ink. The variety of inks used for the documentary texts seems to reflect the articulate administrative system of the monastery of Bawit. This study reveals that, in contrast to the documents, written mostly with carbon-based inks, literary biblical texts were written with iron-gall ink. The frequent reuse of papyrus paper for certain categories of documents may suggest that carbon-based inks were used for ephemeral manuscripts, since they were easy to erase by abrasion. KW - Papyrus KW - Ink analysis KW - Coptic manuscripts KW - Bawit KW - Mixed ink KW - Near-infrared refectography KW - X-ray fuorescence PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528833 DO - https://doi.org/10.1186/s40494-021-00541-0 SN - 2050-7445 VL - 9 IS - 1 SP - 1 EP - 15 PB - Springer Open CY - Rome, Italy AN - OPUS4-52883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - The Origin of Delayed Polymorphism in Molecular Crystals Under Mechanochemical Conditions N2 - We show that mechanochemically driven polymorphic transformations can require extremely long induction periods, which can be tuned from hours to days by changing ball milling energy. The robust design and interpretation of ball milling experiments must account for this unexpected kinetics that arises from energetic phenomena unique to the solid state. Detailed thermal analysis, combined with DFT simulations, indicates that these marked induction periods are associated with processes of mechanical activation. Correspondingly, we show that the pre‐activation of reagents can also lead to marked changes in the length of induction periods. Our findings demonstrate a new dimension for exerting control over polymorphic transformations in organic crystals. We expect mechanical activation to have a much broader implication across organic solid‐state mechanochemistry. KW - General Chemistry KW - Catalysis KW - Organic Chemistry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589219 DO - https://doi.org/10.1002/chem.202302150 SN - 0947-6539 SP - e202302150 PB - Wiley AN - OPUS4-58921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Munsch, Sarah Mandy A1 - Telong, Melissa A1 - Schmidt, Wolfram A1 - Bintz, Thilo A1 - Fladt, Matthias A1 - Stelzner, Ludwig T1 - The NMR core analyzing TOMograph: A multi-functional tool for non-destructive testing of building materials N2 - NMR is becoming increasingly popular for the investigation of building materials as it is a non-invasive technology that does not require any sample preparation nor causes damage to the material. Depending on the specific application it can offer insights into properties like porosity and spatial saturation degree as well as pore structure. Moreover it enables the determination of moisture transport properties and the (re-)distribution of internal moisture into different reservoirs or chemical phases upon damage and curing. However, as yet most investigations were carried out using devices originally either designed for geophysical applications or the analysis of rather homogeneous small scale (< 10 mL) samples. This paper describes the capabilities of an NMR tomograph, which has been specifically optimized for the investigation of larger, heterogeneous building material samples (diameters of up to 72 mm, length of up to 700 mm) with a high flexibility due to interchangeable coils allowing for a high SNR and short echo times (50 - 80 m s). KW - Fire spalling KW - Moisture transport KW - Concrete KW - Cement hydration KW - Sensitivity KW - Supplementary cementitous materials KW - Frost salt attack PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573755 DO - https://doi.org/10.1016/j.mrl.2023.03.004 SN - 2097-0048 VL - 3 IS - 3 SP - 207 EP - 219 PB - Elsevier B.V. AN - OPUS4-57375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kardjilov, N A1 - Manke, I A1 - Hilger, A A1 - Arlt, T A1 - Bradbury, R A1 - Markötter, Henning A1 - Woracek, R A1 - Strobel, M A1 - Treimer, W A1 - Banhart, J T1 - The Neutron Imaging Instrument CONRAD — Post‐Operational Review N2 - The neutron imaging instrument CONRAD was operated as a part of the user program of the research reactor BER‐II at Helmholtz‐Zentrum Berlin (HZB) from 2005 to 2020. The Instrument was designed to use the neutron flux from the cold source of the reactor, transported by a curved neutron guide. The pure cold neutron spectrum provided a great advantage in the use of different neutron optical components such as focusing lenses and guides, solid‐state polarizers, Monochromators and phase gratings. The flexible setup of the instrument allowed for implementation of new methods including wavelength‐selective, dark‐field, phase‐contrast and imaging with polarized neutrons. In summary, these developments helped to attract a large number of scientists and industrial customers, who were introduced to neutron imaging and subsequently contributed to the Expansion of the neutron imaging community. KW - Neutron imaging KW - Neutron scattering KW - Neutron instrument KW - Tomography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534190 DO - https://doi.org/10.3390/ jimaging7010011 VL - 7 IS - 11 SP - 7010011 PB - MDPI AN - OPUS4-53419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - The mystery of homochirality on earth N2 - Homochirality is an obvious feature of life on Earth. On the other hand, extraterrestrial samples contain largely racemic compounds. The same is true for any common organic synthesis. Therefore, it has been a perplexing puzzle for decades how these racemates could have formed enantiomerically enriched fractions as a basis for the origin of homochiral life forms. Numerous hypotheses have been put forward as to how preferentially homochiral molecules could have formed and accumulated on Earth. In this article, it is shown that homochirality of the abiotic organic pool at the time of formation of the first self-replicating molecules is not necessary and not even probable. It is proposed to abandon the notion of a molecular ensemble and to focus on the level of individual molecules. Although the formation of the first self-replicating, most likely homochiral molecule, is a seemingly improbable event, on a closer look, it is almost inevitable that some homochiral molecules have formed simply on a statistical basis. In this case, the non-selective leap to homochirality would be one of the first steps in chemical evolution directly out of a racemic “ocean”. Moreover, most studies focus on the chirality of the primordial monomers with respect to an asymmetric carbon atom. However, any polymer with a minimal size that allows folding to a secondary structure would spontaneously lead to asymmetric higher structures (conformations). Most of the functions of these polymers would be influenced by this inherently asymmetric folding. Furthermore, a concept of physical compartmentalization based on rock nanopores in analogy to nanocavities of digital immunoassays is introduced to suggest that complex cell walls or membranes were also not required for the first steps of chemical evolution. To summarize, simple and universal mechanisms may have led to homochiral self-replicating systems in the context of chemical evolution. A homochiral monomer pool is deemed unnecessary and probably never existed on primordial Earth. N2 - Homochiralität ist ein offensichtliches Merkmal des Lebens auf der Erde. Andererseits enthalten extraterrestrische Proben überwiegend racemische Verbindungen. Dasselbe gilt für jede gängige organische Synthese. Daher war es jahrzehntelang ein Rätsel, wie diese Racemate enantiomeren-angereicherte Fraktionen als Grundlage für den Ursprung homochiraler Lebensformen bilden konnten. Zahlreiche Hypothesen wurden aufgestellt, wie sich bevorzugt homochirale Moleküle auf der Erde gebildet und angereichert haben könnten. In diesem Artikel wird gezeigt, dass Homochiralität des abiotischen organischen Pools zum Zeitpunkt der Bildung der ersten selbstreplizierenden Moleküle nicht notwendig und nicht einmal wahrscheinlich ist. Es wird vorgeschlagen, die Vorstellung eines molekularen Ensembles aufzugeben und sich auf die Ebene der einzelnen Moleküle zu konzentrieren. Obwohl die Bildung des ersten selbstreplizierenden, höchstwahrscheinlich homochiralen Moleküls ein scheinbar unwahrscheinliches Ereignis ist, ist es bei näherer Betrachtung fast unvermeidlich, dass sich einige homochirale Moleküle einfach auf statistischer Basis gebildet haben. In diesem Fall wäre der nichtselektive Sprung zur Homochiralität einer der ersten Schritte der chemischen Evolution direkt aus einem racemischen "Ozean". Darüber hinaus konzentrieren sich die meisten Studien auf die Chiralität der ursprünglichen Monomere in Bezug auf ein asymmetrisches Kohlenstoffatom. Jedes Polymer mit einer Mindestgröße, die eine Faltung zu einer Sekundärstruktur erlaubt, würde jedoch spontan zu asymmetrischen höheren Strukturen (Konformationen) führen. Die meisten Funktionen dieser Polymere würden durch diese inhärent asymmetrische Faltung beeinflusst. Darüber hinaus wird ein Konzept der physikalischen Kompartimentierung auf der Basis von Gesteinsnanoporen in Analogie zu den Nanokavitäten digitaler Immunoassays vorgestellt, das darauf hindeutet, dass auch für die ersten Schritte der chemischen Evolution keine komplexen Zellwände oder Membranen notwendig waren. Zusammenfassend lässt sich sagen, dass einfache und universelle Mechanismen zu homochiralen selbstreplizierenden Systemen im Rahmen der chemischen Evolution geführt haben könnten. Ein homochiraler Monomerpool wird als unnötig angesehen, welcher auf der Urerde wahrscheinlich nie existiert hat. KW - Chemical evolution KW - Enantiomeric excess ee KW - Chirality KW - Racemate KW - Folding chirality KW - Self-assembly KW - self-replication KW - Single molecule KW - Prebiotic chemistry KW - Protein folding KW - Peptide folding KW - Proteinoid KW - Conformation KW - Segregation KW - Compartmentalization KW - Digital immunoassay KW - Porous rock KW - Miller and Urey KW - Primordial soup KW - Murchison meteorite KW - Micrometeorites KW - Tholins PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598349 DO - https://doi.org/10.3390/life14030341 SN - 2075-1729 VL - 14 IS - 3 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-59834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard T1 - The MOUSE project - A meticulous approach for obtaining traceable, wide-range X-ray scattering information N2 - Herein, we provide a "systems architecture"-like overview and detailed discussions of the methodological and instrumental components that, together, comprise the "MOUSE" project (Methodology Optimization for UltrafineStructure Exploration). The MOUSE project provides scattering information on a wide variety of samples, with traceable dimensions for both the scattering vector (q) and the absolute scattering cross-section (I). The measurable scattering vector-range of 0.012≤ q (nm-1) ≤ 92, allows information across a hierarchy of structures with dimensions ranging from ca. 0.1 to 400 nm. In addition to details that comprise the MOUSE project, such as the organisation and traceable aspects, several representative examples are provided to demonstrate its flexibility. These include measurements on alumina membranes, the tobacco mosaic virus, and dual-source information that overcomes fluorescence limitations on ZIF-8 and iron-oxide-containing carbon catalyst materials. KW - X-ray scattering KW - MOUSE KW - Instrumentation KW - SAXS KW - Methodology KW - Traceability KW - Wide-range KW - Data curation KW - FAIR KW - Uncertainties KW - Nanomaterials KW - Nanometrology PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528669 DO - https://doi.org/10.1088/1748-0221/16/06/P06034 VL - 16 IS - 6 SP - 1 EP - 50 PB - IOP CY - Bristol, UK AN - OPUS4-52866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smith, A. J. A1 - Snow, T. A1 - Terril, N. J. A1 - Thünemann, Andreas T1 - The modular small-angle X-ray scattering data correction sequence N2 - Data correction is probably the least favourite activity amongst users experimenting with small-angle X-ray scattering: if it is not done sufficiently well, this may become evident only during the data analysis stage, necessitating the repetition of the data corrections from scratch. A recommended comprehensive sequence of elementary data correction steps is presented here to alleviate the difficulties associated with data correction, both in the laboratory and at the synchrotron. When applied in the proposed order to the raw signals, the resulting absolute scattering cross section will provide a high degree of accuracy for a very wide range of samples, with its values accompanied by uncertainty estimates. The method can be applied without modification to any pinhole-collimated instruments with photon-counting direct-detection area detectors. KW - Small-angle X-ray scattering KW - SAXS KW - Accuracy KW - Methodology KW - Data correction PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432114 DO - https://doi.org/10.1107/S1600576717015096 SN - 1600-5767 VL - 50 IS - 6 SP - 1800 EP - 1811 PB - International Union of Crystallography AN - OPUS4-43211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, M. E. A1 - Vickery, W. M. A1 - Swift-Ramirez, W. A1 - Arnold, A. M. A1 - Orlando, J. D. A1 - Schmidt, S. J. A1 - Liu, Y. A1 - Er, Jasmin A1 - Schusterbauer, Robert A1 - Ahmed, R. A1 - Nickl, Philip A1 - Radnik, Jörg A1 - Donskyi, Ievgen A1 - Sydlik, S. A. T1 - The Mitsunobu reaction for the gentle covalent attachment of biomolecules to graphene oxide N2 - Graphene oxide (GO) has emerged as a promising biomaterial as it is easily and cheaply synthesized, strong, cytocompatible, osteoinductive, and has a well-characterized aqueous degradation pathway. It is also a great substrate for functionalization with biomolecules such as proteins, peptides, and small molecules that can enhance or add bioactivity. Covalent chemical linkages as opposed to typical noncovalent association methods are preferable so that the biomolecules do not quickly diffuse away or face replacement by other proteins, which is critical in long time scale applications like bone regeneration. However, covalent chemistry tends to carry a drawback of harsh reaction conditions that can damage the structure, conformation, and therefore function of a delicate biomolecule like a protein. Here, the Mitsunobu reaction is introduced as a novel method of covalently attaching proteins to graphene oxide. It features gentle reaction conditions and has the added benefit of utilizing the plentiful basal plane alcohol functionalities on graphene oxide, allowing for high yield protein functionalization. The amino acid Glycine (G), the protein bovine serum albumin (BSA), and the small molecule SVAK-12 are utilized to create the three Mitsunobu Graphene (MG) materials G-MG, BSA-MG, and SVAK-MG that demonstrate the wide applicability of this functionalization method. KW - Graphene oxide KW - Mitsunobu reaction KW - Covalent attachment KW - Bovine serum albumin KW - Macrophage polarization KW - Osteogenesis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630483 DO - https://doi.org/10.1016/j.carbon.2025.120221 VL - 238 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-63048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van Den Bossche, T. A1 - Arntzen, M. O. A1 - Becher, D. A1 - Benndorf, D. A1 - Eijsink, V. G. H. A1 - Henry, C. A1 - Jagtap, P. D. A1 - Jehmlich, N. A1 - Juste, C. A1 - Kunath, B. J. A1 - Mesuere, B. A1 - Muth, Thilo A1 - Pope, P. B. A1 - Seifert, J. A1 - Tanca, A. A1 - Uzzau, S. A1 - Wilmes, P. A1 - Hettich, R. L. A1 - Armengaud, J. T1 - The Metaproteomics Initiative: a coordinated approach for propelling the functional characterization of microbiomes N2 - Through connecting genomic and metabolic information, metaproteomics is an essential approach for understanding how microbiomes function in space and time. The international metaproteomics community is delighted to announce the launch of the Metaproteomics Initiative (www.metaproteomics.org), the goal of which is to promote dissemination of metaproteomics fundamentals, advancements, and applications through collaborative networking in microbiome research. The Initiative aims to be the central information hub and open meeting place where newcomers and experts interact to communicate, standardize, and accelerate experimental and bioinformatic methodologies in this feld. We invite the entire microbiome community to join and discuss potential synergies at the interfaces with other disciplines, and to collectively promote innovative approaches to gain deeper insights into microbiome functions and dynamics. KW - Microbiome KW - Metaproteomics KW - Networking KW - Meta-Omics KW - Interactions KW - Education PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542290 DO - https://doi.org/10.1186/s40168-021-01176-w VL - 9 IS - 1 SP - 243 PB - BMC AN - OPUS4-54229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam T1 - The Mechanochemical Excitation of Crystalline LiN3 N2 - Mechanochemical reactions are driven by the direct absorption of mechanical energy by a solid (often crystalline) material. Understanding how this energy is absorbed and ultimately causes a chemical transformation is essential for understanding the elementary stages of mechanochemical transformations. Using as a model system the energetic material LiN3 we here consider how vibrational energy flows through the crystal structure. By considering the compression response of the crystalline material we identify the partitioning of energy into an initial vibrational excitation. Subsequent energy flow is based on concepts of phonon–phonon scattering, which we calculate within a quasi-equilibrium model facilitated by phonon scattering data obtained from Density Functional Theory (DFT). Using this model we demonstrate how the moments (picoseconds) immediately following mechanical impact lead to significant thermal excitation of crystalline LiN3, sufficient to drive marked changes in its electronic structure and hence chemical reactivity. This work paves the way towards an ab initio approach to studying elementary processes in mechanochemical reactions involving crystalline solids. KW - Energetic materials KW - Ab initio simulation KW - DFT KW - Mechanochemistry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559310 DO - https://doi.org/10.1039/d2fd00112h SP - 1 EP - 20 PB - Royal Society of Chemistry AN - OPUS4-55931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel T1 - The load-bearing behaviour of a reinforced concrete beam investigated by optical measuring techniques N2 - Bending beams and slabs are typical examples for structural elements used for reinforced concrete structures such as bridge girders, T-beams and bridge decks. Their strength related failure modes at maximum loading can be divided into bending and shear failure. The failure of beams loaded in bending can occur with or without indication. Therefore, conventional design concepts aim on failure modes with sufficient indication (e.g. large deflections or cracks), as it occurs in the case of secondary flexural compression failure. These indicating factors can also be used for Structural Health Monitoring (SHM) of civil infrastructure systems (e.g. bridges) to identify structural changes. In this context, non-destructive testing (NDT) methods offer different techniques for measuring deflections or crack formation and opening. However, profound knowledge on the determining failure modes of bending beams and their detection by NDT methods is required for the reliable application of SHM. Different NDT methods have been used in this study for analysing the load-bearing behaviour of a reinforced concrete beam in bending. The different measuring techniques are briefly described and their applicability is discussed by means of experimental results. For this purpose, the load-bearing behaviour of a reinforced concrete beam having a span of 2.75 m was investigated in a four-point bending flexural test at laboratory scale. The focus is on the characterization of determining failure modes by optical NDT and the comparison with classical measuring techniques (e.g. deformation measurements by displacement transducers). The bending beam was equipped with two single-mode (SM) sensor fibres. One fibre served as Distributed Optical Fibre Sensor (DOFS), whereas the other fibre contained Fibre Bragg Grating (FBG) sensors. In addition, optical deformation measurements using Digital Image Correlation (DIC) and Stereophotogrammetry (SP) were conducted. KW - Concrete beam KW - Bending KW - Digital image correlation KW - Stereophotogrammetry KW - Distributed fibre optic sensor KW - Fibre bragg grating PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524762 DO - https://doi.org/10.1617/s11527-021-01699-6 VL - 54 IS - 3 SP - Article 102 PB - Springer AN - OPUS4-52476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valdestilhas, Andre A1 - Bayerlein, Bernd A1 - Moreno Torres, Benjami A1 - Zia, Ghezal Ahmad Jan A1 - Muth, Thilo T1 - The Intersection Between Semantic Web and Materials Science N2 - The application and benefits of Semantic Web Technologies (SWT) for managing, sharing, and (re-)using of research data are demonstrated in implementations in the field of Materials Science and Engineering (MSE). However, a compilation and classification are needed to fully recognize the scattered published works with its unique added values. Here, the primary use of SWT at the interface with MSE is identified using specifically created categories. This overview highlights promising opportunities for the application of SWT to MSE, such as enhancing the quality of experimental processes, enriching data with contextual information in knowledge graphs, or using ontologies to perform specific queries on semantically structured data. While interdisciplinary work between the two fields is still in its early stages, a great need is identified to facilitate access for nonexperts and develop and provide user-friendly tools and workflows. The full potential of SWT can best be achieved in the long term by the broad acceptance and active participation of the MSE community. In perspective, these technological solutions will advance the field of MSE by making data FAIR. Data-driven approaches will benefit from these data structures and their connections to catalyze knowledge generation in MSE. KW - Linked open data KW - Materials science KW - Ontology KW - Semantic web PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575506 DO - https://doi.org/10.1002/aisy.202300051 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-57550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Xin A1 - Niederleithinger, Ernst A1 - Hindersmann, Iris T1 - The installation of embedded ultrasonic transducers inside a bridge to monitor temperature and load influence using coda wave interferometry technique N2 - This article presents a unique method of installing a special type of embedded ultrasonic transducers inside a 36-m-long section of an old bridge in Germany. A small-scale load test was carried out by a 16 ton truck to study the temperature and load influence on the bridge, as well as the performance of the embedded transducers. Ultrasonic coda wave interferometry technique, which has high sensitivity in detecting subtle changes in a heterogeneous medium, was used for the data evaluation and interpretation. The separation of two main influence factors (load effect and temperature variation) is studied, and future applications of wave velocity variation rate Φ for structural health condition estimation are discussed. As a preliminary research stage, the installation method and the performance of the ultrasonic transducer are recognized. Load- and temperature-induced weak wave velocity variations are successfully detected with a high resolution of 10−4%. The feasibility of the whole system for long-term structural health monitoring is considered, and further research is planned. KW - Ultrasound KW - Bridge KW - Monitoring KW - coda wave interferometry KW - embedded PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527978 DO - https://doi.org/10.1177/14759217211014430 SN - 1475-9217 VL - 21 IS - 3 SP - 913 EP - 927 PB - SAGE AN - OPUS4-52797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Mohring, Wencke A1 - Wolf, Marcus T1 - The insignificant improvement of corrosion and corrosion fatigue behavior in geothermal environment applying Boehmit coatings on high alloyed steels N2 - The efficacy of alumina-sol based coatings in a water-free atmosphere at high temperatures suggests a potential solution for enhancing the corrosion resistance of high-alloyed steels in Carbon Capture and Storage (CCS) environments. In this study, coupons of X20Cr13, designed for use as injection pipes with 13% Chromium and 0.20% Carbon (1.4021, AISI 420), were sol-gel coated with water and ethanol-based alumina. These coated coupons were then exposed to CO2-saturated saline aquifer water, simulating conditions in the Northern German Basin, for 1000 h at ambient pressure and 60 °C. Corrosion fatigue experiments were also conducted using specimens of X5CrNiMoCuNb16-4 (1.4542, AISI 630), a suitable candidate for geothermal applications, to assess the impact of the ethanol-based coating on the number of cycles to failure at different stress amplitudes. Unfortunately, the coating exhibited early spallation, resulting in corrosion kinetics and corrosion fatigue data identical to those of uncoated specimens. Consequently, the initially promising Boehmit coating is deemed unsuitable for CCS applications and further research therefore not advisable. KW - Alumina coating KW - High alloyed steel KW - Pitting KW - Surface corrosion KW - CO2 KW - Pipeline KW - Corrosion KW - CCS KW - CO2-storage PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623786 DO - https://doi.org/10.3390/app14041575 SN - 2076-3417 VL - 14 IS - 4 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-62378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waniek, Tassilo A1 - Omar, Hassan A1 - Szymoniak, Paulina A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - The influence of water released from particles in epoxy‐based nanocomposites N2 - AbstractRecent studies have hypothesized that the reinforcing effects of boehmite nanoparticles (BNPs) in polymer nanocomposites (PNCs) are partly related to the particles themselves and partly to the water released from the BNP during curing. In this work, PNCs made from dried BNP (dBNP) with concentrations up to 15 wt% are investigated to differentiate particle and water related effects. The observed trend of the storage modulus in dynamic mechanical thermal analysis measurements was found to be independent of the drying procedure. Stiffness maps from intermodulation atomic force microscopy showed that dBNP leads to a stiffening of the interphase surrounding the particles compared with the unaffected epoxy matrix, while a softer interphase was reported for PNCs with as received BNP. A slight decrease in the glass transition temperature was observed by broadband dielectric spectroscopy related to a lowered crosslink density due to the particles. A significantly higher decrease was reported for PNCs with BNP, attributed to water influencing the curing process. In conclusion, the stiffening of PNC with BNP is related to the particles themselves, while the release of water causes the formation of a soft interphase in the vicinity of the particles and a significant decrease in crosslink density. KW - AFM stiffness of interface KW - Aluminium oxide hydroxide KW - Boehmit nanoparticle KW - Glass transition temperature KW - Broadband dielectric spectroscopy KW - Crosslink density control KW - Structure–property relationship KW - Nanocomposites KW - Thermoset PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-606772 DO - https://doi.org/10.1002/app.55937 SN - 0021-8995 SP - 1 EP - 16 PB - Wiley AN - OPUS4-60677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Lima Vasconcelos, S. A1 - Sattler, M. A1 - Müller, B. A1 - Plehn, W. A1 - Horn, Wolfgang T1 - The Influence of textile floor coverings on the indoor air quality N2 - Textile floor coverings are often used in offices and residential buildings. Large areas like meeting rooms, cinemas, theaters and hotels are often equipped with such coverings. They contribute to the comfort of the users as they provide high pedaling comfort and sound absorption. The weakness of these building materials is due to the odor emission that is released from the floor covering, which affects the comfort of the users. A bad air quality and the resulting dissatisfaction can lead to lower employee productivity. The research project of the Hochschule für Technik und Wirtschaft Berlin (HTW-Berlin) is promoted by the German Environment Agency (UBA). The project has the following title: Low-emission and low-odor building products for energy-efficient buildings - Development of requirements and concepts for the Blue Angel from a climate protection perspective; investigates the emission and odor behavior of textile floor coverings (Emissions- und geruchsarme Bauprodukte für energieeffiziente Gebäude - Entwicklung von Anforderungen und Konzepten für den Blauen Engel aus Klimaschutzsicht; untersucht das Emissions- und Geruchsverhalten textiler Bodenbeläge). T2 - Clima 2019 Congress CY - Bucharest, Romania DA - 26.05.2019 KW - VOC Emissionen KW - Geruch KW - Bodenbelag KW - AgBB Bewertung PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-487341 DO - https://doi.org/10.1051/e3sconf/201911102051 SN - 2267-1242 VL - 111 SP - 02051-1 EP - 02051-6 PB - EDP Sciences AN - OPUS4-48734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - The influence of processing parameters on X‑ray emission during ultra‑short pulse laser machining N2 - During ultra-short laser material processing at high laser pulse repetition rates unwanted X-ray radiation can be generated in a quantity that may constitute a potential risk for health. An adequate X-ray radiation protection requires a thoroughly understanding of the influence of the laser processing parameters on the generation of X-ray radiation. In the present work, the generated X-ray dose during laser machining was investigated in air for varying beam scanning conditions at a pulse duration of 925 fs, a center wavelength of 1030 nm and a laser peak intensity of 2.6 × 10^14 W/cm^2. The X-ray radiation dose and the corresponding spectral X-ray emission were investigated in dependence on the laser’s pulse repetition rate and on the beam scanning speed. The results show a strong dependence of the X-ray emission on these laser processing parameters. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486441 DO - https://doi.org/10.1007/s00339-019-2827-y SN - 0947-8396 SN - 1432-0630 VL - 125 IS - 8 SP - 570, 1 EP - 8 PB - Springer AN - OPUS4-48644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geoerg, Paul A1 - Schumann, Jette A1 - Holl, Stefan A1 - Holl, Maik A1 - Hofmann-Böllinghaus, Anja T1 - The influence of individual impairments in crowd dynamics N2 - The importance of empirical relations to quantify the movement of pedestrians through a facility has increased during the last decades since performance-based design methods became more common. Bottlenecks are of special interest because of their importance for egress routes and as they result in a reduced capacity. The empirical relations as the density-dependent movement speed or flow rate were derived by studies under laboratory conditions, which were usually conducted with populations of homogeneous characteristics forbetter control of influencing variables. If individual characteristics of a crowd become more heterogeneous, individuals were forced to adapt their individual movement and control individual manoeuvring. These unintended interactions lead to a different shape of the fundamental empirical relations. Here, we present results from a movement study under well-controlled boundary conditions in which participants with and without different characteristics of disabilities participated. To consider the effect of different heterogeneities on the capacity of a facility, fundamental diagrams are generated using the Voronoi method. If participants with visible disabilities (such as using assistive devices) are part of a crowd, significant differences relating to the shape of the empirical Relations and the capacities are found. This indicates that the heterogeneity of a Population leads to an increased interpersonal interaction which results in influenced movement characteristics. KW - Engineering egress data KW - Heterogeneity KW - Human behaviour KW - Movement characteristics KW - Pedestrian dynamics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508943 DO - https://doi.org/10.1002/fam.2789 SN - 0308-0501 VL - 45 IS - 4 SP - 529 EP - 542 PB - Wiley Online Libary CY - New Jersey, USA AN - OPUS4-50894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shipov, A. A1 - Zaslansky, P. A1 - Riesemeier, Heinrich A1 - Segev, G. A1 - Atkins, A. A1 - Kalish-Achrai, N. A1 - Weiner, S. A1 - Shahar, R. T1 - The influence of estrogen deficiency on the structural and mechanical properties of rat cortical bone N2 - Background. Post-menopausal osteoporosis is a common health problem worldwide, most commonly caused by estrogen deficiency. Most of the information regarding the skeletal effects of this disease relates to trabecular bone, while cortical bone is less studied. The purpose of this study was to evaluate the influence of estrogen deficiency on the structure and mechanical properties of cortical bone. Methods. Eight ovariectomized (OVH) and eight intact (control) Sprague Dawley rats were used. Structural features of femoral cortical bone were studied by light microscopy, scanning electron microscopy and synchrotron-based microcomputer-tomography and their mechanical properties determined by nano-indentation. Results. Cortical bone of both study groups contains two distinct regions: organized circumferential lamellae and disordered bone with highly mineralized cartilaginous islands. Lacunar volume was lower in the OVH group both in the lamellar and disorganized regions (182 ± 75 µm3 vs 232 ± 106 µm3 , P < 0.001 and 195 ± 86 µm3 vs. 247 ± 106 µm3 , P < 0.001, respectively). Lacunar density was also lower in both bone regions of the OVH group (40 ± 18 ×103 lacunae/mm3 vs. 47 ± 9×103 lacunae/mm3 in the lamellar region, P = 0.003 and 63 ± 18×103 lacunae/mm3 vs. 75 ± 13×103 lacunae/mm3 in the disorganized region, P < 0.001). Vascular canal volume was lower in the disorganized region of the bone in the OVH group compared to the same Region in the control group (P < 0.001). Indentation moduli were not different between the study groups in both bone regions. Discussion. Changes to cortical bone associated with estrogen deficiency in rats require high-resolution methods for detection. Caution is required in the application of These results to humans due to major structural differences between human and rat bone. KW - Estrogen KW - Disorganized bone KW - Rat KW - Lacunae KW - Ovariectomy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520798 DO - https://doi.org/10.7717/peerj.10213 VL - 9 SP - e10213 AN - OPUS4-52079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -