TY - JOUR A1 - Fürst, Richard A1 - Fürst, E. A1 - Vlach, T. A1 - Repka, J. A1 - Pokorny, M. A1 - Mozer, V. T1 - Use of Cement Suspension as an Alternative Matrix Material for Textile-Reinforced Concrete N2 - Textile-reinforced concrete (TRC) is a material consisting of high-performance concrete (HPC) and tensile reinforcement comprised of carbon roving with epoxy resin matrix. However, the problem of low epoxy resin resistance at higher temperatures persists. In this work, an alternative to the epoxy resin matrix, a non-combustible cement suspension (cement milk) which has proven stability at elevated temperatures, was evaluated. In the first part of the work, microscopic research was carried out to determine the distribution of particle sizes in the cement suspension. Subsequently, five series of plate samples differing in the type of cement and the method of textile reinforcement saturation were designed and prepared. Mechanical experiments (four-point bending tests) were carried out to verify the properties of each sample type. It was found that the highest efficiency of carbon roving saturation was achieved by using finer ground cement (CEM 52.5) and the pressure saturation method. Moreover, this solution also exhibited the best results in the four-point bending test. Finally, the use of CEM 52.5 in the cement matrix appears to be a feasible variant for TRC constructions that could overcome problems with its low temperature resistance. KW - Textile-reinforced concrete KW - High-performance concrete KW - Carbon fibers KW - Cement matrix PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527100 DO - https://doi.org/10.3390/ma14092127 SN - 1996-1944 VL - 14 IS - 9 SP - 2127 PB - MDPI CY - Basel AN - OPUS4-52710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klinge, A A1 - Mönig, J A1 - Ziegert, C A1 - Richter, Matthias A1 - Kalbe, Ute A1 - Horn, Wolfgang A1 - Röhlen, U A1 - Rauscher, S A1 - Roswag-Klinge, E T1 - upMIN 100 – upcycling of mineral construction and demolition waste to substitute natural aggregates in earthen building materials N2 - The construction sector is one of the most resource-intensive sectors in Germany and is responsible for 40 % of CO2 emissions. Around 517 million tons of mineral raw materials are required annually for the construction of buildings in Germany. At the same time, mineral construction waste was the largest material flow at 229.3 million tons (2020). The rates of construction and demolition waste (CDW) recycling have increased since 2000, especially for mineral waste. Nevertheless, the majority of recycled aggregates are used in technically largely unregulated applications (e.g. road construction). This downcycling leads to a loss of valuable resources for technically and economically valuable applications. The upMIN 100 research project is investigating the question of whether and to what extent recycled CDW is suitable as an additive an binder in earthen building materials. The focus is placed on grain sizes of < 2 mm, which are currently predominantly landfilled, as there are at present no regulations for their use in building products. The soil matrix of earthen building materials however, naturally contains of different grain sizes, whith < 2mm – 0,063 for aggregates and < 0.063 mm as a binder. Therefore, the focused grain sizes (sand, clay and silt) could have a high usage potential. In order to enable the use of CDW, the technical feasibility must be ensured, quality requirements for source materials (e.g. threshold values for pollutants in terms of health and environmental compatibility and hazardous substances) and permissible proportions of recycled aggregates must be defined. Two different building material developments (earth blocks and -plaster)were used to assess both, the technical feasibility as well the pollutant content of the recycled aggregate and its final emissions into the indoor air. For both materials two mixtures could be established, that also meet the mechanical specifications according to the DIN standard, such as the compressive strength. A method was developed to design material mixtures with a high amount of CDW that comply with the defined limit values. The mixtures reached a recycling rate of 28 % with high mechanical properties and 70 % with minimum strength requirements. KW - Mineral waste KW - Upcycling KW - Earthen building product KW - Circular construction PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652831 DO - https://doi.org/10.1088/1755-1315/1554/1/012084 SN - 1755-1307 VL - 1554 IS - 1 SP - 1 EP - 9 PB - IOP Publishing AN - OPUS4-65283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, Henning A1 - Sintschuk, Michael A1 - Britzke, Ralf A1 - Dayani, Shahabeddin A1 - Bruno, Giovanni T1 - Upgraded imaging capabilities at the BAMline (BESSY II) N2 - The BAMline at the BESSY II synchrotron X-ray source has enabled research for more than 20 years in widely spread research fields such as materials science, biology, cultural heritage and medicine. As a nondestructive characterization method, synchrotron X-ray imaging, especially tomography, plays a particularly important role in structural characterization. A recent upgrade of key equipment of the BAMline widens its imaging capabilities: shorter scan acquisition times are now possible, in situ and operando studies can now be routinely performed, and different energy spectra can easily be set up. In fact, the upgraded double-multilayer monochromator brings full flexibility by yielding different energy spectra to optimize flux and energy resolution as desired. The upgraded detector (based on an sCMOS camera) also allows exploiting the higher flux with reduced readout times. Furthermore, an installed slip ring allows the sample stage to continuously rotate. The latter feature enables tomographic observation of processes occurring in the time scale of a few seconds. KW - Synchrotron radiation KW - Computed tomography KW - Double-multilayer monochromators KW - Pink beams KW - X-ray optics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556907 DO - https://doi.org/10.1107/S1600577522007342 SN - 1600-5775 VL - 29 IS - Pt 5 SP - 1292 EP - 1298 PB - International Union of Crystallography CY - Chester AN - OPUS4-55690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kohlbrecher, J. A1 - Breßler, Ingo T1 - Updates in SASfit for fitting analytical expressions and numerical models to small-angle scattering patterns N2 - Small-angle scattering is an increasingly common method for characterizing particle ensembles in a wide variety of sample types and for diverse areas of application. SASfit has been one of the most comprehensive and flexible curve-fitting programs for decades, with many specialized tools for various fields. Here, a selection of enhancements and additions to the SASfit program are presented that may be of great benefit to interested and advanced users alike: (a) further development of the technical basis of the program, such as new numerical algorithms currently in use, a continuous integration practice for automated building and packaging of the software, and upgrades on the plug-in system for easier adoption by third-party developers; (b) a selection of new form factors for anisotropic scattering patterns and updates to existing form factors to account for multiple scattering effects; (c) a new type of a very flexible distribution called metalog [Keelin (2016). Decis. Anal. 13, 243–277], and regularization techniques such as the expectation-maximization method [Dempster et al. (1977). J. R. Stat. Soc. Ser. B (Methodological), 39, 1–22; Richardson (1972) J. Opt. Soc. Am. 62, 55; Lucy (1974). Astron. J. 79, 745; Lucy (1994). Astron. Astrophys. 289, 983–994], which is compared with fits of analytical size distributions via the non-linear least-squares method; and (d) new structure factors, especially for ordered nano- and meso-scaled material systems, as well as the Ornstein–Zernike solver for numerical determination of particle interactions and the resulting structure factor when no analytical solution is available, with the aim of incorporating its effects into the small-angle scattering intensity model used for fitting with SASfit. KW - Small-angle scattering KW - Numerical models KW - Structure factors KW - Regularization KW - SAXS KW - SANS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565069 DO - https://doi.org/10.1107/S1600576722009037 SN - 0021-8898 SN - 1600-5767 VL - 55 IS - 6 SP - 1677 EP - 1688 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-56506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Allix, M. A1 - Davis, M.J. A1 - Duran, A. A1 - Höche, T. A1 - Honma, T. A1 - Komatsu, T. A1 - Krüger, S. A1 - Mitra, I. A1 - Müller, Ralf A1 - Nakane, S. A1 - Pascual, M.J. A1 - Schmelzer, J.W. A1 - Zanotto, E.D. A1 - Zhou, S. T1 - Updated definition of glass-ceramics N2 - Glass-ceramics are noted for their unusual combination of properties and manifold commercialized products for consumer and specialized markets. Evolution of novel glass and ceramic processing routes, a plethora of new compositions, and unique exotic nano- and microstructures over the past 60 years led us to review the Definition of glass-ceramics. Well-established and emerging processing methods, such as co-firing, additive manufacturing, and laser patterning are analyzed concerning the core requirements of processing glass-ceramics and the Performance of the final products. In this communication, we propose a revised, updated definition of glass-ceramics, which reads “Glass-ceramics are inorganic, non-metallic materials prepared by controlled crystallization of glasses via different processing methods. They contain at least one type of functional crystalline phase and a residual glass. The volume fraction crystallized may vary from ppm to almost 100%”. KW - Glass-ceramics definition PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464711 DO - https://doi.org/10.1016/j.jnoncrysol.2018.01.033 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 3 EP - 10 PB - Elsevier B.V. AN - OPUS4-46471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arai, Marylyn Setsuko A1 - Ravaro, Leandro Piaggi A1 - Brambilla, Gabriel A1 - Maia, Lauro June Queiroz A1 - Reza Dousti, Mohammad A1 - de Camargo, Andrea Simone Stucchi T1 - Upconverting Nanoparticles and Cu(I) Complex-Based Platform for Oxygen Sensing, Thermometry, and Emission Color Tuning N2 - Multifunctional nanoplatforms combine different material properties to meet a wide range of applications, allowing highly customizable systems. In this rapidly advancing research field, we introduce a multifunctional nanomaterial based on the synergy between Tm3+-doped upconverting nanoparticles (UCNPs) and a Cu(I) complex (CuCom). This material is designed for oxygen sensing, optical thermometry, and emission color tuning. In various concentrations, the CuCom complex was electrostatically integrated into a mesoporous silica shell surrounding the core UCNPs (UCNP@mSiO2). The optimized system, UCNP@mSiO2@CuCom-10, was evaluated for different applications. Due to the spectral overlap between the CuCom absorption and the nanoparticles emission, excitation at 980 nm allows most of the UV-blue emission output from the UCNPs to be transferred to the CuCom via luminescent resonance energy transfer (LRET), producing red emission from the molecule. The remaining Tm3+ emission enables optical thermometry, while CuCom’s sensitivity to molecular oxygen supports its application in gas sensing. In upconversion mode, the nanoplatform achieved a Stern−Volmer constant for O2 sensing of 1.64 and demonstrated thermometric relative sensitivities of 0.9% and 1% K−1 at room temperature, with a linear response from 193 to 373 K. Additionally, the emission color of UCNP@mSiO2@CuCom-10 can be tuned from blue to white and yellow, by varying the excitation and temperature, adding further functionality to the system. This multifunctional platform suggests promising applications in biology, medicine, and environmental monitoring. KW - M KW - O2 sensing KW - Upconversion KW - Luminescence resonance energy transfer (LRET) KW - Optical thermometry KW - Mesoporous silica shell PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625869 SN - 2574-0970 DO - https://doi.org/10.1021/acsanm.4c06351 VL - 8 SP - 854 EP - 862 PB - American Chemical Society (ACS) AN - OPUS4-62586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oskoei, Párástu A1 - Afonso, Rúben A1 - Bastos, Verónica A1 - Nogueira, João A1 - Keller, Lisa-Marie A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Daniel-da-Silva, Ana L. A1 - Oliveira, Helena T1 - Upconversion Nanoparticles with Mesoporous Silica Coatings for Doxorubicin Targeted Delivery to Melanoma Cells N2 - Melanoma is one of the most aggressive skin cancers and requires innovative therapeutic strategies to overcome the limitations of conventional therapies. In this work, upconversion nanoparticles coated with mesoporous silica and functionalized with folic acid (UCNP@mSiO2-FA) were developed as a targeted nanocarrier system for the delivery of doxorubicin (DOX). The UCNPs were synthesized via thermal decomposition, coated with mesoporous silica shells, and functionalized with folic acid (FA) to enable receptor-mediated targeting. DOX was then loaded into the mesoporous silica coating by adsorption, yielding UCNP@mSiO2-FA-DOX. The different UCNPs were characterized for size, composition, colloidal stability, and loading and release of DOX. This comprehensive physicochemical characterization confirmed a high DOX loading efficiency and a slightly increased drug release under acidic conditions, mimicking the tumour microenvironment. In vitro assays using four melanoma cell lines (A375, B16-F10, MNT-1, and SK-MEL-28) revealed an excellent biocompatibility of UCNP@mSiO2-FA and a significantly higher cytotoxicity of UCNP@mSiO2-FA-DOX compared to unloaded UCNPs, in a dose-dependent manner. Cell cycle analysis demonstrated G2/M phase arrest after treatment with UCNP@mSiO2-FA-DOX, confirming its antiproliferative effect. Overall, UCNP@mSiO2-FA-DOX represents a promising nanoplatform for targeted melanoma therapy, combining active tumour targeting and enhanced anticancer efficacy. KW - Fluorescence KW - Synthesis KW - Nano KW - Particle KW - Silica KW - Cell KW - Uptake KW - Drug KW - Characterization KW - DOX KW - Imaging KW - Toxicity KW - Release KW - pH PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653596 DO - https://doi.org/10.3390/molecules31010074 SN - 1420-3049 VL - 31 IS - 1 SP - 1 EP - 18 PB - MDPI AG AN - OPUS4-65359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nikitin, D. A1 - Biliak, K. A1 - Protsak, M. A1 - Adejube, B. A1 - Ali-Ogly, S. A1 - Škorvanková, K. A1 - Červenková, V. A1 - Katuta, R. A1 - Tosco, M. A1 - Hanuš, J. A1 - Černochová, Z. A1 - Černoch, P. A1 - Štěpánek, P. A1 - Boiko, O. A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Faupel, F. A1 - Biedermann, H. A1 - Vahl, A. A1 - Choukourov, A. T1 - Unveiling the Fundamental Principles of Reconfigurable Resistance States in Silver/Poly(ethylene glycol) Nanofluids N2 - Developing novel memristive systems aims to implement key principles of biological neuron assemblies – plasticity, adaptivity, and self-organization – into artificial devices for parallel, energy-efficient computing. Solid-state memristive devices, such as crossbar arrays and percolated nanoparticle (NP) networks, already demonstrate these properties. However, closer similarity to neural networks is expected from liquid-state systems, including polymer melts, which remain largely unexplored. Here, the resistive switching in silver/poly(ethylene glycol) (Ag/PEG) nanofluids, prepared by depositing gas-aggregated Ag NPs into PEGs of varying molecular mass, is investigated. These systems form long-range conductive NP bridges with reconfigurable resistance states in response to an electric field. The zeta-potential of Ag NPs and molecular mobility of PEG determine the prevalence of low resistance (ohmic) state, high resistance states (poor conductance) or intermediate transition states governed by space-charge-limited conduction or electron tunneling. The occurrence of these states is given by the interparticle gaps, which are determined by the conformation of PEG molecules adsorbed on the NPs. It is presented, for the first time, an equivalent circuit model for the Ag/PEG system. These findings pave the way to adopt polymer melts as matrices for neuromorphic engineering and bio-inspired electronics. KW - Nanofluids PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-635351 DO - https://doi.org/10.1002/advs.202505103 VL - 12 SP - 1 EP - 14 PB - Wiley AN - OPUS4-63535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishmastnehi, Moslem A1 - Stawski, Tomasz M. A1 - Eftekhari, Negar A1 - Schneider, Kathrin P. A1 - Vaccaro, Carmela A1 - Aghajani, Iman A1 - Grbanovic, Ana Marija A1 - Korn, Lorenz T1 - Unveiling the craftsmanship and knowledge behind iranian stuccoes (11th–14th centuries): New insights from an archaeometric perspective N2 - Gypsum-based stucco decorations of 47 monuments in Iran, from the Seljuq to the Ilkhanid period (11th-14th centuries), were studied by multimodal analytical methods, including X-ray diffraction, X-ray fluorescence, scanning electron microscopy and image analysis to evaluate their composition properties. The assessment of results shows that stucco masters in those periods exerted control over the setting process of the gypsum-paste and its microstructure by adjusting water-to-plaster ratio, fine-clay addition, and by means of mechanical processing. Furthermore, the presence of anhydrite in the composition of stucco decorations located in the hot-desert climate of Iran provides evidence for the probability of gypsum-anhydrite transition, which has technical and preservation consequences for this less-investigated type of cultural materials. KW - Gypsum KW - Diffraction KW - Anhydrite KW - Calcium sulfate PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-628406 DO - https://doi.org/10.1016/j.jas.2025.106199 SN - 1095-9238 VL - 177 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-62840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sreekala, L. A1 - Dey, P. A1 - Hickel, Tilmann A1 - Neugebauer, J. T1 - Unveiling nonmonotonic chemical trends in the solubility of H in complex Fe-Cr-Mn carbides by means of ab initio based approaches N2 - The microstructure of advanced high-strength steels often shows a sensitive dependence on alloying. For example, adding Cr to improve the corrosion resistance of medium-Mn steels also enhances the precipitation of carbides. The current study focuses on the behavior of H in such complex multicomponent carbides by employing different methodological strategies. We systematically analyze the impact of Cr, Mn, and Fe using density functional theory (DFT) for two prototype precipitate phases, M3C and M23C6, where M represents the metal sublattice. Our results show that the addition of these alloying elements yields strong nonmonotonic chemical trends for the H solubility. We identify magnetovolume effects as the origin for this behavior, which depend on the considered system, the sites occupied by H, and short- vs long-range interactions between H and the alloying elements. We further show that the H solubility is directly correlated with the occupation of its nearest-neighbor shells by Cr and Mn. Based on these insights, DFT data from H containing binary-metal carbides are used to design a ridge regression based model that predicts the solubility of H in the ternary-metal carbides (Fe-Cr-Mn-C). KW - Hydrogen KW - High-strength steel KW - Carbide KW - Ab initio KW - Complexity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542271 DO - https://doi.org/10.1103/PhysRevMaterials.6.014403 SN - 2475-9953 VL - 6 IS - 1 SP - 1 EP - 14 PB - American Physical Society (APS) CY - College Park, MD AN - OPUS4-54227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Marschall, Niklas A1 - Niebergall, Ute A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Unveiling Effects of Biodiesel and Diesel on Environmental Stress Cracking of PE-HD N2 - The behavior of high‐density polyethylene with respect to resistance against environmental stress cracking (ESC) is usually regarded as an inherent material property being specific for respective types of PE‐HD and tested using standardized methods, conditions, and also standard testing liquids (usually aqueous surfactant solutions). On the other hand, for practical applications the ESC behavior of those polymeric materials, commonly used for pipes or containers, in contact with other liquids (e.g., fuels) is often of relevant interest, but for a reasonable assessment, where consistent benchmark data for a direct comparison are often missing, it is essential to determine the actually prevailing failure mode and classify it related to crack propagation or other mechanisms. Using the well‐established Full Notch Creep Test, which favorably allows for a detailed microscopic fracture surface analysis after failure, the behavior of two typical PE‐HD types for container applications is investigated in biodiesel and diesel and compared to a standard surfactant solution. This enables a clear identification of characteristic features of the interaction of biodiesel and diesel as sorptive fuels in contact with the polymer, revealing the complex interplay of sorption and plasticization as well as ESC inducing effects on PE‐HD, which could be clearly shown for both fuels. KW - Biodiesel KW - Confocal laser scanning microscopy (LSM) KW - Diesel KW - Full notch creep test (FNCT) KW - Plasticization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650525 DO - https://doi.org/10.1002/pen.70239 SN - 0032-3888 SP - 1 EP - 16 PB - Wiley CY - Hoboken (NJ) AN - OPUS4-65052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jauregui Rozo, Maria A1 - Sunder, S. A1 - Tabaka, Weronika A1 - Klaffke, Benjamin A1 - Ruckdäschel, H. A1 - Schartel, Bernhard T1 - Unveiling aluminum diethyl phosphinate dual identity: Transfer from epoxy resins to glass fiber-reinforced composites N2 - This study examines the transfer of the flame-retardant aluminum diethyl phosphinate (AlPi) from epoxy resins to composites and the impact of AlPi on fire behavior and fire stability. Further, the effects of different particle sizes and the addition of zinc hydroxy stannate (ZHS) and inorganic silicate (InSi) are investigated. The research provides a detailed analysis of the fire behavior, fire stability, pyrolysis, flame-retardant modes of action, and flame retardancy index. Interestingly, the particle sizes did not significantly affect the flammability, fire behavior, or fire stability in the systems investigated. AlPi acts primarily in the gas phase, releasing phosphorus that yields flame inhibition. Adding glass fibers (GFs) to the epoxy resin boosts the flame retardancy in the condensed phase, reducing the heat release rate (HRR), total heat release (THR), and peak heat release rate (PHRR) by about 60%. This improvement is largely due to replacing fuel and forming a protective layer during burning. Despite the differences between thermoset and composite, the study demonstrates an effective transfer of flame-retardant properties from epoxy resins to fiber-reinforced composites, significantly enhancing the flame retardancy performance in both material systems. KW - Aluminum diethyl phosphinate KW - Epoxy resins KW - Fire behavior KW - Fire stability KW - Gas-phase active KW - Glass fiber-reinforced composites KW - Particle sizes PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643013 DO - https://doi.org/10.1002/pc.29911 SN - 1548-0569 SN - 0272-8397 VL - 46 IS - 14 SP - 12981 EP - 12999 PB - Wiley AN - OPUS4-64301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholl, Juliane A1 - Lisec, Jan A1 - Bagheri, Abbas A1 - Meiers, Emelie A1 - Russo, Francesco Friedrich A1 - Haase, Hajo A1 - Koch, Matthias T1 - Unveiling aging mechanisms of electrolytes in commercial end-of-life lithium-ion batteries N2 - In this study, 77 end-of-life (EOL) commercial lithium-ion batteries (LIBs) of various formats were systematically analyzed to investigate electrolyte degradation and the influence of pristine electrolyte compositions on aging behavior. Comprehensive chemical characterization was conducted using targeted and non-targeted mass spectrometry (MS), employing LC-MS/MS, GC-MS, and high-resolution MS (HRMS). This integrated approach enabled the identification of confirmed pristine components and complex degradation products. The results show that rechargeable pouch and cylindrical cells often deviate from conventional model systems, containing mixed lithium salt anions, ionic liquids (ILs), and high concentrations of triflates, triflimides, and bis(fluorosulfonyl)imide (FSI). These function as solvents, salts, or safety-enhancing additives. Specific IL degradation products were identified, and hypotheses formulated on previously unreported pathways. Furthermore, a novel series of oligomerization products of propylene carbonate (PC) was detected. In contrast, non-rechargeable coin cells revealed widespread use of per- and polyfluoroalkyl substances (PFAS) in their original electrolytes. Based on ex situ analyses, hypothetical PFAS degradation mechanisms are proposed here for the first time. The absence of carbonate oligomers and lithium salt-derived products, alongside the presence of standard carbonates, indicates lithium counterion coordination as a key factor in Lewis acid-catalyzed degradation. This study offers valuable insights into real-world battery aging. KW - Transformation products KW - Lithium-ion batteries KW - Fluorinated Compounds KW - Gas chromatography/ QTOF-MS KW - HILIC-LC-MS/MS KW - PFAS KW - Electrochemistry PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644991 DO - https://doi.org/10.1016/j.jpowsour.2025.238613 SN - 0378-7753 VL - 661 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-64499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel A1 - Wolthusen, Helmut T1 - Unusual Corrosion Behavior of 1.4542 Exposed a Laboratory Saline Aquifer Water CCS-Environment N2 - Differently heat treated coupons of 1.4542 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. Surface corrosion layers are homogeneous but unusually discontinuously ellipsoidal. After 8000 h at 100 bar maximum corrosion rate in the liquid phase is approximately 0.014 mm/year, with normalizing providing best corrosion resistance and approximately 0.003 mm/year in the supercritical phase where hardening+tempering at 670 °C leads to lowest corrosion rates. KW - CO2-storage KW - Supercritical CO2 KW - Steel KW - Pipeline KW - Corrosion KW - CCS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418472 DO - https://doi.org/10.1016/j.egypro.2017.03.1679 VL - 114 SP - 5229 EP - 5240 PB - Elsevier Ltd. AN - OPUS4-41847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cotic, P. A1 - Niederleithinger, Ernst A1 - Stoppel, Markus T1 - Unsupervised fusion of scattered data collected by a multi-sensor robot on concrete N2 - At BAM a multi-sensor robot system BetoScan is used for the investigation of reinforced concrete floors affected by corrosion in parking garages. Potential maps, as well as the distribution of concrete cover and moisture can be assessed simultaneously and data can be collected contactlessly. In order to evaluate the extent of degradation adequately and to divide the investigated structure into zones with defined damage classes, large data sets have to be collected and interpreted manually. Thus, to promote an efficient data evaluation framework, which could speed up and simplify the evaluation of large data sets, an unsupervised data fusion is of major interest. However, taking into account that collected data do not certainly coincide in space, a scattered data interpolation method should be applied prior data fusion. In the paper, a case study involving a BetoScan data set acquired from a reinforced concrete floor of a parking garage in Germany is presented. The data set includes potential mapping, covermeter based on eddy current, as well as microwave moisture measurements. Among the examined methods for interpolation of scattered data, kriging shows to yield smooth interpolated data plots even in the case of very sparse data. In the post-processing step, the investigated structure is efficiently segmented into zones using clustering based data fusion methods, which prove to be robust enough also for handling noisy data. Based on the minimization of the XB validity index, an unsupervised selection of optimal segmentation into damage classes is derived. T2 - DGZfP-Jahrestagung 2014 CY - Potsdam, Germany DA - 26.05.2014 KW - Robot KW - Data fusion KW - Ultrasonics KW - Radar KW - Potential method PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-337943 UR - http://www.ndt.net/article/dgzfp2014/papers/di2c1.pdf SN - 978-3-940283-61-0 IS - DGZfP-BB 148 SP - Di.2.C.1, 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) AN - OPUS4-33794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, Cong A1 - Aumont, Cédric A1 - Mikhailova, Alina A. A1 - Audisio, Tracy A1 - Hellemans, Simon A1 - Weng, Yi-Ming A1 - He, Shulin A1 - Clitheroe, Crystal A1 - Wang, Zongqing A1 - Haifig, Ives A1 - Sillam-Dussès, David A1 - Buček, Aleš A1 - Tokuda, Gaku A1 - Šobotník, Jan A1 - Harrison, Mark C. A1 - McMahon, Dino P. A1 - Bourguignon, Thomas T1 - Unravelling the evolution of wood-feeding in termites with 47 high-resolution genome assemblies N2 - Termites are a lineage of social cockroaches abundant in tropical ecosystems where they are key decomposers of organic matter. Despite their ecological significance, only a handful of reference-quality termite genomes have been sequenced, which is insufficient to unravel the genetic mechanisms that have contributed to their ecological success. Here, we perform sequencing and hybrid assembly of 45 taxonomically and ecologically diverse termites and two cockroaches, resulting in haplotype-merged genome assemblies of 47 species, 22 of which were near-chromosome level. Next, we examine the link between termite dietary evolution and major genomic events. We find that Termitidae, which include ~80% of described termite species, have larger genomes with more genes and a higher proportion of transposons than other termites. Our analyses identify a gene number expansion early in the evolution of Termitidae, including an expansion of the repertoire of CAZymes, the genes involved in lignocellulose degradation. Notably, this expansion of genomes and gene repertoires coincided with the origin of soil-feeding in Termitidae and remained unchanged in lineages that secondarily reverted to a wood-based diet. Overall, our sequencing effort multiplies the number of available termite genomes by six and provides insights into the genome evolution of an ancient lineage of social insects. KW - Comparative genomics KW - Entomology KW - Genome evolution KW - Phylogenetics PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651719 DO - https://doi.org/10.1038/s41467-025-65969-5 SN - 2041-1723 VL - 16 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-65171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scherb, T. A1 - Fantin, Andrea A1 - Checcia, S. A1 - Stephan-Scherb, Christiane A1 - Escolástico, S. A1 - Franz, A. A1 - Seeger, J. A1 - Meulenberg, W. A. A1 - d'Acapito, F. A1 - Serra, J. M. T1 - Unravelling the crystal structure of Nd5.8WO12-d and Nd5.7W0.75Mo0.25O12-d mixed ionic electronic conductors N2 - Mixed ionic electronic conducting ceramics Nd6-yWO12-d (d is the Oxygen deficiency) provide excellent stability in harsh environments containing strongly reactive gases such as CO2, CO, H2, H2O or H2S. Due to this chemical stability, they are promising and cost-efficient candidate materials for gas separation, catalytic membrane reactors and protonic ceramic fuel cell technologies. As in La6-yWO12-d, the ionic/electronic transport mechanism in Nd6-yWO12-d is expected to be largely controlled by the crystal structure, the conclusive determination of which is still lacking. This work presents a crystallographic study of Nd5.8WO12-d and molybdenum-substituted Nd5.7W0.75Mo0.25O12-d prepared by the citrate complexation route. High-resolution synchrotron and neutron powder diffraction data were used in combined Rietveld refinements to unravel the crystal structure of Nd5.8WO12-d and Nd5.7W0.75Mo0.25O12-d. Both investigated samples crystallize in a defect fluorite crystal structure with space group Fm3m and doubled unit-cell parameter due to cation ordering. Mo replacesWat bothWyckoff sites 4a and 48h and is evenly distributed, in contrast with La6-yWO12-d. X-ray absorption spectroscopy as a function of partial pressure pO2 in the near-edge regions excludes oxidation state changes of Nd (Nd3+) and W(W6+) in reducing conditions: the enhanced hydrogen permeation, i.e. ambipolar conduction, observed in Mo-substituted Nd6-yWO12-d is therefore explained by the higher Mo reducibility and the creation of additional – disordered – oxygen vacancies. KW - Powder diffraction KW - Mixed conductors KW - X-ray absorption spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514607 DO - https://doi.org/10.1107/S1600576720012698 VL - 53 SP - 1471 EP - 1483 AN - OPUS4-51460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Senges, Gene A1 - de Oliveira Guilherme Buzanich, Ana A1 - Lindič, Tilen A1 - Gully, Tyler A. A1 - Winter, Marlon A1 - Radtke, Martin A1 - Röder, Bettina A1 - Steinhauer, Simon A1 - Paulus, Beate A1 - Emmerling, Franziska A1 - Riedel, Sebastian T1 - Unravelling highly oxidized nickel centers in the anodic black film formed during the Simons process by in situ X-ray absorption near edge structure spectroscopy N2 - The electrofluorination after Simons has been used for the last century to produce everyday life materials. An in situ XANES investigation of the controversially debated black film apparent in the Simons process revealed high-valent nickel centers. KW - Synchrotron KW - BAMline KW - XANES PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608366 DO - https://doi.org/10.1039/d3sc06081k SN - 2041-6520 VL - 15 IS - 12 SP - 4504 EP - 4509 PB - Royal Society of Chemistry (RSC) AN - OPUS4-60836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Sebastian A1 - Gluth, Gregor ED - Rossignol, S. ED - Gluth, Gregor T1 - Unraveling the hardening mechanism during laser-induced slip casting of lithium aluminate-microsilica slurry N2 - Additive manufacturing (AM) of alkali-activated materials is a promising method for producing ceramic precursors, construction elements and other parts. A recently introduced AM process is laser-induced slip casting of lithium aluminate/microsilica slurries, which yields parts with excellent mechanical strengths. To clarify the underlying mechanisms, μ-Raman spectroscopy was applied to parts produced by the process, and the dissolution and hydration of lithium aluminate was studied inter alia using conventional and in-situ X-ray diffraction. The results show that significant dissolution of lithium aluminate occurs, particularly at increased temperatures during laser interaction, which leads to an increase of pH and precipitation of an akopovaite-like Li-Al-CO3 layered double hydroxide. The increase of the pH is likely to induce dissolution of the microsilica and possibly formation of a hydrous lithium aluminosilicate gel. These observations explain the strength evolution of the studied parts and can also aid the development and improvement of related AM methods. KW - Alkali-activated materials KW - Additive manufacturing KW - Laser-induced slip casting KW - Lithium KW - Layered double hydroxide PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520557 DO - https://doi.org/10.1016/j.oceram.2021.100060 SN - 2666-5395 VL - 5 IS - Special issue: Alkali-activated materials and geopolymers in ceramics and beyond SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-52055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Walter, Keven A1 - Hoch, Dominik P. A1 - Hertweck, Leon A1 - Balasubramanian, Kannan A1 - Geisler, Jonas A1 - Röllig, Mathias A1 - Neubert, Tilmann J. A1 - Börner, Hans G. T1 - Unlocking the Essence of Lignin: High‐Performance Adhesives That Bond via Thiol‐Catechol Connectivities and Debond on Electrochemical Command N2 - AbstractThe next generation of adhesives requires effective debonding capabilities that can be triggered on demand to enable advanced circular repair and recycling strategies. A new class of lignin‐inspired, two‐component (2K) structural adhesives offers bonding strengths of up to 20 MPa and clean, on‐command electrochemical debonding within 5–30 min. The debonding is induced by a distinct electrochemical oxidation of thiol‐catechol connectivities (TCCs) within the entire adhesive network, enforcing rapid and clean adhesive failure on the cathodic substrate side. The TCC‐functionalities are formed during curing by a thiol‐quinone Michael‐type polyaddition, reacting polyester‐based trithiols with tris‐quinones as lignin‐inspired minimal building blocks. The structural adhesive can be fine‐tuned by adjusting the formulation. The addition of carbon black and ionic liquids facilitates the desired electrochemical transformation of TCC‐catechols to TCC‐quinones. Applying only 9 V for 5–30 min, leads to clean debonding with 72–86% loss of shear strength. A comprehensive study of curing, bonding, and debonding behavior by rheological, spectroscopic, and electrochemical investigations reveals the debonding mechanism by correlating catechol oxidation to adhesive performance. The electrochemical debonding capability of TCC‐structural adhesives is demonstrated in a functional prototype, where on‐command detachment of a cover glass from a display device is achieved within 6.5 min. KW - Lignin-inspired KW - Electrochemical-Debonding KW - Thiol-Catechol-Connectivity (TCC) KW - Michael-Type Polyaddition KW - On-Demand Adhesive Failure PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639674 DO - https://doi.org/10.1002/adma.202510463 SN - 0935-9648 SP - 1 EP - 10 PB - Wiley VHC-Verlag CY - 69451 Weinheim AN - OPUS4-63967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Doublet, V. A1 - Poeschl, Y. A1 - Gogol-Döring, A. A1 - Alaux, C. A1 - Annoscia, D. A1 - Aurori, C. A1 - Barribeau, S. M. A1 - Bedoya-Reina, O. C. A1 - Brown, M. J. F. A1 - Bull, J. C. A1 - Flenniken, M. L. A1 - Galbraith, D. A. A1 - Genersch, E. A1 - Gisder, S. A1 - Grosse, I. A1 - Holt, H. L. A1 - Hultmark, D. A1 - Lattorff, H. M. G. A1 - Le Conte, Y. A1 - Manfredini, F. A1 - McMahon, Dino Peter A1 - Moritz, R. F. A. A1 - Nazzi, F. A1 - Niño, E. L. A1 - Nowick, K. A1 - Van Rij, R. P. A1 - Paxton, R. J. A1 - Grozinger, C. M. T1 - Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens N2 - Background: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. Results: We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. Conclusions: Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions. KW - Coexpression KW - Apis mellifera KW - Nosema KW - Varroa destructor KW - DWV KW - IAPV KW - RNA virus KW - Meta-analysis KW - Transcriptomics PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-410439 DO - https://doi.org/10.1186/s12864-017-3597-6 SN - 1471-2164 VL - 18 SP - 207 EP - 224 AN - OPUS4-41043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linberg, Kevin A1 - Emmerling, Franziska A1 - Michalchuk, Adam T1 - Unintended Rate Enhancement in Mechanochemical Kinetics by Using Poly(methyl methacrylate) Jars N2 - Time-resolved in situ (TRIS) X-ray diffraction has changed how mechanochemical transformations are studied but requires the use of X-ray transparent jars often made from poly(methyl methacrylate) (PMMA). However, using PMMA jars can alter the apparent kinetics of mechanochemical polymorphism by an order of magnitude, questioning the interpretability of established TRIS methods. Our results suggest that rate enhancement in PMMA jars may not be dominated by chemical effects of the polymer, but rather a result of different equilibrium temperatures within the jar. These features must be better understood before control over mechanochemical reactions can be achieved. KW - Mechanochemistry KW - Organic compounds KW - Polymers KW - Materials PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565276 DO - https://doi.org/10.1021/acs.cgd.2c01227 SN - 1528-7483 SP - 1 EP - 5 PB - ACS Publications AN - OPUS4-56527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Inui, H. A1 - Kishida, K. A1 - Li, L. A1 - Manzoni, Anna Maria A1 - Haas, S. A1 - Glatzel, U. T1 - Uniaxial mechanical properties of face‑centered cubic singleand multiphase high‑entropy alloys N2 - Since the high entropy concept was proposed at the beginning of the millennium, the research focus of this alloy family has been wide ranging. The initial search for single-phase alloys has expanded with the aim of improving mechanical properties. This can be achieved by several strengthening mechanisms such as solid-solution hardening, hot and cold working and precipitation hardening. Both single- and multiphase high- and medium-entropy alloys can be optimized for mechanical strength via several processing routes, as is the case for conventional alloys with only one base element, such as steels or Ni-based superalloys. KW - High entropy alloy KW - Compositionally complex alloys KW - Tensile properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543955 DO - https://doi.org/10.1557/s43577-022-00280-y VL - 47 IS - 2 SP - 168 EP - 174 PB - Springer AN - OPUS4-54395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Paul, Andrea A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation N2 - The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling. KW - Ball milling KW - C-C coupling KW - In situ KW - Mechanochemistry KW - Multivariate data analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481872 DO - https://doi.org/10.3762/bjoc.15.110 SN - 1860-5397 VL - 15 SP - 1141 EP - 1148 PB - Beilstein Insitut CY - Frankfurt am Main AN - OPUS4-48187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belenguer, A. A1 - Michalchuk, Adam A1 - Lampronti, G A1 - Sanders, J T1 - Understanding the unexpected effect of frequency on the kinetics of a covalent reaction under ball-milling conditions N2 - We here explore how ball-mill-grinding frequency affects the kinetics of a disulfide exchange reaction. Our kinetic data show that the reaction progress is similar at all the frequencies studied (15–30 Hz), including a significant induction time before the nucleation and growth process starts. This indicates that to start the reaction an initial energy accumulation is necessary. Other than mixing, the energy supplied by the mechanical treatment has two effects: (i) reducing the crystal size and (ii) creating defects in the structure. The crystal-breaking process is likely to be dominant at first becoming less important later in the process when the energy supplied is stored at the molecular level as local crystal defects. This accumulation is taken here to be the rate-determining step. We suggest that the local defects accumulate preferentially at or near the crystal surface. Since the total area increases exponentially when the crystal size is reduced by the crystal-breaking process, this can further explain the exponential dependence of the onset time on the milling frequency. KW - Mechanochemistry KW - Kinetics KW - Diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483361 DO - https://doi.org/10.3762/bjoc.15.120 SN - 2195-951X VL - 15 SP - 1226 EP - 1235 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-48336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Understanding the recovery behaviour and the degradative processes of EPDM during ageing N2 - Recovery is an important measure for seal applications representing to which extent the elastomer regains its initial shape after deformation and release of an applied force. Compression set (CS) indicates the degree of recovery. Ethylene propylene diene rubber (EPDM) was aged at 75 ◦C, 100 ◦C, 125 ◦C and 150 ◦C for different ageing times up to five years and compression set measurements were performed at different times after disassembly and after additional tempering. Short- and long-term recovery up to one year after release for samples aged at 125 ◦C and 150 ◦C was also studied. To assess the curvature in the Arrhenius diagram that may occur due to non-sufficiently aged specimens, a degradation-rate based model was fitted to the CS data after tempering. For each ageing temperature, two decay fit functions were proposed, each with an activation energy and a corresponding degradative process. The influence of ageing on the leak-tightness after fast small partial release is investigated and estimated through the analysis of the shift factors from time temperature superposition (TTS) of CS measurements at different times after disassembly. Shift factors of CS measurement after 1 s and after additional tempering are in good agreement. KW - Compression set KW - Ageing KW - Recovery KW - Degradative processes KW - Leakage rate PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573699 DO - https://doi.org/10.1016/j.polymertesting.2023.107987 SN - 0142-9418 VL - 121 SP - 107987 PB - Elsevier Ltd. AN - OPUS4-57369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano-Munoz, Itziar A1 - Bruno, Giovanni T1 - Understanding the impact of texture on the micromechanical anisotropy of laser powder bed fused Inconel 718 N2 - The manufacturability of metallic alloys using laser-based additive manufacturing methods such as laser powder bed fusion has substantially improved within the last decade. However, local melting and solidification cause hierarchically structured and crystallographically textured microstructures possessing large residual stress. Such microstructures are not only the origin of mechanical anisotropy but also pose metrological challenges for the diffraction-based residual stress determination. Here we demonstrate the influence of the build orientation and the texture on the microstructure and consequently the mechanical anisotropy of as-built Inconel 718. For this purpose, we manufactured specimens with [001]/[011]-, [001]- and [011]/[111]-type textures along their loading direction. In addition to changes in the Young’s moduli, the differences in the crystallographic textures result in variations of the yield and ultimate tensile strengths. With this in mind, we studied the anisotropy on the micromechanical scale by subjecting the specimens to tensile loads along the different texture directions during in situ neutron diffraction experiments. In this context, the response of multiple lattice planes up to a tensile strain of 10% displayed differences in the load partitioning and the residual strain accumulation for the specimen with [011]/[111]-type texture. However, the relative behavior of the specimens possessing an [001]/[011]- and [001]-type texture remained qualitatively similar. The consequences on the metrology of residual stress determination methods are discussed. KW - Laser powder bed fusion KW - Additive manufacturing KW - Electron backscatter diffraction KW - Tensile testing KW - Diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555840 DO - https://doi.org/10.1007/s10853-022-07499-9 SN - 1573-4803 VL - 2022 IS - 57 SP - 15036 EP - 15058 PB - Springer Science + Business Media B.V. CY - Dordrecht AN - OPUS4-55584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Piault, Pierre A1 - King, Andrew A1 - Henry, Laura A1 - Bruno, Giovanni T1 - Understanding the hot isostatic pressing efectiveness of laser powder bed fusion Ti‑6Al‑4V by in‑situ X‑ray imaging and difraction experiments N2 - In the present study, in-situ observation of Hot Isostatic Pressure (HIP) procedure of laser powder bed fusion manufactured Ti-6Al-4V parts was performed to quantitatively estimate the densifcation rate of the material and the infuence of the defect initial size and shape on such rate. The observations were performed in-situ using the Ultrafast Tomography Paris-Edinburgh Cell and the combination of fast phase-contrast synchrotron X-ray tomography and energy dispersive difraction. With this strategy, we could quantify how the efectiveness of HIP depends on the characteristics of a defect. Smaller defects showed a higher densifcation rate, while the defect shape did not have signifcant efect on such rate. KW - Additive manufacturing KW - Laser powder bed fusion KW - X-ray computed tomography KW - Hot isostatic pressing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587702 DO - https://doi.org/10.1038/s41598-023-45258-1 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 11 AN - OPUS4-58770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kumar, Sumit A1 - Swaminathan, Srinivasan A1 - Hesse, Rene A1 - Goldbeck, Hennig A1 - Ding, Wenjin A1 - Bonk, Alexander A1 - Bauer, Thomas T1 - Understanding the effect of oxide ions on Solar Salt chemistry and corrosion mechanism of 316L stainless steel at 600 °C N2 - Solar Salt (60 wt% NaNO3, 40 wt% KNO3), used in Concentrated Solar Power (CSP) Thermal Energy Storage (TES) technology, can decompose into various products at elevated temperatures, with oxide ions being one of the known corrosive byproducts. The study mimics Solar Salt aging by intentionally adding sodium peroxide (Na2O2) and sodium oxide (Na2O) at concentrations of 0.005–0.33 wt% to investigate their role in the corrosion of austenitic stainless steel at 600 °C in typical operating conditions. Salt chemistry (nitrite, nitrate, oxide ions, and metal cations) was analyzed every 24 h, and steel corrosion after 168 h was assessed by weight change, corrosion rate, phase analysis, and cross-sectional morphology. Results reveal that at or above 0.135 wt% added Na2O2/Na2O leads to a quasi-steady-state equilibrium of oxide ions in the salt. Interestingly, at these concentrations, the presence of steel further decreases oxide ion concentration. Furthermore, above 0.135 wt%, the corrosion rate increases significantly, along with increased spallation, porosity and disintegration of the corrosion layer, forming a non-protective layer. This study highlights the critical role of oxide ions in the corrosion process. KW - Solar Salt KW - High temperature corrosion KW - Thermal Energy Storage KW - Alkali oxides KW - Austenitic stainless steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-628463 DO - https://doi.org/10.1016/j.corsci.2025.112849 SN - 1879-0496 VL - 249 SP - 1 EP - 17 PB - Elsevier Ltd. AN - OPUS4-62846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Temgoua, Ranil C.T. A1 - Dontsi, Fabiola T. A1 - Lebègue, Estelle A1 - Thobie-Gautier, Christine A1 - Tonlé, Ignas K. A1 - Boujtita, Mohammed T1 - Understanding the behavior of phenylurazole-tyrosine-click electrochemical reaction using hybrid electroanalytical techniques N2 - In this work, the electrochemical behavior of 4-phenylurazole (Ph-Ur) was studied and the latter was used as a molecular anchor for the electrochemical bioconjugation of tyrosine (Y). Cyclic voltammetry (CV) and controlled potential coulometry (CPC) allowed the in-situ generation of the PTAD (4-phenyl-3 H-1,2,4-triazole-3,5(4 H)-dione) species from phenylurazole on demand for tyrosine electrolabeling. The chemoselectivity of the reaction was studied with another amino acid (lysine, Lys) and no changes in Lys were observed. To evaluate the performance of tyrosine electrolabeling, coulometric analyses at controlled potentials were performed on solutions of phenylurazole and the phenylurazole-tyrosine mixture in different proportions (2:1, 1:1, and 1:2). The electrolysis of the phenylurazole-tyrosine mixture in the ratio (1:2) produced a charge of 2.07 C, very close to the theoretical value (1.93 C), with high reaction kinetics, a result obtained here for the first time. The products obtained were identified and characterized by liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HRMS and LC- HRMS2). Two products were formed from the click reactions, one of which was the majority. Another part of this work was to study the electrochemical degradation of the molecular anchor 4-phenylazole (Ph-Ur). Four stable degradation products of phenylurazole were identified (C7H9N2O, C6H8N, C6H8NO, C14H13N4O2) based on chromatographic profiles and mass spectrometry results. The charge generated during the electrolysis of phenylurazole (two-electron process) (2.85 C) is inconsistent with the theoretical or calculated charge (1.93 C), indicating that secondary/parasitic reactions occurred during the electrolysis of the latter. In conclusion, the electrochemically promoted click phenylurazole-tyrosine reactions give rise to click products with high reaction kinetics and yields in the (1:2) phenylurazole-tyrosine ratios, and the presence of side reactions is likely to affect the yield of the click phenylurazole-tyrosine reaction. KW - Clinical Biochemistry KW - Spectroscopy KW - Drug Discovery KW - Pharmaceutical Science KW - Analytical Chemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599267 DO - https://doi.org/10.1016/j.jpba.2024.116147 VL - 245 SP - 1 EP - 8 PB - Elsevier BV AN - OPUS4-59926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Understanding the Anomalous Corrosion Behaviour of 17% Chromium Martensitic Stainless Steel in Laboratory CCS-Environment—A Descriptive Approach N2 - To mitigate carbon dioxide emissions CO2 is compressed and sequestrated into deep geological layers (Carbon Capture and Storage CCS). The corrosion of injection pipe steels is induced when the metal is in contact with CO2 and at the same time the geological saline formation water. Stainless steels X35CrMo17 and X5CrNiCuNb16-4 with approximately 17% Cr show potential as injection pipes to engineer the Northern German Basin geological onshore CCS-site. Static laboratory experiments (T = 60 ◦C, p = 100 bar, 700–8000 h exposure time, aquifer water, CO2-flow rate of 9 L/h) were conducted to evaluate corrosion kinetics. The anomalous surface corrosion phenomena were found to be independent of heat treatment prior to exposure. The corrosion process is described as a function of the atmosphere and diffusion process of ionic species to explain the precipitation mechanism and better estimate the reliability of these particular steels in a downhole CCS environment. KW - Corrosion KW - Steel KW - High alloyed steel KW - Corrosion mechanism KW - CCS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545700 DO - https://doi.org/10.3390/cleantechnol4020014 VL - 4 IS - 2 SP - 239 EP - 257 PB - MDPI AN - OPUS4-54570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stohl, Leonie A1 - Tonon, Chiara A1 - Cook, Jake A1 - Gorbushina, Anna A1 - Dehn, Frank A1 - von Werder, Julia T1 - Understanding bioreceptivity of concrete: realistic and accelerated weathering experiments with model subaerial biofilms N2 - Vertical greening systems are a promising solution to the increasing demand for urban green spaces, improving environmental quality and addressing biodiversity loss. This study facilitates the development microbially greened algal biofilm facades, which offer a low maintenance vertical green space. The study focuses on concrete as a widely used building material and explores how physical surface characteristics impact its bioreceptive properties. Concrete samples, produced from the same mix but differing in surface structure, were subjected to a laboratory weathering experiment to assess their bioreceptivity. A novel inoculation method was employed, involving a single initial inoculation with either alga ( Jaagichlorella sp.) alone, or a model biofilm consisting of a combination of the alga ( Jaagichlorella sp.) with a fungus ( Knufia petricola). The samples underwent four months of weathering in a dynamic laboratory setup irrigated with deionized water to observe subaerial biofilm attachment and growth. The formation of subaerial biofilms was monitored with high resolution surface imaging, colorimetric measurements and Imaging Pulse Amplitude Modulated Fluorometry (Imaging PAM-F), with Imaging PAM-F proving the most effective. Statistical analysis revealed that by impacting surface pH value and water retention capability, surface structures significantly influence microbial growth and that the concrete’s bioreceptivity can be influenced through thoughtful design of the materials surface. The inoculation of algae combined with a fungus facilitated the formation of a stable subaerial biofilm, enabling algae to colonize a surface structure that it could not colonize alone. This finding highlights the importance of modelling synergistic interactions present in natural biofilms. KW - Bioreceptivity KW - Concrete KW - Biofilm PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653105 DO - https://doi.org/10.1617/s11527-025-02864-x SN - 1359-5997 VL - 59 IS - 2 SP - 1 EP - 18 PB - Springer Science and Business Media LLC AN - OPUS4-65310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stohl, Leonie A1 - Manninger, Tanja A1 - Dehn, Frank A1 - von Werder, Julia T1 - Understanding bioreceptivity of concrete: material design and characterization N2 - The climate crisis is driving an increasing demand for ecologically oriented concepts. In the building sector, this demand includes not only the use of environmentally friendly materials but also the greening of urban areas. One promising approach is the development of bioreceptive concrete façades, which support the growth of green biofilms directly on their surfaces. These innovative façades are anticipated to deliver benefits comparable to those of macroscopically greened façades, such as enhanced biodiversity and improved air quality, while offering the advantages of being more self-sustaining and stable systems once fully established. However, the development of bioreceptive concrete presents substantial challenges. Due to the interdisciplinarity and novelty of this field, standardized methods for material characterization and bioreceptivity assessment are currently lacking. This study proposes an approach for evaluating surface properties crucial for bioreceptivity, developed on differently structured samples of ultra-high-performance concrete (UHPC). Existing methods and standards from concrete technology are critically reviewed and, where necessary, modified to meet the unique requirements of measuring bioreceptive material properties. Special attention is given to the surface pH value and water retention characteristics, as these are essential for promoting microbial growth and ensuring the long-term stability of green biofilms. The observed surface characteristics vary according to the imprinted surface structures, offering a spectrum of material properties and enabling the evaluation of their impact on bioreceptivity. The findings presented form the foundation for subsequent laboratory weathering experiments, which will be discussed in a complementary publication. KW - Bioreceptivity KW - Concrete KW - Biofilm PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648180 DO - https://doi.org/10.1617/s11527-025-02863-y SN - 1359-5997 VL - 58 IS - 10 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-64818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stohl, Leonie A1 - Tonon, Chiara A1 - Cook, Jake A1 - Gorbushina, Anna A1 - Dehn, Frank A1 - von Werder, Julia A1 - Manninger, Tanja T1 - Understanding bioreceptivity of concrete: material design and characterization N2 - The climate crisis is driving an increasing demand for ecologically oriented concepts. In the building sector, this demand includes not only the use of environmentally friendly materials but also the greening of urban areas. One promising approach is the development of bioreceptive concrete façades, which support the growth of green biofilms directly on their surfaces. These innovative façades are anticipated to deliver benefits comparable to those of macroscopically greened façades, such as enhanced biodiversity and improved air quality, while offering the advantages of being more self-sustaining and stable systems once fully established. However, the development of bioreceptive concrete presents substantial challenges. Due to the interdisciplinarity and novelty of this field, standardized methods for material characterization and bioreceptivity assessment are currently lacking. This study proposes an approach for evaluating surface properties crucial for bioreceptivity, developed on differently structured samples of ultra-high-performance concrete (UHPC). Existing methods and standards from concrete technology are critically reviewed and, where necessary, modified to meet the unique requirements of measuring bioreceptive material properties. Special attention is given to the surface pH value and water retention characteristics, as these are essential for promoting microbial growth and ensuring the long-term stability of green biofilms. The observed surface characteristics vary according to the imprinted surface structures, offering a spectrum of material properties and enabling the evaluation of their impact on bioreceptivity. The findings presented form the foundation for subsequent laboratory weathering experiments, which will be discussed in a complementary publication. KW - Novel methods KW - Bioreceptivity testing PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655023 DO - https://doi.org/10.1617/s11527-025-02863-y SN - 1359-5997 VL - 58 SP - 1 EP - 18 PB - Springer Science and Business Media LLC AN - OPUS4-65502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Driscoll, Laura L. A1 - Driscoll, Elizabeth H. A1 - Dong, Bo A1 - Sayed, Farheen N. A1 - Wilson, Jacob N. A1 - O’Keefe, Christopher A. A1 - Gardner, Dominic J. A1 - Grey, Clare P. A1 - Allan, Phoebe K. A1 - Michalchuk, Adam A1 - Slater, Peter R. T1 - Under pressure: offering fundamental insight into structural changes on ball milling battery materials N2 - Synthesis of Li ion battery materials via ball milling has been a huge area of growth, leading to new high-capacity electrode materials, such as a number of promising disordered rocksalt (DRS) phases. In prior work, it was generally assumed that the synthesis was facilitated simply by local heating effects during the milling process. In this work, we show that ball milling Li2MoO4 leads to a phase transformation to the high pressure spinel polymorph and we report electrochemical data for this phase. This observation of the formation of a high pressure polymorph shows that local heating effects alone cannot explain the phase transformation observed (phenakite to spinel) and so indicates the importance of other effects. In particular, we propose that when the milling balls collide with the material, the resulting shockwaves exert a localised pressure effect, in addition to local heating. To provide further support for this, we additionally report ball milling results for a number of case studies (Li2MnO3, Li2SnO3, Nb2O5) which reinforces the conclusion that local heating alone cannot explain the phase transformations observed. The work presented thus provides greater fundamental understanding of milling as a synthetic pathway and suggests potential strategies to prepare such samples without milling (e.g., doping to create internal chemical pressure). In addition, we suggest that further research is needed into the effect of the use of milling as a route to smaller particles, since we believe that such milling may also be affecting the surface structure of the particles through the influence of the shockwaves generated. KW - Pollution KW - Nuclear Energy and Engineering KW - Sustainability and the Environment KW - Environmental Chemistry KW - Renewable Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590086 DO - https://doi.org/10.1039/d3ee00249g VL - 16 IS - 11 SP - 5196 EP - 5209 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Dohse, Elmar A1 - Bartusch, Jürgen A1 - Köppe, Enrico A1 - Kreutzbruck, Marc A1 - Hillger, W. A1 - Amos, J. M. T1 - Ultrasonic testing of adhesively bonded joints using air-coupled cellular polypropylene transducers N2 - In air-coupled ultrasonic testing, the impedance mismatch between the transducer and the air is commonly being solved by adding matching layers to composite transducers. To avoid the difficult technological procedure regarding matching layers, some new piezoelectric materials have been proposed. Most promising are ferroelectrets, which are charged cellular polymers, having ferroelectric and consequently piezoelectric properties. In particular, the extreme softness of cellular polypropylene (cPP) leads to a high piezoelectric constant and to a good impedance match with the air, making matching layers redundant. Its elasticity modulus below 1 MPa causes an additional effect not observed with common piezoelectric materials: that is the electrostrictive effect, here defined as the thickness change due to the attractive force between the transducer electrodes. This effect exceeds the piezoelectric effect at excitation voltages over 1 kV. The extreme softness of cPP leads also to high flexibility, enabling easy focusing by bending the transducer. We have developed air-coupled ultrasonic transducers based on cPP. This includes the electrical matching networks for the transmitter and for the receiver. The transmitter is excited with voltages up to 2.5 kV, so that the electrostrictive effect dominates, leading to sound pressure around 145dB at the transducer surface. These transducers have been applied for testing carbon-fiber-reinforced polymer plates, adhesive joints and other composite structures. Here we report about ultrasonic transmission of two types of adhesive joints. The first one is multi-layer aluminium components with some artificial disbonds, which are common in aerospace industry, and the second one is an aluminium-steel joint with polyurethane adhesive, which is used in automotive industry. T2 - ECNDT 2014 - 11th European conference on non-destructive testing CY - Prague, Czech Republic DA - 06.10.2014 KW - Air-coupled KW - Ultrasonic testing KW - Ferroelectret KW - Cellular polypropylene KW - Transducer KW - Adhesive joint PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-317204 SN - 978-80-214-5018-9 SP - 1 EP - 8 PB - Brno University of Technology AN - OPUS4-31720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Martin A1 - Mauke, R. A1 - Effner, Ute A1 - Milmann, Boris A1 - Völker, Christoph A1 - Wiggenhauser, Herbert T1 - Ultrasonic testing of a sealing construction made of salt concrete in an underground disposal facility for radioactive waste N2 - For the closure of radioactive waste disposal facilities engineered barriers- so called “drift seals” are used. The purpose of these barriers is to constrain the possible infiltration of brine and to prevent the migration of radionuclides into the biosphere. In a rock salt mine a large scale in-situ experiment of a sealing construction made of salt concrete was set up to prove the technical feasibility and operability of such barriers. In order to investigate the integrity of this structure, non-destructive ultrasonic measurements were carried out. Therefore two different methods were applied at the front side of the test-barrier: 1 Reflection measurements from boreholes 2 Ultrasonic imaging by means of scanning ultrasonic echo methods This extended abstract is a short version of an article to be published in a special edition of ASCE Journal that will briefly describe the sealing construction, the application of the non-destructive ultrasonic measurement methods and their adaptation to the onsite conditions -as well as parts of the obtained results. From this a concept for the systematic investigation of possible contribution of ultrasonic methods for quality assurance of sealing structures may be deduced. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 2015-09-15 KW - Ultrasonic reflection measurement KW - Dry contact transducers in boreholes KW - Interface salt-concrete / rock salt KW - Ultrasonic imaging of internal reflectors PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-346203 UR - http://www.ndt.net/?id=18304 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 4 PB - NDT.net CY - Kirchwald AN - OPUS4-34620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grothe, Sven T1 - Ultrasonic signal evaluation used to detect weather-related temperature changes in a concrete specimen N2 - Ultrasonic measurement evaluation methods have been proven to be effective for detection of subtle changes, caused by temperature, load or moisture. However, for its application outdoors it is necessary to analyse unavoidable influences, such as weather. Therefore an ultrasonic monitoring system with 40 ultrasonic sensors (20 transmitters, 20 receivers; 25 kHz central frequenzy) has been implemented on a concrete specimen (4×5×0.8m3), that is exposed to weather conditions. Data from 400 sensor combinations was collected over a period of six months with an interval of two hours. The data was evaluated by both qualitative (correlation techniques) and quantitative (ultrasonic velocity changes via Coda Wave Interferometry and time of flight method) evaluation methods and compared to the temperature changes caused by weather. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-346398 UR - https://www.ndt.net/?id=18336 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 4 PB - NDT.net CY - Kirchwald AN - OPUS4-34639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grothe, Sven T1 - Ultrasonic signal evaluation used to detect temperature changes in a concrete specimen caused by a heating system N2 - Ultrasonic measurement evaluation methods have been proven to be effective for detection of subtle changes, caused by temperature, load or moisture. To detect and localize temperature changes, a concrete block of 4 × 5 × 0.8 m3, including a heating cartridge and multiple temperature sensors, has been set up to change the temperature and monitor the temperature distribution in a certain area inside the specimen. An ultrasonic monitoring system with 40 ultrasonic sensors (20 transmitters, 20 receivers, 25 kHz central frequency) has been implemented on the specimen. Data from 400 sensor combinations was collected over the whole period of the experiment in an interval of 30 minutes. Quantitative methods (CodaWave Interferometry and Time of Flight method) were used to evaluate the changes in ultrasonic travel-time caused by the heating period, when the cartridge was active, and the cooling period after turning off the cartridge. Furthermore the travel-time changes from all 400 sensor combinations were used to locate the heating cartridge. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-346387 UR - http://www.ndt.net/?id=18336 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 4 PB - NDT.net CY - Kirchwald AN - OPUS4-34638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Hofmann, M. A1 - Kudla, W. T1 - Ultrasonic quality assurance at magnesia shotcrete sealing structures N2 - Engineered barriers are a key element to enable safe nuclear waste disposal. One method currently under research for their construction is magnesia concrete applied in a shotcrete procedure. In this study, the ultrasonic echo method is evaluated as a means for quality assurance. Imaging of internal structures (backwall, boreholes) and defects, such as delamination, has successfully been achieved in the shotcrete. Additionally, detailed information about the potential cause of selected reflectors are obtained by phase analysis. In several test blocks of various sizes, no consistent concrete section boundaries have been found by ultrasonic imaging, which was verified by subsequent drilling and complementary tests. An experiment with artificial defects imitating cracks, air-filled voids, and material with lower density has been challenging and shows the limitations of the current methods. Although significant defects, such as a large delamination, are reliably identified, several smaller defects are not identified. Generally, ultrasonic imaging provides a suitable base as a mean for quality assurance during and after the construction of sealing structures. However, further developments are required to enhance the reliability of the method and a full validation is still pending. Still, the method has potential to increase the safety of nuclear waste repositories. KW - Ultrasound KW - Imaging KW - Engineered barrier systems KW - Underground KW - Shotcrete PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563170 DO - https://doi.org/10.3390/s22228717 SN - 1424-8220 VL - 22 IS - 22 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boehm, Rainer A1 - Heckel, Thomas A1 - Spruch, W. A1 - Beggerow, T. T1 - Ultrasonic Phased Array Design Study for High Speed Axle Inspection using an Electronically Rotating Beam N2 - For in-service inspections on wheelset axles with a hollow drilling, mechanized ultrasound inspection systems with single element probes are typically used. The ultrasonic testing in the zones close to the external surface of the railway axles can be realized from the inside of the bore hole, without demounting the wheelset and without dismantling the wheels and the brake discs. The testing system must be able to find flaws in the external surface of the hollow shafts, whose surface lies in the radial-radial plane, these are called transversal flaw. Presently testing systems are used, where scanning is realized in the circumferential direction by mechanical rotation of the probe system in the actual drilling. The phased array probe system, which is presented here, can carry out the rotation scan electronically. The scan can be carried out by simply moving the system forward and backwards through the drilling without mechanical rotation. Manipulation becomes simpler and the inspection time can be shortened considerably. The ultrasonic beam can be inclined exactly and be focused in the plane vertical to the specimen axis. The probe is designed with help of indispensable simulations using especially designed software developed by BAM. The feasibility and the alignment between the simulated and experimental results were shown in earlier projects reported by Boehm et al. (2006) and Völz et al. (2012). The main task here is to optimize a probe for bore holes with a diameter of 65 mm with an increase in sensitivity and a high spatial resolution. This development will be carried out by use of extensive simulations and result in certain changes of the relevant probe parameters. KW - Phased Array KW - Ultrasound KW - Axle inspection PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-436230 DO - https://doi.org/10.1016/j.prostr.2017.07.001 VL - 2017 IS - 4 SP - 71 EP - 78 PB - Elsevier B.V. AN - OPUS4-43623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schadow, Florian A1 - Brackrock, Daniel A1 - Gaal, Mate A1 - Heckel, Thomas T1 - Ultrasonic inspection and data analysis of glass- and carbon-fibre-reinforced plastics N2 - Non-destructive testing (NDT) helps to find material defects without having an influence on the material itself. It is applied as a method of quality control, for online structural health monitoring, and for inspection of safety related components. Due to the ability of automation and a simple test setup ultrasonic testing is one major NDT technique next to several existing options. Whereas contact technique allows the use of higher frequencies of some MHz and phased array focusing, air-coupled ultrasonic testing (ACUT) shows different advantages. Most significant for ACUT is the absence of any coupling fluid and an economical test procedure respective time and costs. Both contact technique and ACUT have been improved and enhanced during the past years. One important enhancement is the development of airborne transducers based on ferroelectrets, like charged cellular polypropylene (cpp), which makes the application of any matching layers being mandatory in conventional piezoelectric transducers unnecessary. In this contribution we show ultrasonic inspection results of specimens made of carbon- and glass-fibre-reinforced plastic. These specimens include defects represented by drill holes and artificial delaminations of various size and depth. We compare inspection results achieved by using contact technique to those achieved by ACUT. For ACUT, conventional piezoelectric transducers and transducers based on cpp were used, both focused as well as non-focused types. Contact inspections were performed with a multi-channel matrix array probe. Once the inspection data is recorded it can be analysed in order to detect and evaluate defects in the specimen. We present different analysing strategies and compare these regarding detection rate and sizing of defects. T2 - 3rd International Symposium on Fatigue Design and Material Defects, FDMD 2017 CY - Lecco, Italy DA - 19.09.2017 KW - Ultrasonic testing KW - Air-coupled KW - Carbon-fibre-reinforced plastic KW - Glass-fibre-reinforced KW - Material inspection KW - Defect sizing PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434802 DO - https://doi.org/10.1016/j.prostr.2017.11.092 SN - 2452-3216 VL - 7 SP - 299 EP - 306 PB - Elsevier B.V. AN - OPUS4-43480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büttner, C. A1 - Niederleithinger, Ernst A1 - Buske, S. A1 - Friedrich, C. T1 - Ultrasonic Echo Localization Using Seismic Migration Techniques in Engineered Barriers for NuclearWaste Storage N2 - In the framework of non-destructive-testing advanced seismic imaging techniques have been applied to ultrasonic echo data in order to examine the integrity of an engineered test-barrier designed to be used for sealing an underground nuclear waste disposal site. Synthetic data as well as real multi-receiver ultrasonic data acquired at the test site were processed and imaged using Kirchhoff prestack depth migration reverse time migration (RTM). In general, both methods provide a good Image quality as demonstrated by various case studies, however deeper parts within the test barrier containing inclined reflectors were reconstructed more accurately by RTM. In particular, the image quality of a specific target reflector at a depth of 8 m in the test-barrier has been significantly improved compared to previous investigations using synthetic aperture Focusing technique, which justifies the considerable computing time of this method. KW - Radioactive waste disposal KW - Engineered barrier KW - Ultrasound KW - Imaging KW - Crack detection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537956 DO - https://doi.org/10.1007/s10921-021-00824-3 SN - 0195-9298 VL - 40 IS - 4 SP - 1 EP - 10 PB - Springer AN - OPUS4-53795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Tim A1 - Delgado Arroyo, Diego A1 - Börner, Andreas A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Lindner, T. A1 - Löbel, M. A1 - Preuß, B. A1 - Lampke, T. T1 - Ultrasonic assisted milling of a CoCrFeNi medium entropy alloy N2 - Medium and High Entropy Alloys (MEA/HEA) are recently developed material classes, providing manifold applications, e.g., due to extraordinary structural properties. In that connection, the machinability as important issue for the processing of these materials was not in the scientific focus. This study focusses on experimental analysis of milling process conditions including ultrasonic assisted milling (USAM) and their effects on the resulting surface integrity of equiatomic CoCrFeNi-MEA specimens. For that reason, milling parameters (cutting speed, feed per cutting edge) were systematically varied for both conventional milling and USAM. The surface integrity was analyzed in terms of topography, defects, and residual stresses. Especially USAM leads to a decrease of occurring cutting forces and, hence, to an improvement of the surface integrity. Beneficial effects were observed in terms of lower tensile residual stresses at high cutting speed and feed per cutting edge. KW - Medium entropy alloy KW - Ultrasonic Assisted Machining KW - Surface Integrity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554458 DO - https://doi.org/10.1016/j.procir.2022.05.203 VL - 108 SP - 879 EP - 884 PB - Elsevier B.V. AN - OPUS4-55445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schick, D. A1 - Herzog, M. A1 - Bojahr, A. A1 - Leitenberger, W. A1 - Hertwig, Andreas A1 - Shayduk, R. A1 - Bargheer, M. T1 - Ultrafast lattice response of photoexcited thin films studied by X-ray diffraction N2 - Using ultrafast X-ray diffraction, we study the coherent picosecond lattice dynamics of photoexcited thin films in the two limiting cases, where the photoinduced stress profile decays on a length scale larger and smaller than the film thickness. We solve a unifying analytical model of the strain propagation for acoustic impedance-matched opaque films on a semi-infinite transparent substrate, showing that the lattice dynamics essentially depend on two parameters: One for the spatial profile and one for the amplitude of the strain. We illustrate the results by comparison with high-quality ultrafast X-ray diffraction data of SrRuO3 films on SrTiO3 substrates. KW - Festkörperphysik KW - Dünnschichttechnik KW - Ellipsometrie KW - Röntgenbeugung KW - Optische Konstanten PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-322471 DO - https://doi.org/10.1063/1.4901228 SN - 2329-7778 VL - 1 IS - 6 SP - 064501-1 - 064501-13 PB - AIP Publishing LLC CY - Melville, NY AN - OPUS4-32247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gumenyuk, Andrey A1 - Bakir, Nasim A1 - Rethmeier, Michael T1 - Two-colour thermography for measurement of temperature distribution in laser beam welding N2 - Solidification cracking is a frequently observed phenomenon in laser beam welding of austenitic stainless steels and other metallic alloys. Characterisation of cracking susceptibility requires knowledge of the precise and spatially resolved temperature distribution near the solidification front in the welding process. Thermography is a standard tool that provides a qualitative estimate of the 2D temperature field. The general disadvantage of this method is its dependence on the emission characteristics of the measured object. For welding applications, these can vary significantly in the temperature range above and below the melting temperature. For this purpose, we have developed a thermography-based measurement technique using a SWIR camera system in combination with two narrow bandpass filters that use the principle of two-wavelength pyrometry to estimate absolute temperature values. This technique was used to determine the temperature distributions and gradients near the solidification front of laser-welded austenitic steel. The results were validated by other measurements. KW - Laser beam welding KW - Two-colour thermography KW - Solidification cracking PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612070 DO - https://doi.org/10.1016/j.procir.2024.08.155 VL - 124 SP - 468 EP - 471 PB - Elsevier BV AN - OPUS4-61207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lackmann, C. A1 - Velki, M. A1 - Šimić, A. A1 - Müller, Axel A1 - Braun, U. A1 - Ečimović, S. A1 - Hollert, H. T1 - Two types of microplastics (polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner N2 - Microplastics are small plastic fragments that are widely distributed in marine and terrestrial environments. While the soil ecosystem represents a large reservoir for plastic, research so far has focused mainly on the impact on aquatic ecosystems and there is a lack of information on the potentially adverse effects of microplastics on soil biota. Earthworms are key organisms of the soil ecosystem and are due to their crucial role in soil quality and fertility a suitable and popular model organism in soil ecotoxicology. Therefore, the aim of this study was to gain insight into the effects of environmentally relevant concentrations of microplastics on the earthworm Eisenia andrei on multiple levels of biological organization after different exposure periods. Earthworms were exposed to two types of microplastics: (1) polystyrene-HBCD and (2) car tire abrasion in natural soil for 2, 7, 14 and 28 d. Acute and chronic toxicity and all subcellular investigations were conducted for all exposure times, avoidance behavior assessed after 48 h and reproduction after 28 d. Subcellular endpoints included enzymatic biomarker responses, namely, carboxylesterase, glutathione peroxidase, acetylcholinesterase, glutathione reductase, glutathione S-transferase and catalase activities, as well as fluorescence-based measurements of oxidative stress-related markers and multixenobiotic resistance activity. Multiple biomarkers showed significant changes in activity, but a recovery of most enzymatic activities could be observed after 28 d. Overall, only minor effects could be observed on a subcellular level, showing that in this exposure scenario with environmentally relevant concentrations based on German pollution levels the threat to soil biota is minimal. However, in areas with higher concentrations of microplastics in the environment, these results can be interpreted as an early warning signal for more adverse effects. In conclusion, these findings provide new insights regarding the ecotoxicological effects of environmentally relevant concentrations of microplastics on soil organisms. KW - Microplastics KW - Earthworms KW - Toxicity KW - Biomarker KW - oxidative stress PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545423 DO - https://doi.org/10.1016/j.envint.2022.107190 VL - 163 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-54542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockel, Daniel A1 - Sanchez Olivares, G. A1 - Calderas, F. A1 - Schartel, Bernhard T1 - Two heads are better than one: Aluminum trihydroxide / phosphorous flame retardant combination in natural waste fiber biocomposites N2 - Future polymeric materials that replace fossil fuel-based engineering plastics demand the use of renewable sources as well as the implementation of key properties such as flame retardancy, processing, and mechanical properties. This study focuses on the combination of aluminum trihydroxide (ATH) and phosphorus-based flame retardants in compositable thermoplastic starch reinforced with sustainable multifunctional leather waste fibers. The flame retardants engender different flame-retardant modes of action, improving overall performance when combined. The partial substitution of ATH with phosphorous flame retardant allowed a reduction in flame retardant loading. Materials with 90 phr of ATH reached a limiting oxygen index of 31.5 vol.-% and a UL-94 rating of V-1, whereas the combination of 73 phr ATH and 7 phr of diphenyl ocytyl phosphate achieved a V-0 rating and a slightly reduced peak of heat release rate. This study demonstrates the potential of multicomponent systems implementing waste fiber–reinforced biocomposites. KW - Biocomposites KW - Flame retardancy KW - Phosphorous flame retardants KW - Synergism KW - Sustainability PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639084 DO - https://doi.org/10.1016/j.polymertesting.2025.108938 SN - 0142-9418 SN - 1873-2348 VL - 150 SP - 1 EP - 17 PB - Elsevier Ltd. AN - OPUS4-63908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Portarapillo, Maria A1 - Di Benedetto, Almerinda A1 - Spitzer, Stefan T1 - Turbulence effect on the determination of powders safety characteristics — A review on the experimental findings and simulation approaches N2 - Safety characteristics are widely used in the process industry to design facilities in a safe way. For powders, they are normally investigated under turbulent conditions inside a spherical test vessel, the so called 20L-sphere, to disperse the dust in air. This has been the target of many researchers to either investigate the turbulence that is present during the standardized test conditions, to compare it to quiescent conditions or to manipulate it for the comparison to other conditions. The approaches have been numerous and while the focus used to be on obtaining different experimental results it has shifted more and more to different kinds of simulations. This review gives an overview about different simulation approaches and how they can be compared. It is also an overview over the experimental findings and compares it to data obtained for three different dusts while changing the pre-ignition turbulence level in a very fine way. KW - Explosion protection KW - Dusts KW - Pressure rise KW - Ignition PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625216 DO - https://doi.org/10.1016/j.powtec.2025.120694 SN - 1873-328X VL - 454 SP - 1 EP - 19 PB - Elsevier B.V. AN - OPUS4-62521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guo, Y. A1 - Lippitz, Andreas A1 - Saftien, P. A1 - Unger, Wolfgang A1 - Kemnitz, E. T1 - Tuning the surface properties of novel ternary iron(III) fluoride-based catalysts using the template effect of the matrix N2 - Sol–gel prepared ternary FeF3–MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3–MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3–CaF2 and FeF3–SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties. KW - Catalysis KW - Surface analysis KW - XPS PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-327410 DO - https://doi.org/10.1039/c4dt03229b SN - 1477-9226 SN - 1477-9234 SN - 1364-5447 VL - 44 IS - 11 SP - 5076 EP - 5085 PB - RSC CY - Cambridge AN - OPUS4-32741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schöder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Tuning the mechanical flexibility of organic molecular crystals by polymorphism for flexible optical waveguides N2 - The ability to selectively tune the optical and the mechanical properties of organic molecular crystals offers a promising approach towards developing flexible optical devices. These functional properties are sensitive to crystallographic packing features and are hence expected to vary with polymorphic modification. Using as a model system the photoluminescent material 4-bromo-6-[(6-chloropyridin-2-ylimino)methyl]phenol (CPMBP), we herein demonstrate the simultaneous tuning of mechanical flexibility and photoluminescence properties via polymorphism. Two new polymorphic forms of CPMBP were obtained from a solution and fully characterised using a combination of experiments and density functional theory simulations. These polymorphic forms exhibit remarkably distinct mechanical properties and an order of magnitude difference in photoluminescence quantum yield. The mechanically plastic form has a higher quantum yield than the brittle polymorphic form. However, their photoluminescence emission profile is largely unaffected by the observed polymorphism, thereby demonstrating that the optical properties and bulk mechanical properties can in principle be tuned independently. By distinguishing between active (involving absorption and emission) and passive (involving no absorption) light propagation, the waveguiding properties of the plastic form of CPMBP (form II) were explored using the straight and bent crystals to highlight the potential applications of CPMBP in designing flexible optical devices. Our results demonstrated that polymorph engineering would be a promising avenue to achieve concurrent modulation of the optical and mechanical properties of photoluminescent molecular crystals for next-generation flexible optical device applications. KW - Mechanochemistry KW - Flexible PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532075 DO - https://doi.org/10.1039/d1ce00642h VL - 23 IS - 34 SP - 5815 EP - 5825 PB - Royal Society of Chemistry CY - London AN - OPUS4-53207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Griesche, Axel T1 - Tungsten inert gas bead-on-plate weld chemical composition analysis by laser-induced breakdown spectroscopy N2 - Chemical compositions of a weld can be varying locally as a result of the welding process. These local variations can be due to the vaporization of individual alloying elements. In this work, tungsten inert gas (TIG) bead-on-plate stainless steel welds of EN grade 1.4404 and 1.4435 were investigated using laser-induced breakdown spectroscopy (LIBS) on the completed welds. This study aims to reveal the welding parameters’ influence on the resulting local chemical compositions of the stainless steel welds. We demonstrated Mn vaporize before Cr due to its lower latent enthalpy of vaporization. Hence, Mn accumulates on the heat-affected zone (HAZ) both sides across the weld bead by being swept away through the circulation flow of the welding plasma. Additionally, increasing the heat input tends to enhance the accumulated Mn content on the HAZ as well as increasing the shielding gas flow rate. The results are in good agreement with the literature and proved that LIBS is an effective method to inspect completed welds. T2 - Symposium on Materials and Joining Technology CY - Magdeburg, Germany DA - 07.09.2020 KW - LIBS TIG welding KW - Austenitic stainless steels KW - Chemical composition KW - In situ measurement PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511595 DO - https://doi.org/10.1088/1757-899X/882/1/012023 SN - 1757-8981 SN - 1757-899X VL - 882 IS - 012023 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-51159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhuckory, S. A1 - Wegner, Karl David A1 - Qiu, X. A1 - Wu, Y.T. A1 - Jennings, T. L. A1 - Incamps, A. A1 - Hildebrandt, N. T1 - Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET N2 - Time-gated Förster resonance energy transfer (TG-FRET) between Tb complexes and luminescent semiconductor quantum dots (QDs) provides highly advantageous photophysical properties for multiplexed biosensing. Multiplexed Tb-to-QD FRET immunoassays possess a large potential for in vitro diagnostics, but their performance is often insufficient for their application under clinical conditions. Here, we developed a homogeneous TG-FRET immunoassay for the quantification of carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and prostatespecific antigen (PSA) from a single serum sample by multiplexed Tb-to-QD FRET. Tb–IgG antibody donor conjugates were combined with compact QD-F(ab’)2 antibody acceptor conjugates with three different QDs emitting at 605, 650, and 705 nm. Upon antibody–antigen–antibody Sandwich complex formation, the QD acceptors were sensitized via FRET from Tb, and the FRET ratios of QD and Tb TG luminescence intensities increased specifically with increasing antigen concentrations. Although limits of detection (LoDs: 3.6 ng/mL CEA, 3.5 ng/mL NSE, and 0.3 ng/mL PSA) for the triplexed assay were slightly higher compared to the single-antigen assays, they were still in a clinically relevant concentration range and could be quantified in 50 μL serum samples on a B·R·A·H·M·S KRYPTOR Compact PLUS clinical immunoassay plate reader. The simultaneous quantification of CEA, NSE, and PSA at different concentrations from the same serum sample demonstrated actual multiplexing Tb-to-QD FRET immunoassays and the potential of this technology for translation into clinical diagnostics. KW - Lanthanides KW - Nanoparticles KW - Biosensing KW - Multiplexing KW - FRET KW - Fluorescence KW - PSA KW - NSE KW - CEA PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512290 DO - https://doi.org/10.3390/molecules25163679 VL - 25 IS - 16 SP - 3679 PB - MDPI AN - OPUS4-51229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gharaati, S. A1 - Wang, Cui A1 - Förster, C. A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Triplet–Triplet Annihilation Upconversion in a MOF with AcceptorFilled Channels N2 - In summary, we report a highly modular solid TTA-UC system comprising of a crystalline, thermally stable PCN222(Pd) MOF with CA-coated MOF channels and with a DPA annihilator embedded in a solution-like environment in the MOF channels. This solid material displays blue upconverted delayed emission with a luminescence lifetime of 373 us, a threshold value of 329 mW*cm-2 and a triplet–triplet energy transfer efficiency of 82%. This optical application adds another facet to the versatile chemistry of PCN-222 MOFs. The design concept is also applicable to other TTA-UC pairs and enables tuning of the UCL color, for example, by replacing DPA with other dyes as exemplarily shown for 2,5,8,11-tetra-tert-butyl-perylene, that yields UCL at 450 nm. Current work aims to reduce the oxygen sensitivity and to increase the retention of the trapped annihilators in organic environments, for example, by tuning the chain length of the carboxylic acid and by coating the MOF surface. In addition, the TTA-UC efficiency will be further enhanced by reducing the reabsorption of the UC emission caused by Pd(TCPP) and by optimizing the sensitizer/annihilator interface. KW - Porphyrin KW - Method KW - MOF KW - Fluorescence KW - Dye KW - Sensor KW - Oxygen sensitive KW - Single molecule KW - DPA KW - Lifetime KW - Upconverstion KW - Quantum yield KW - Triplet-triplet annihilation KW - Sensitization KW - Energy transfer KW - NMR PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500580 DO - https://doi.org/10.1002/chem.201904945 VL - 26 IS - 5 SP - 1003 EP - 1007 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-50058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurster, S. A1 - Ladu, Luana T1 - Triple-C: A Tridimensional Sustainability-Oriented Indicator for Assessing Product Circularity in Public Procurement N2 - Various microlevel circular economy indicators for assessing sustainability and, partly, additional sustainability characteristics have been developed, but an integrated solution considering the environmental, social, and economic pillars remains a research gap. Method: Based on a multimethod approach, including surveys and the analysis of existing sustainability assessment methodologies and standards, this paper proposes a concept for a multidimensional circular economy indicator tailored to public procurers. It relies on attractive existing building blocks including: the ecological scarcity method, European and international sustainability standards and indicators,and the STAR-ProBio-IAT concept. Results: This article presents the concept of the composite indicator Triple-C, consisting of 20 elements and aimed at facilitating sustainable circular public procurement. It is intended to be incorporated into software that facilitates sustainable product decisions among public procurers in Germany. Conclusions: We propose a generic indicator concept covering all three (environmental, social, and economic) sustainability pillars. More research and additional standards are needed to develop the Triple-C concept further into product-specific applications. KW - Circular economy KW - Sustainability assessment KW - Circularity KW - Ecological scarcity method KW - Life-cycle assessment KW - LCA KW - Life-cycle costing KW - LCC KW - Social sustainability KW - Indicators PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564115 DO - https://doi.org/10.3390/su142113936 VL - 14 IS - 21 SP - 1 EP - 23 PB - MDPI CY - Berlin AN - OPUS4-56411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, G. A1 - Staude, Andreas A1 - Dunlop, J.A. T1 - Trilobite compound eyes with crystalline cones and rhabdoms show mandibulate affinities N2 - Most knowledge about the structure, function, and evolution of early compound eyes is based on investigations in trilobites. However, these studies dealt mainly with the cuticular lenses and little was known about internal anatomy. Only recently some data on crystalline cones and retinula cells were reported for a Cambrian trilobite species. Here, we describe internal eye structures of two other trilobite genera. The Ordovician Asaphus sp. reveals preserved crystalline cones situated underneath the cuticular lenses. The same is true for the Devonian species Archegonus (Waribole) warsteinensis, which in addition shows the fine structure of the rhabdom in the retinula cells. These results suggest that an apposition eye with a crystalline cone is ancestral for Trilobita. The overall similarity of trilobite eyes to those of myriapods, crustaceans, and hexapods corroborates views of a phylogenetic position of trilobites in the stem lineage of Mandibulata. KW - Trilobite compound eyes KW - Computed Tomography PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510784 DO - https://doi.org/10.1038/s41467-019-10459-8 SN - 2041-1723 VL - 10 SP - 2503 PB - Nature AN - OPUS4-51078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Staude, Andreas A1 - Scholtz, G. A1 - Dunlop, J. A. T1 - Trilobite compound eyes with crystalline cones and rhabdoms show mandibulate affinities N2 - Most knowledge about the structure, function, and evolution of early compound eyes is based on investigations in trilobites. However, these studies dealt mainly with the cuticular lenses and little was known about internal anatomy. Only recently some data on crystalline cones and retinula cells were reported for a Cambrian trilobite species. Here, we describe internal eye structures of two other trilobite genera. The Ordovician Asaphus sp. reveals preserved crystalline cones situated underneath the cuticular lenses. The same is true for the Devonian species Archegonus (Waribole) warsteinensis, which in addition shows the fine structure of the rhabdom in the retinula cells. These results suggest that an apposition eye with a crystalline cone is ancestral for Trilobita. The overall similarity of trilobite eyes to those of myriapods, crustaceans, and hexapods corroborates views of a phylogenetic position of trilobites in the stem lineage of Mandibulata. KW - Coputed tomography KW - Crystalline cones PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483889 DO - https://doi.org/10.1038/s41467-019-10459-8 SN - 2041-1723 VL - 10 SP - 2503, 1 EP - 7 PB - Nature AN - OPUS4-48388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Slachciak, Nadine A1 - Elert, Anna Maria A1 - Griepentrog, Michael A1 - Fischer, Daniel A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Dörfel, Ilona A1 - Sturm, Heinz A1 - Pentzien, Simone A1 - Koter, Robert A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization N2 - Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms. KW - Femtosecond laser KW - Titanium KW - Oxidation KW - Friction PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-445609 DO - https://doi.org/10.1007/s00339-018-1745-8 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 4 SP - 326, 1 EP - 10 PB - Springer-Verlag AN - OPUS4-44560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gradt, Thomas A1 - Schneider, Thomas T1 - Tribological performance of MoS2 coatings in various environments N2 - Molybdenum disulfide (MoS₂) is a well-known solid lubricant for tribosystems running in vacuum or dry gases. Problems arise due to its sensitivity to humidity, which is a drawback for its application under ambient conditions. However, by using a physical vapor deposition (PVD) process, deposition parameters can be optimized not only to gain a coatings structure with favorable frictional properties but also to minimize the sensitivity to attack by water molecules. Therefore, an improved tribological behavior even under moist conditions can be achieved. MoS₂coatings are also candidates for being applied at cryogenic temperatures. They already have proven their suitability, e.g., for sliding support elements between superconducting magnets of the nuclear fusion-experiment Wendelstein 7-X. However, these coatings were exclusively produced for this particular application and the utilization for more common tribosystems may be precluded due to cost considerations. In view of a wider range of applications, pure and Cr containing PVD-MoS₂ coatings with an optimized structure were tested under varying environments including hydrogen gas and cryogenic temperatures. Results of the most promising variant are presented in this paper. KW - Solid lubrication KW - MoS2 KW - Extreme environments KW - Hydrogen KW - Cryogenic einvironment PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-381460 DO - https://doi.org/10.3390/lubricants4030032 SN - 2075-4442 VL - 32 IS - 4 PB - MPPI AG CY - Basel, Switzerland AN - OPUS4-38146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pirker, F. A1 - Toth, I. A1 - Cihak-Bayr, U. A1 - Grundtner, R. A1 - Vernes, A. A1 - Benedicto, J. A1 - Spaltmann, Dirk A1 - Gradt, Thomas A1 - Alberdi, A. A1 - Alonso, I. A1 - Bayón, R. A1 - Igartua, A. A1 - García, Á. A1 - Pagano, F. A1 - Bravo, I. A1 - Kogia, M. A1 - Dykeman, D. A1 - Liedtke, S. A1 - Minami, I. A1 - Nyberg, E. A1 - Soivio, K. A1 - Ronkainen, H. A1 - Majaniemi, S. A1 - Heino, V. A1 - Gkagkas, K. A1 - Mont, L. A1 - Amigorena, I. T1 - Tribological characterisation services for materials - i-TRIBOMAT N2 - Um den Entwicklungsprozess von neuen Komponenten zu beschleunigen, ist die Vorrausage der Eigenschaften der eingesetzten Werkstoffe im Betrieb der Komponenten von enormer Bedeutung. Um neue Werkstoffe hinsichtlich Ihrer Performance (in einer Komponente) bewerten zu können, ist deshalb die Entwicklung neuer innovativer Methoden notwendig. Diese Methoden können auch unter dem Begriff „lab-to-field“ oder „materials“ – up-scaling zusammengefasst werden. D. h. Werkstoffe werden im Labor charakterisiert, und deren Eigenschaften mittels z.B. Simulation auf die Komponentenperformance hochskaliert (upscaling). i-TRIBOMAT ist ein EU gefördertes Projekt (H2020, GA Nr. 814494) mit dem Ziel ein Open Innovation Test Bed für tribologische Werkstoffcharakterisierung aufzubauen und entsprechende Services von der tribologischen Charakterisierung neuer Werkstoffe bis hin zu Simulationsmodellen zur Vorrausage der Perfomance von Komponenten der Industrie anzubieten. Durch die Bündelung von Knowhow und Infrastruktur zu Charakterisierung sowie den Aufbau einer digitalen Plattform, wird i-TRIBOMAT das weltgrößte Open Innovation Test Bed für tribologische Werkstoffcharakterisierung. N2 - The prediction of the properties of the materials used in the operation of components is of enormous importance, in order to accelerate the development process of new components. To evaluate new materials in terms of their performance (in a component), the development of new innovative methods is necessary. These methods can also be summarized under the term lab-to-field or materials – upscaling, meaning materials being characterised in a laboratory and their properties being upscaled to the component performance by means of e.g. simulation. i-TRIBOMAT is a EU funded project (H2020, GA Nr. 814494) aiming at building an Open Innovation Test Bed for tribological material characterization and offering corresponding services from tribological characterization of new materials to simulation models for predicting the performance of industrial components. By bundling the infrastructure, know-how for characterization and building a digital platform, i-TRIBOMAT becomes the world’s largest open innovation test bed for tribological material characterization. T2 - 22nd International Colloquium Tribology CY - Esslingen, Germany DA - 28.01.2020 KW - Tribologie KW - Lab-to-field up-scaling KW - Werkstoffdatenbank KW - Geteilte Infrastruktur KW - Tribo-Analytik KW - Intelligente tribologische Werkstoffcharakterisierung KW - Lab-to-field upscaling KW - Tribology KW - Intelligent tribological material characterization KW - Materials database KW - Shared infrastruture KW - Tribo-analytics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576762 DO - https://doi.org/10.30419/TuS-2020-0026 SN - 0724-3472 SN - 2941-0908 VL - 67 IS - 5-6 SP - 35 EP - 50 PB - Expert CY - Tübingen AN - OPUS4-57676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Boldyreva, E. A1 - Belenguer, A. M. A1 - Emmerling, Franziska A1 - Boldyrev, V. V. T1 - Tribochemistry, mechanical alloying, mechanochemistry: what is in a name? N2 - Over the decades, the application of mechanical force to influence chemical reactions has been called by various names: mechanochemistry, tribochemistry, mechanical alloying, to name but a few. The evolution of these terms has largely mirrored the understanding of the field. But what is meant by these terms, why have they evolved, and does it really matter how a process is called? Which parameters should be defined to describe unambiguously the experimental conditions such that others can reproduce the results, or to allow a meaningful comparison between processes explored under different conditions? Can the information on the process be encoded in a clear, concise, and self-explanatory way? We address these questions in this Opinion contribution, which we hope will spark timely and constructive discussion across the international mechanochemistry community. KW - Mechanochemistry KW - Tribochemistry KW - Mechanical alloying KW - Tribology KW - Mechanical activation KW - Nomenclature KW - Mechanochemical pictographs PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523291 DO - https://doi.org/10.3389/fchem.2021.685789 SN - 2296-2646 VL - 9 SP - 1 EP - 29 PB - Frontiers Media CY - Lausanne AN - OPUS4-52329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Evans, Alexander A1 - Serrano-Munoz, Itziar A1 - Kromm, Arne A1 - Pirling, T. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Triaxial Residual Stress in Laser Powder Bed Fused 316L: Effects of Interlayer Time and Scanning Velocity N2 - The triaxial distribution of the residual stress in laser powder bed fused austenitic steel 316L was determined by X-ray and neutron diffraction. The residual stress analysis results were linked to the thermal history of the specimens, which were manufactured with varying inter-layer-times and scanning velocities. A clear link between the in-process temperature of the specimens and the residual stress was found, based on in-situ monitoring data. KW - Stainless Steel KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542620 DO - https://doi.org/10.1002/adem.202101330 SP - 1 EP - 13 PB - Wiley-VCH GmbH AN - OPUS4-54262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Bresch, Harald A1 - Kipphardt, Heinrich A1 - Resch-Genger, Ute A1 - Koch, Matthias A1 - Rosner, M. T1 - Trends in selected fields of reference material production N2 - For more than 110 years, BAM has been producing reference materials for a wide range of application fields. With the development of new analytical methods and new applications as well as continuously emerging more stringent requirements of laboratory accreditation with regard to quality control and metrological traceability, the demand and requirements for reference materials are increasing. This trend article gives an overview of general developments in the field of reference materials as well as developments in selected fields of application in which BAM is active. This includes inorganic and metal analysis, gas analysis, food and consumer products, and geological samples. In addition to these more traditional fields of application, developments in the areas of optical spectroscopy, particulary fluorescence methods, and nanomaterials are considered. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Reference material KW - ISO REMCO KW - Gas analysis KW - Food KW - Nanomaterials KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548407 DO - https://doi.org/10.1007/s00216-022-03996-7 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4281 EP - 4289 PB - Springer CY - Berlin AN - OPUS4-54840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Mente, Tobias T1 - Trapping and diffusion in high-pressure hydrogen charged CoCrFeMnNi high entropy alloy compared to austenitic steel 316L N2 - High entropy alloys (HEAs) have attracted considerable research attention as potential substitute materials for austenitic steels in high-pressure hydrogen environments. The corresponding hydrogen absorption, diffusion and trapping has received less scientific attention. Therefore, the CoCrFeMnNi-HEA was investigated and compared to an austenitic steel AISI 316L. Both were subjected to high-pressure hydrogen charging at 200 bar and 1000 bar. Thermal Desorption Analysis (TDA) was used to clarify the specific desorption behavior and hydrogen trapping. For this purpose, the underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution into a defined number of peaks and the activation energies for the respective and predominant hydrogen trapping sites were then calculated. Both materials show comparable hydrogen diffusivity. However, there were significant differences in the absorbed hydrogen concentrations at both charging pressures. The calculated activation energies suggest strong hydrogen trapping in the CoCrFeMnNi-HEA. KW - High-entropy alloy KW - Hydrogen diffusion KW - Trapping KW - High-pressure charging KW - Thermal desorption analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-611901 DO - https://doi.org/10.1016/j.ijhydene.2024.09.393 SN - 0360-3199 VL - 89 IS - 89 SP - 772 EP - 782 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-61190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraus, David A1 - Trappe, Volker T1 - Transverse damage in glass fiber reinforced polymer under thermo-mechanical loading N2 - In this study, the thermomechanical damage behavior of a glass fiber reinforced polymer material is investigated. The coefficients of thermal expansion of the composite as well as the matrix are measured in a wide temperature range. Quasi-static experiments with neat resin, unidirectional and multidirectional laminates are performed as well as fatigue experiments in a temperature range from 213 K to 343 K. This study focusses on the matrix damage due to fiber-parallel loading. A correlation between matrix effort, the dilatational strain energy of the matrix and the damage state of the specimen is demonstrated. It is shown that a fatigue life assessment can be performed with the aid of a temperature-independent master fatigue curve. KW - Composite KW - Glass fiber reinforced polymer KW - Thermo-mechanics KW - Fatigue KW - Damage KW - Temperature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527462 DO - https://doi.org/10.1016/j.jcomc.2021.100147 SN - 2666-6820 VL - 5 SP - 100147 PB - Elsevier B.V. AN - OPUS4-52746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liepold, Philipp A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Transvarestraint testing of high-strength steel filler metal N2 - High-strength steel welds are typically not known to be susceptible to Solidification Cracking (SC). However, modern light-weight constructions may force welding in highly restrained conditions, which are known to increase the probability of Solidification Crack (SC) emergence. In this article, the Modified Varestraint-Transvarestraint (MVT) test was used to evaluate the hot cracking susceptibility of welds made from high-strength, low-alloyed filler material. The materials tested include solid wires and a metal-cored wire. All wires are typically used in the Gas Metal Arc Welding (GMAW) process. Susceptibility to SC was measured over a wide range of welding parameters and bending speeds. Results show little affinity of the tested materials to SC. However, crack length increases in most cases with arc energy ( U ∙ I∕welding speed ) and welding speed. The length of the longest crack in one test specimen follows a similar trend until high welding speeds, where stagnation of crack length with changing arc energy was observed. KW - MVT KW - Varestraint KW - Transvarestraint KW - Solidification cracking KW - High-strength steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630084 DO - https://doi.org/10.1007/s40194-025-02042-1 SN - 1878-6669 VL - 2025 SP - 1 EP - 12 PB - Springer CY - Berlin ; Heidelberg AN - OPUS4-63008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - Morell, Daniel A1 - von der Au, Marcus A1 - Wittstock, Gunther A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - Transpassive Metal Dissolution vs. Oxygen Evolution Reaction: Implication for Alloy Stability and Electrocatalysis T1 - Transpassive Metallauflösung vs. Sauerstoffentwicklung: Auswirkungen auf Legierungsstabilität und Elektrokatalyse N2 - Multi-principal element alloys (MPEAs) are gaining interest in corrosion and electrocatalysis research due to their electrochemical stability across a broad pH range and the design flexibility they offer. Using the equimolar CrCoNi alloy, we observe significant metal dissolution in a corrosive electrolyte (0.1 M NaCl, pH 2) concurrently with the oxygen evolution reaction (OER) in the transpassive region despite the absence of hysteresis in polarization curves or other obvious corrosion indicators. We present a characterization scheme to delineate the contribution of OER and alloy dissolution, using scanning electrochemical microscopy (SECM) for OER-onset detection, and quantitative chemical analysis with inductively coupled-mass spectrometry (ICP-MS) and ultraviolet visible light (UV-Vis) spectroscopy to elucidate metal dissolution processes. In-situ electrochemical atomic force microscopy (EC-AFM) revealed that the transpassive metal dissolution on CrCoNi is dominated by intergranular corrosion. These results have significant implications for the stability of MPEAs in corrosion systems, emphasizing the necessity of analytically determining metal ions released from MPEA electrodes into the electrolyte when evaluating Faradaic efficiencies of OER catalysts. The release of transition metal ions not only reduces the Faradaic efficiency of electrolyzers but may also cause poisoning and degradation of membranes in electrochemical reactors. N2 - Multi-Hauptelement-Legierungen (MPEAs) gewinnen in der Korrosions- und Elektrokatalyseforschung aufgrund ihrer elektrochemischen Stabilität über einen breiten pH-Bereich und der Vielfalt der möglichen chemischen Zusammensetzungen zunehmend an Interesse. In unseren Untersuchungen mit der äquimolaren CrCoNi-Legierung in einem sauren Elektrolyten (0.1 M NaCl, pH 2) beobachteten wir eine signifikante Metallauflösung, die mit der Sauerstoffentwicklungsreaktion (OER) im transpassiven Bereich einhergeht, obwohl in zyklischen Polarisationskurven keine Hysterese auftrat oder andere offensichtliche Korrosionsindikatoren vorlagen. In diesem Artikel wird ein Charakterisierungskonzept eingeführt, dass die Beiträge der OER und der Legierungsauflösung differenziert. Hierfür kommt die elektrochemische Rastermikroskopie (SECM) zum Nachweis des Beginns der OER und die quantitative chemische Analyse mit induktiv gekoppelter Massenspektrometrie (ICP-MS) und UV/Vis-Spektrometrie zur Aufklärung der Metallauflösungsprozesse zum Einsatz. Die elektrochemische In situ-Atomkraftmikroskopie (EC-AFM) zeigte, dass die intergranulare Korrosion der dominierende Mechanismus der transpassive Metallauflösung von CrCoNi ist. Diese Ergebnisse besitzen erhebliche Auswirkungen für die Beurteilung der Stabilität von MPEAs in Korrosionssystemen und der Stromausbeute von OER-Katalysatoren auf der Basis von MPEAs. Die Daten unterstreichen die Notwendigkeit der analytischen Bestimmung von Metallionen, die von MPEA-Elektroden freigesetzt werden. Die Freisetzung von Übergangsmetallionen verringert nicht nur die Stromausbeute von Elektrolyseuren, sondern kann zu einer Schädigung von Membranen in elektrochemischen Reaktoren führen. KW - Transpassive dissolution KW - Corrosion KW - Multi-prinicpal element alloys (MPEAs) KW - Passivation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597045 DO - https://doi.org/10.1002/anie.202317058 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-59704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - Morell, Daniel A1 - von der Au, Marcus A1 - Witt, Julia A1 - Özcan Sandikcioglu, Özlem T1 - Transpassive Behavior of Equimolar CrMnFeCoNi and CrCoNi Multi‐Principal Element Alloys in an Alkaline NaCl Electrolyte N2 - AbstractWe investigated the corrosion properties and transpassive behavior of CrMnFeCoNi and CrCoNi multi‐principal element alloys (MPEAs) in a 0.1 M NaCl electrolyte at pH 12. By using SECM‐based tip substrate voltammetry (TSV) in combination with the chemical analysis of the electrolyte, we were able to differentiate between anodic metal dissolution and oxygen evolution in the transpassive range. Our investigations have shown that CrCoNi has a significantly higher corrosion resistance compared to CrMnFeCoNi. In the studied alkaline environment, a transpassive oxide film is formed on the surface of CrCoNi during secondary passivation. This transpassive oxide film appears to play a significant role in oxygen evolution, as the increase in TSV currents at the microelectrode coincides with the corresponding current density plateau of the voltametric current trace. The formation of the transpassive oxide film was not observed in previous studies conducted in acidic environments. Moreover, the alkaline electrolyte induced a positive hysteresis and mild pitting corrosion, in addition to intergranular corrosion, which was the sole corrosion process observed at acidic pH levels. These findings enhance the understanding of the processes governing the transpassivity of CrMnFeCoNi and CrCoNi MPEAs in alkaline environments and have potential implications for the development of application‐tailored corrosion‐resistant MPEAs. KW - Multi-principal element alloys KW - MPEA KW - Corrosion KW - Oxygen evolution reaction KW - Transpassive region PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-611594 DO - https://doi.org/10.1002/celc.202400346 SN - 2196-0216 SP - 1 EP - 9 PB - Wiley AN - OPUS4-61159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tokarski, T. A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Rychlowski, L. A1 - Bala, P. A1 - Cios, G. T1 - Transmission Kikuchi diffraction: The impact of the signal-to-noise ratio N2 - Signal optimization for transmission Kikuchi diffraction (TKD) measurements in the scanning electron microscope is investigated by a comparison of different sample holder designs. An optimized design is presented, which uses a metal shield to efficiently trap the electron beam after transmission through the sample. For comparison, a second holder configuration allows a significant number of the transmitted electrons to scatter back from the surface of the sample holder onto the diffraction camera screen. It is shown that the secondary interaction with the sample holder leads to a significant increase in the background level, as well as to additional noise in the final Kikuchi diffraction signal. The clean TKD signal of the optimized holder design with reduced background scattering makes it possible to use small signal changes in the range of 2% of the camera full dynamic range. As is shown by an analysis of the power spectrum, the signal-to-noise ratio in the processed Kikuchi diffraction patterns is improved by an order of magnitude. As a result, the optimized design allows an increase in pattern signal to noise ratio which may lead to increase in measurement speed and indexing reliability. KW - EBSD KW - SEM KW - Transmission Kikuchi diffraction KW - Sample holder PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531743 DO - https://doi.org/10.1016/j.ultramic.2021.113372 SN - 0304-3991 SN - 1879-2723 VL - 230 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Keller, Julia A1 - Lörchner, Dominique A1 - Mekonnen, Tessema F. A1 - Koch, Matthias T1 - Transformation products of organic contaminants and residues - Overview of current simulation methods N2 - The formation of transformation products (TPs) from contaminants and residues is becoming an increasing focus of scientific community. All organic compounds can form different TPs, thus demonstrating the complexity and interdisciplinarity of this topic. The properties of TPs could stand in relation to the unchanged substance or be more harmful and persistent. To get important information about the generated TPs, methods are needed to simulate natural and manmade transformation processes. Current tools are based on metabolism studies, photochemical methods, electrochemical methods, and Fenton's reagent. Finally, most transformation processes are based on redox reactions. This review aims to compare these methods for structurally different compounds. The groups of pesticides, pharmaceuticals, brominated flame retardants, and mycotoxins were selected as important residues/contaminants relating to their worldwide occurrence and impact to health, food, and environmental safety issues. Thus, there is an increasing need for investigation of transformation processes and identification of TPs by fast and reliable methods. KW - Transformation product KW - Electrochemistry KW - Photochemistry KW - Fenton’s reagent PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474108 DO - https://doi.org/10.3390/molecules24040753 SN - 1420-3049 VL - 24 IS - 4 SP - 753, 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-47410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. T1 - Transformation of poly(L-lactide) crystals composed of linear chains into crystals composed of cycles N2 - A poly(L-lactide) with a trifluoroethyl ester end group and an average degree of polymerization (DP) of 50 was synthesized by ROP of L-lactide initiated with trifluoroethanol. Small-angle X-ray scattering (SAXS) in combination with differential scanning calorimetry (DSC) measurements revealed an average crystal thickness of 13 nm, corresponding to 45 repeat units. This suggests that most crystallites were formed by extended PLA chains, and both flat surfaces were covered by CF3 groups. The crystalline PLAs were annealed at 140 or 160 °C in the presence of two catalysts: tin(II) 2-ethylhexanoate, (SnOct2) or dibutyltin bis(pentafluorophenoxide) (BuSnPhF). The chemical reactions, such as polycondensation and cyclization, proceeded in the solid state and were monitored by matrix-assisted laser desorption/ionization time-offlight (MALDI TOF) mass spectrometry and gel permeation chromatography (GPC) measurements. Under optimal conditions a large fraction of linear chains was transformed into crystallites composed of extended cycles. Additionally, MALDI TOF MS analysis of GPC fractions from samples annealed for 28 or 42 days detected chain elongation of the linear species up to a factor of 20. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Transesterification PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597250 DO - https://doi.org/10.1039/D3PY01370G SN - 1759-9954 VL - 15 IS - 12 SP - 1173 EP - 1181 PB - Royal Society for Chemistry AN - OPUS4-59725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Orf, I. A1 - Tenenboim, H. A1 - Omranian, N. A1 - Nikoloski, Z. A1 - Fernie, A. R. A1 - Lisec, Jan A1 - Brotman, Y. A1 - Bromke, M. A. T1 - Transcriptomic and Metabolomic Analysis of a Pseudomonas-Resistant versus a Susceptible Arabidopsis Accession N2 - Accessions of one plant species may show significantly different levels of susceptibility to stresses. The Arabidopsis thaliana accessions Col-0 and C24 differ significantly in their resistance to the pathogen Pseudomonas syringae pv. tomato (Pst). To help unravel the underlying mechanisms contributing to this naturally occurring variance in resistance to Pst, we analyzed changes in transcripts and compounds from primary and secondary metabolism of Col-0 and C24 at different time points after infection with Pst. Our results show that the differences in the resistance of Col-0 and C24 mainly involve mechanisms of salicylic-acid-dependent systemic acquired resistance, while responses of jasmonic-acid-dependent mechanisms are shared between the two accessions. In addition, arginine metabolism and differential activity of the biosynthesis pathways of aliphatic glucosinolates and indole glucosinolates may also contribute to the resistance. Thus, this study highlights the difference in the defense response strategies utilized by different genotypes. KW - Mass Spectrometry KW - Arabidopsis KW - Resistance PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559549 DO - https://doi.org/10.3390/ijms232012087 VL - 23 IS - 20 SP - 1 EP - 27 PB - MDPI AN - OPUS4-55954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Schütter, J. D. A1 - Wagner, R. A1 - Dimper, M. A1 - Lützenkirchen-Hecht, D. A1 - Özcan Sandikcioglu, Özlem T1 - Trained to corrode: Cultivation in the presence of Fe(III) increases the electrochemical activity of iron reducing bacteria – An in situ electrochemical XANES study N2 - This paper reports results from in situ electrochemical X-ray absorption near-edge spectroscopy (XANES) studies of the corrosion processes on model thin iron films in the presence of iron reducing bacteria Shewanella putrefaciens. Here we investigate the electrochemical activity of two cultures grown in the presence and absence of Fe(III) citrate in the culture medium. The XANES spectra and the OCP data of the Fe sample incubated with the culture grown in absence of Fe(III) did not show any significant changes during twenty hours of monitoring. In the case of the culture grown in Fe(III) containing medium, an accelerated dissolution of the iron film was observed together with the formation of a mixed Fe(II)-Fe(III) hydroxide surface layer. The open circuit potential (OCP) steadily approached the free corrosion potential of iron in neutral chloride containing electrolytes, indicating a continuous dissolution process without passivation. KW - Microbiologically influenced corrosion KW - XANES KW - Electrochemistry KW - Iron reducing bacteria PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505732 DO - https://doi.org/10.1016/j.elecom.2020.106673 VL - 112 SP - 106673 PB - Elsevier B.V. AN - OPUS4-50573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fadda, Marta A1 - Sacco, Alessio A1 - Altmann, Korinna A1 - Ciornii, Dmitri A1 - Milczewski, Frank A1 - Bañares, Miguel A. A1 - Portela, Raquel A1 - Giovannozzi, Andrea Mario A1 - Rossi, Andrea Mario T1 - Tracking nanoplastics in drinking water: a new frontier with the combination of dielectrophoresis and Raman spectroscopy N2 - Detection of micro- (MPs) and nanoplastics (NPs) in food and environmental matrices has been gaining relevance due to their potential toxicological effects on human health. While MPs have been detected in a wide range of complex matrices, suitable methods for the characterization and chemical identification of NPs are still lacking, primarily due to significant methodological challenges associated with their nano-specific physiochemical properties, including size distribution (1 nm – 1 µm), dynamic surface chemical changes, and carbon-based composition, which complicate their detection compared to engineered nanomaterials. To overcome the traditional limitations of spectroscopic techniques in terms of spatial resolution and sensitivity at the sub-micrometer level, a novel label-free methodology is presented for specifically identifying the chemical composition of NPs directly in suspension by combining Raman spectroscopy with dielectrophoresis (DEP). Using a custom-built device, small volumes of NPs are injected into a dielectrophoretic cell and locally trapped by DEP forces to fill the Raman confocal volume, facilitating their detection and identification, and providing high signal-to-noise ratio Raman spectra for more reliable analysis. This approach was successfully applied to both Milli-Q water and a commercial brand of drinking water, enabling the rapid identification of various types of NPs with different sizes and polymer compositions at concentrations as low as 20 µg/mL. These included certified reference polystyrene beads ranging from 800 to 60 nm in diameter, as well as polydisperse NPs, more representative of real samples in terms of size distribution and polymer type, such as polyethylene (450 nm), polypropylene (180 nm), and polyethylene terephthalate (100 nm). Moreover, the chemical fingerprint of each NPs was thoroughly investigated and compared with the corresponding bulk polymers, highlighting possible changes in the Raman bands due to surface oxidation or nanometer-scale effect. Therefore, this innovative method can be considered a valuable approach for addressing gaps in the detection and identification of NPs, as well as for monitoring their dynamic phisiochemical changes in real matrices. KW - Nanoplastics KW - Water contaminants KW - Raman microspectroscopy KW - Dielectrophoresis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-633658 DO - https://doi.org/10.1186/s43591-025-00131-y SN - 2662-4966 VL - 5 IS - 1 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-63365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pech, S. A1 - Rehberg, M. A1 - Janke, R. A1 - Benndorf, D. A1 - Genzel, Y. A1 - Muth, Thilo A1 - Sickmann, A. A1 - Rapp, E. A1 - Reichl, U. T1 - Tracking changes in adaptation to suspension growth for MDCK cells: cell growth correlates with levels of metabolites, enzymes and proteins N2 - Adaptations of animal cells to growth in suspension culture concern in particular viral vaccine production, where very specific aspects of virus-host cell interaction need to be taken into account to achieve high cell specific yields and overall process productivity. So far, the complexity of alterations on the metabolism, enzyme, and proteome level required for adaptation is only poorly understood. In this study, for the first time, we combined several complex analytical approaches with the aim to track cellular changes on different levels and to unravel interconnections and correlations. Therefore, a Madin-Darby canine kidney (MDCK) suspension cell line, adapted earlier to growth in suspension, was cultivated in a 1-L bioreactor. Cell concentrations and cell volumes, extracellular metabolite concentrations, and intracellular enzyme activities were determined. The experimental data set was used as the input for a segregated growth model that was already applied to describe the growth dynamics of the parental adherent cell line. In addition, the cellular proteome was analyzed by liquid chromatography coupled to tandem mass spectrometry using a label-free protein quantification method to unravel altered cellular processes for the suspension and the adherent cell line. Four regulatory mechanisms were identified as a response of the adaptation of adherent MDCK cells to growth in suspension. These regulatory mechanisms were linked to the proteins caveolin, cadherin-1, and pirin. Combining cell, metabolite, enzyme, and protein measurements with mathematical modeling generated a more holistic view on cellular processes involved in the adaptation of an adherent cell line to suspension growth. KW - MDCK cell KW - Proteome KW - Metabolism KW - Enzyme activity KW - Suspension growth PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522070 DO - https://doi.org/10.1007/s00253-021-11150-z VL - 105 IS - 5 SP - 1861 EP - 1874 PB - Springer AN - OPUS4-52207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wonneberger, R. A1 - Gräf, S. A1 - Bonse, Jörn A1 - Wisniewski, W. A1 - Freiberg, K. A1 - Hafermann, M. A1 - Ronning, C. A1 - Müller, F. A. A1 - Undisz, A. T1 - Tracing the Formation of Femtosecond Laser-Induced Periodic Surface Structures (LIPSS) by Implanted Markers N2 - The generation of laser-induced periodic surface structures (LIPSS) using femtosecond lasers facilitates the engineering of material surfaces with tailored functional properties. Numerous aspects of their complex formation process are still under debate, despite intensive theoretical and experimental research in recent decades. This particularly concerns the challenge of verifying approaches based on electromagnetic effects or hydrodynamic processes by experiment. In the present study, a marker experiment is designed to conclude on the formation of LIPSS. Well-defined concentration depth profiles of 55Mn+- and 14N+-ions were generated below the polished surface of a cast Mn- and Si-free stainless steel AISI 316L using ion implantation. Before and after LIPSS generation, marker concentration depth profiles and the sample microstructure were evaluated by using transmission electron microscopy techniques. It is shown that LIPSS predominantly formed by material removal through locally varying ablation. Local melting and resolidification with the redistribution of the material occurred to a lesser extent. The experimental design gives quantitative access to the modulation depth with a nanometer resolution and is a promising approach for broader studies of the interactions of laser beams and material surfaces. Tracing LIPSS formation enables to unambiguously identify governing aspects, consequently guiding the path to improved processing regarding reproducibility, periodicity, and alignment. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser processing KW - Ion implantation KW - Transmission Electron Microscopy (TEM) KW - Stainless steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623990 DO - https://doi.org/10.1021/acsami.4c14777 SN - 1944-8244 (Print) SN - 1944-8252 (Online) VL - 17 IS - 1 SP - 2462 EP - 2468 PB - ACS Publications AN - OPUS4-62399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plouffe, A. A1 - Lee, R. G. A1 - Byrne, K. A1 - Kjarsgaard, I. M. A1 - Petts, D. C. A1 - Wilton, D.H.C. A1 - Ferbey, T. A1 - Oelze, Marcus T1 - Tracing Detrital Epidote Derived from Alteration Halos to Porphyry Cu Deposits in Glaciated Terrains: The Search for Covered Mineralization N2 - Distal alteration related to porphyry Cu mineralization is typically characterized by an abundance of green minerals, such as epidote, tremolite, and chlorite, within the propylitic and sodic-calcic alteration zones and extends far outside (>1 km) the mineralized zone(s). Glacial erosion and dispersal derived from rocks affected by propylitic and sodic-calcic alteration have resulted in the development of extensive dispersal trains of epidote in till (glacial sediment) that can reach 8 to 330 km2 as observed at four porphyry Cu study sites in the Quesnel terrane of south-central British Columbia: Highland Valley Copper, Gibraltar, Mount Polley, and Woodjam deposits. At each of these sites, epidote is more abundant in heavy mineral concentrates of till collected directly over and down-ice from mineralization and associated alteration. Epidote grains in till with >0.6 ppm Sb and >8 ppm As (as determined by laser ablation-inductively coupled plasma-mass spectrometry) are attributed to a porphyry alteration provenance. There is a greater abundance of epidote grains with high concentrations of trace elements (>12 ppm Cu, >2,700 ppm Mn, >7 ppm Zn, and >37 ppm Pb) in each porphyry district com� pared to background regions. This trace element signature recorded in till epidote grains is heterogeneously distributed in these districts and is interpreted to reflect varying degrees of metal enrichment from a porphyry fluid source. Tracing the source of the epidote in the till (i.e., geochemically tying it to porphyry-related propy� litic and/or sodic-calcic alteration), coupled with porphyry vectoring tools in bedrock, will aid in the detection of concealed porphyry Cu mineralization in glaciated terrains. KW - Indicator minerals KW - Porphyry Cu deposits KW - Epidote KW - Glaciated terrains KW - Propylitic alteration PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-635209 DO - https://doi.org/10.5382/econgeo.5049 SN - 1554-0774 VL - 119 IS - 2 SP - 305 EP - 329 PB - Society of Economic Geologists, Inc. AN - OPUS4-63520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayat, Mehmet Emin A1 - Kipphardt, Heinrich A1 - Tiebe, Carlo A1 - Tuma, Dirk A1 - Engelhard, Carsten T1 - Trace-Level Ammonia–Water Interactions in Hydrogen: Challenges in Gas Purity Analysis Using Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) N2 - Ammonia is a critical impurity in hydrogen fuel due to its irreversible poisoning effect on proton exchange membrane fuel cells. Therefore, international standards (e.g., ISO 14687) set a stringent threshold of 100 nmol/mol. Furthermore, with the growing potential use of ammonia as a hydrogen carrier, its accurate quantification is becoming increasingly important. However, the presence of trace humidity poses analytical challenges, as ammonia may interact with water or interfaces, thereby affecting its detectability. Therefore, the goal of this work is to enable accurate trace ammonia quantification for hydrogen purity measurements through fundamental studies of the methodological challenges. Here, low-pressure sampling (ultra)long-path Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) was applied with an effective optical path length of approximately 6.17 km. We studied three average amounts of ammonia: (38.2 ± 0.8) nmol/mol, (74.8 ± 0.7) nmol/mol, and (112.1 ± 1.2) nmol/mol. Furthermore, these amounts were investigated at trace-humidity levels ranging from 0.8 to 8.5 ppmV. We observed a systematic, nonlinear, and humidity-dependent positive measurement bias of up to + (1.0 ± 0.2) nmol/mol at the maximum investigated trace-humidity volume fraction of 8.5 ppmV. This bias was not caused by spectral interference but rather by water-induced accumulation of ammonia within the optical cavity. Moreover, time-resolved measurements in the presence of trace ammonia showed that water desorption follows first-order kinetics, whereas water adsorption followed mixed-order kinetics with an apparent reaction order of 1.57 ± 0.03. Distinct hydration states of surface-bound ammonia were identified, whereas under dry conditions and with increasing amounts of ammonia, enhanced surface adhesion through intermolecular clustering was observed. In addition, the presence of ammonium species within the sorption layer was indirectly confirmed by our experiments. In conclusion, we provide a deeper insight into trace-level ammonia–water interactions and establish a framework for optimizing methodologies, particularly for (ultra)long-path optical gas measurement systems. KW - Ammonia KW - Hydrogen KW - OF-CEAS KW - Humidity KW - Surface Interactions KW - Adsorption PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643627 DO - https://doi.org/10.1021/acsmeasuresciau.5c00105 SN - 2694-250X SP - 1 EP - 15 PB - American Chemical Society (ACS) AN - OPUS4-64362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sittner, Jonathan A1 - Götze, Jens A1 - Müller, Axel A1 - Renno, Axel D. A1 - Ziegenrücker, René A1 - Pan, Yuanming T1 - Trace element analysis and luminescence behavior of quartz in pegmatites of the Tørdal Region, Norway N2 - This publication presents a study on the mineral chemistry and luminescence properties of quartz samples from pegmatites of the Tørdal region in Norway. A total of 12 samples were analyzed using Secondary Ion Mass Spectrometry (SIMS), Electron Paramagnetic Resonance Spectroscopy (EPR), and Cathodoluminescence (CL) to gain insights into their trace element concentration and distribution as well as their luminescence behavior. The samples are characterized by different Cl emissions at 450 nm, 500 nm 650 nm and an additional shoulder at 390 nm, which is only partially visible due to the absorption of the glass optics. Of these luminescence bands, the 500 nm band is the most dominant in most samples and it is characterized by an initial blue-green luminescence, which is not stable under electron irradiation. Moreover, it is characterized by a heterogeneous distribution within the samples. This luminescence can be mostly assigned to [AlO4/M+]0 defects, with charge compensation mostly achieved by Li+. Analyses by EPR spectroscopy prove the dominance of structurally bound Al, Li, and Ti ions in the investigated samples. Further analyses using SIMS mapping demonstrate that Na and K are mainly bound to micro fractures or inclusions, suggesting a limited role in the compensation of the luminescence centers. Additionally, the SIMS mappings show that some samples contain Al-rich clusters of 10 to 20 µm in diameter, whereas other trace elements are characterized by a homogeneous distribution. These clusters correspond to bright luminescence areas in size and shape and could potentially indicate H+ compensated [AlO4/M+]0 defects. KW - Quartz KW - Trace elements KW - SIMS KW - Cathodoluminescence KW - EPR KW - Tørdal KW - Pegmatite PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612529 DO - https://doi.org/10.1016/j.chemgeo.2024.122427 VL - 670 SP - 1 EP - 15 PB - Elsevier BV AN - OPUS4-61252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Trace compounds in Early Medieval Egyptian blue carry information on provenance, manufacture, application, and ageing N2 - Only a few scientific evidences for the use of Egyptian blue in Early Medieval wall paintings in Central and Southern Europe have been reported so far. The monochrome blue fragment discussed here belongs to the second church building of St. Peter above Gratsch (South Tyrol, Northern Italy, fifth/ sixth century A.D.). Beyond cuprorivaite and carbon black (underpainting), 26 accessory minerals down to trace levels were detected by means of Raman microspectroscopy, providing unprecedented insights into the raw materials blend and conversion reactions during preparation, application, and ageing of the pigment. In conjunction with archaeological evidences for the manufacture of Egyptian blue in Cumae and Liternum and the concordant statements of the antique Roman writers Vitruvius and Pliny the Elder, natural impurities of the quartz sand speak for a pigment produced at the northern Phlegrean Fields (Campania, Southern Italy). Chalcocite (and chalcopyrite) suggest the use of a sulphidic copper ore, and water-insoluble salts a mixed-alkaline flux in the form of plant ash. Not fully reacted quartz crystals partly intergrown with cuprorivaite and only minimal traces of silicate glass portend solid-state reactions predominating the chemical reactions during synthesis, while the melting of the raw materials into glass most likely played a negligible role. KW - Egyptian blue KW - Raman microspectroscopy KW - Spectoscopic imaging KW - Cuprorivaite KW - Amorphous carbon PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537591 DO - https://doi.org/10.1038/s41598-021-90759-6 VL - 11 SP - 1 EP - 12 PB - Nature Portfolio AN - OPUS4-53759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Haase, H. A1 - Menzel, R. A1 - Rueß, L. A1 - Koch, Matthias T1 - Toxicity assay for citrinin, zearalenone and zearalenone-14-sulfate using the nematode Caenorhabditis elegans as model organism N2 - To keep pace with the rising number of detected mycotoxins, there is a growing need for fast and reliable toxicity tests to assess the potential threat to food safety. Toxicity tests with the bacterial-feeding nematode Caenorhabditis elegans as model organism are well established. In this study the C. elegans wildtype strain N2 (var. Bristol) was used to investigate the toxic effects of the food-relevant mycotoxins citrinin (CIT) and zearalenone-14-sulfate (ZEA-14-S) and zearalenone (ZEA) on different life cycle parameters including reproduction, thermal and oxidative stress resistance and lifespan. The metabolization of the mycotoxins by the nematodes in vivo was investigated using HPLC-MS/MS. ZEA was metabolized in vivo to the reduced isomers α-zearalenol (α-ZEL) and β-ZEL. ZEA 14-S was reduced to α-/β-ZEL 14-sulfate and CIT was metabolized to mono-hydroxylated CIT. All mycotoxins tested led to a significant decrease in the number of nematode offspring produced. ZEA and CIT displayed negative effects on stress tolerance levels and for CIT an additional shortening of the mean lifespan was observed. In the case of ZEA-14-S, however, the mean lifespan was prolonged. The presented study shows the applicability of C. elegans for toxicity testing of emerging food mycotoxins for the purpose of assigning potential health threats. KW - Mycotoxins KW - Metabolization KW - Toxicity testing KW - Biotests PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-455772 DO - https://doi.org/10.3390/toxins10070284 VL - 10 IS - 7 SP - 284, 1 EP - 12 PB - MDPI AN - OPUS4-45577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kieserling, Helena A1 - Sieg, Holger A1 - Heilscher, Jasmin A1 - Drusch, Stephan A1 - Braeuning, Albert A1 - Thünemann, Andreas A1 - Rohn, Sascha T1 - Towards Understanding Particle-Protein Complexes: Physicochemical, Structural, and Cellbiological Characterization of β-Lactoglobulin Interactions with Silica, Polylactic Acid, and Polyethylene Terephthalate Nanoparticles N2 - Nanoplastic particles and their additives are increasingly present in the food chain, interacting with biomacromolecules with not yet known consequences. A protein corona forms around the particles in these usually complex matrices, primarily with a first contact at surface-active proteins. However, systematic studies on the interactions between the particles and proteins –especially regarding protein affinity and structural changes due to surface properties like polarity – are limited. It is also unclear whether the protein corona can "mask" the particles, mimic protein properties, and induce cytotoxic effects when internalized by mammalian cells. This study aimed at investigating the physicochemical properties of model particle-protein complexes, the structural changes of adsorbed proteins, and their effects on Caco-2 cells. Whey protein β-lactoglobulin (β-Lg) was used as a well-characterized model protein and studied in a mixture with nanoparticles of varying polarity, specifically silica, polylactic acid (PLA), and polyethylene terephthalate (PET). The physicochemical analyses included measurements of the hydrodynamic diameter and the zeta potential, while the protein conformational changes were analyzed using Fourier-transform-infrared spectroscopy (FTIR) and intrinsic fluorescence. Cellular uptake in Caco-2 cells was assessed through flow cytometry, cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay, and cellular impedance was analyzed with xCELLigence® technology. The results indicated that β-Lg had the highest affinity for hydrophilic silica particles, forming silica-β-Lg complexes and large aggregates through electrostatic interactions. The affinity decreased for PLA and was lowest for hydrophobic PET, which formed smaller complexes. Adsorption onto silica caused partial unfolding and refolding of β-Lg. The silica-β-Lg complexes were internalized by Caco-2 cells, impairing cell proliferation. In contrast, PLA- and PET-protein complexes were not internalized, though PLA complexes slightly reduced cell viability. This study enhances our understanding of protein adsorption on nanoparticles and its potential biological effects. KW - Nanoplastics KW - Microplastics KW - Reference materials KW - Scattering KW - DLS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630093 DO - https://doi.org/10.1016/j.colsurfb.2025.114702 SN - 1873-4367 VL - 253 SP - 1 EP - 12 PB - Elsevier BV CY - Amsterdam AN - OPUS4-63009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaeger, Carsten A1 - Lisec, Jan T1 - Towards Unbiased Evaluation of Ionization Performance in LC-HRMS Metabolomics Method Development N2 - As metabolomics increasingly finds its way from basic science into applied and regulatory environments, analytical demands on nontargeted mass spectrometric detection methods continue to rise. In addition to improved chemical comprehensiveness, current developments aim at enhanced robustness and repeatability to allow long-term, inter-study, and meta-analyses. Comprehensive metabolomics relies on electrospray ionization (ESI) as the most versatile ionization technique, and recent liquid chromatography-high resolution mass spectrometry (LC-HRMS) instrumentation continues to overcome technical limitations that have hindered the adoption of ESI for applications in the past. Still, developing and standardizing nontargeted ESI methods and instrumental setups remains costly in terms of time and required chemicals, as large panels of metabolite standards are needed to reflect biochemical diversity. In this paper, we investigated in how far a nontargeted pilot experiment, consisting only of a few measurements of a test sample dilution series and comprehensive statistical analysis, can replace conventional targeted evaluation procedures. To examine this potential, two instrumental ESI ion source setups were compared, reflecting a common scenario in practical method development. Two types of feature evaluations were performed, (a) summary statistics solely involving feature intensity values, and (b) analyses additionally including chemical interpretation. Results were compared in detail to a targeted evaluation of a large metabolite standard panel. We reflect on the advantages and shortcomings of both strategies in the context of current harmonization initiatives in the metabolomics field. KW - Mass Spectrometry KW - Non-targeted analysis KW - Method development PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548065 DO - https://doi.org/10.3390/metabo12050426 VL - 12 IS - 5 SP - 1 EP - 13 PB - MDPI AN - OPUS4-54806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Werner, Tiago A1 - Kelleher, J. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Towards the optimization of post-laser powder bed fusion stress-relieve treatments of stainless steel 316L N2 - This study reports on the stress relaxation potential of stress-relieving heat treatments for laser powder bed fused 316L. The residual stress is monitored non-destructively using neutron diffraction before and after the heat treatment. Moreover, the evolution of the microstructure is analysed using scanning electron microscopy. The results show, that a strong relaxation of the residual stress is obtained when applying a heat treatment temperature at 900°C. However, the loss of the cellular substructure needs to be considered when applying this heat treatment strategy. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Projekt AGIL - Alterung additiv gefertigter metallischer Materialien und Komponenten PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536045 DO - https://doi.org/10.1007/s11661-021-06472-6 SN - 1543-1940 VL - 52 IS - 12 SP - 5342 EP - 5356 PB - Springer CY - Boston AN - OPUS4-53604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karapanagiotis, Christos A1 - Heimann, Jan A1 - Duffner, Eric A1 - Charmi, Amir A1 - Schukar, Marcus A1 - Hashemi, Seyedreza A1 - Prager, Jens T1 - Towards predictive maintenance of hydrogen pressure vessels based on multi-sensor data fusion and digital twin modeling N2 - Hydrogen pressure vessels are among the most essential components for reliable hydrogen technology. Under current regulations, a mostly conservative strategy is employed, restricting the usage time of hydrogen pressure vessels without providing information on the real remaining lifetime. During the service life, pressure vessels are inspected periodically. However, no established method that can provide continuous monitoring or information on the remaining safe service life of the vessel. In this paper, we propose a sensor network for Structural Health Monitoring (SHM) of hydrogen pressure vessels where data from all sensors are collected and centrally evaluated. Specifically, we integrate three different SHM sensing technologies namely Guided Wave ultrasonics (GW), Acoustic Emission testing (AT), and distributed Fiber Optic Sensing (FOS). This integrated approach offers significantly more information and could therefore enable a transition from costly and time-consuming periodic inspections to more efficient and modern predictive maintenance strategies, including Artificial Intelligence (AI)-based evaluation. This does not only have a positive effect on the operational costs but enhances safety through early identification of critical conditions in the overall system in real-time. We demonstrate an experimental set-up of a lifetime test where a Type IV Composite Overwrapped Pressure Vessel (COPV) is investigated under cyclic loading instrumented with AT, FOS, and GW methods. We acquired data from the sensor network until the pressure vessel failed due to material degradation. The data collected using the three different SHM sensor technologies is planned to be evaluated individually, using data fusion, and AI. In the future, we aim to integrate the measurement setup into a hydrogen refueling station with the data stream implemented into a digital signal processing chain and a digital twin. T2 - 11th European Workshop on Structural Health Monitoring CY - Potsdam, Germany DA - 10.06.2024 KW - Acoustic emission KW - Ultrasonic guided waves KW - Fiber optic sensors KW - Hydrogen KW - Pressure vessels KW - Structural health monitoring KW - Machine learning PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602764 UR - https://www.ndt.net/search/docs.php3?id=29702 SP - 1 EP - 8 PB - NDT.net AN - OPUS4-60276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karapanagiotis, Christos A1 - Heimann, Jan A1 - Duffner, Eric A1 - Charmi, Amir A1 - Schukar, Marcus A1 - Hashemi, Seyedreza A1 - Prager, Jens T1 - Towards predictive maintenance of hydrogen pressure vessels based on multi-sensor data N2 - In this paper, we report on a sensor network for structural health monitoring (SHM) of Type IV composite overwrapped pressure vessels (COPVs) designed for hydrogen storage. The sensor network consists of three different SHM sensing technologies: ultrasonic guided waves (GW), acoustic emission (AE) testing, and distributed fiber optic sensors (DFOS). We present an experimental setup for a lifetime test, where a COPV is subjected to cyclic loading. Data from all sensors are collected and centrally evaluated. The COPV failed after approximately 60,000 load cycles, and the sensor network proved capable of detecting and localizing the damage even before the failure of the COPV. This multi-sensor approach offers significantly more channels of information and could therefore enable a transition from costly and time-consuming periodic inspections to more efficient and modern predictive maintenance strategies, including artificial intelligence (AI)-based evaluation. This not only has a positive effect on operational c KW - Ffiber optic sensors KW - Acoustic emission KW - Guided waves KW - Hydrogen KW - Digital twin KW - Structural health monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618948 DO - https://doi.org/10.58286/30513 SP - 1 EP - 8 PB - NDT.net AN - OPUS4-61894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Braml, T. A1 - Taffe, A. A1 - Maack, Stefan ED - Li, J. ED - Spanos, D. ED - Chen, J. B. ED - Peng, Y. B. T1 - Towards NDT-supported decisions on the reliability of existing bridges N2 - A major advantage in the reassessment of existing structures is the possibility of including measured data that describe the actual properties and the current condition of the structure to be reassessed. Currently, the incorporation of such measured information is mostly unregulated. However, the use of measurement results is vitally important, since a measured data-based improvement of the computation models level of approximation can lead at least to more meaningful results, possibly to extended remaining life times of the structure and in the best case to a saving of resources. Conversely, not appreciating well measurable and relevant information can be equated with a waste of resources. In this paper, a concept for the comparable use of non-destructively measured data as basic variables in probabilistic reliability assessments is outlined and examined using a typical prestressed concrete road bridge as a case-study. An essential requirement is the calculation of measurement uncertainties in order to evaluate the quality of the measurement results comparably. In conclusion, the example of ultrasonic and radar measurement data is used to demonstrate the effects that the incorporation of the measured information has on the reliability of the structure. T2 - 13th International Conference on Structural Safety and Reliability (ICOSSAR 2021-2022) CY - Online meeting DA - 13.09.2022 KW - Measurement uncertainty KW - Reliability assessment KW - Existing structures KW - Concrete Bridge KW - Non-Destructive Testing (NDT) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583013 SP - 1 EP - 10 AN - OPUS4-58301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kislenko, Evgeniia A1 - Incel, A. A1 - Gawlitza, Kornelia A1 - Sellergren, B. A1 - Rurack, Knut T1 - Towards molecularly imprinted polymers that respond to and capture phosphorylated tyrosine epitopes using fluorescent bis-urea and bis-imidazolium receptors N2 - Early detection of cancer is essential for successful treatment and improvement in patient prognosis. Deregulation of post-translational modifications (PTMs) of proteins, especially phosphorylation, is present in many types of cancer. Therefore, the development of materials for the rapid sensing of low abundant phosphorylated peptides in biological samples can be of great therapeutic value. In this work, we have synthesised fluorescent molecularly imprinted polymers (fMIPs) for the detection of the phosphorylated tyrosine epitope of ZAP70, a cancer biomarker. The polymers were grafted as nanometer-thin shells from functionalised submicron-sized silica particles using a reversible addition-fragmentation chain-transfer (RAFT) polymerisation. Employing the combination of fluorescent urea and intrinsically cationic bis-imidazolium receptor cross-linkers, we have developed fluorescent sensory particles, showing an imprinting factor (IF) of 5.0. The imprinted polymer can successfully distinguish between phosphorylated and non-phosphorylated tripeptides, reaching lower micromolar sensitivity in organic solvents and specifically capture unprotected peptide complements in a neutral buffer. Additionally, we have shown the importance of assessing the influence of counterions present in the MIP system on the imprinting process and final material performance. The potential drawbacks of using epitopes with protective groups, which can co-imprint with targeted functionality, are also discussed. KW - Functional monomers KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588089 DO - https://doi.org/10.1039/d3tb01474f SN - 2050-750X SP - 1 EP - 10 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-58808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schnur, C. A1 - Goodarzi, P. A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens A1 - Tschöke, K. A1 - Moll, J. A1 - Schütze, A. A1 - Schneider, T. T1 - Towards interpretable machine learning for automated damage detection based on ultrasonic guided waves N2 - Data-driven analysis for damage assessment has a large potential in structural health monitoring (SHM) systems, where sensors are permanently attached to the structure, enabling continuous and frequent measurements. In this contribution, we propose a machine learning (ML) approach for automated damage detection, based on an ML toolbox for industrial condition monitoring. The toolbox combines multiple complementary algorithms for feature extraction and selection and automatically chooses the best combination of methods for the dataset at hand. Here, this toolbox is applied to a guided wave-based SHM dataset for varying temperatures and damage locations, which is freely available on the Open Guided Waves platform. A classification rate of 96.2% is achieved, demonstrating reliable and automated damage detection. Moreover, the ability of the ML model to identify a damaged structure at untrained damage locations and temperatures is demonstrated. KW - Composite structures KW - Structural health monitoring KW - Carbon fibre-reinforced plastic KW - Interpretable machine learning KW - Automotive industry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542060 DO - https://doi.org/10.3390/s22010406 SN - 1424-8220 VL - 22 IS - 1 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-54206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rütters, H. A1 - Fischer, S. A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J. A1 - Ostertag-Henning, C. A1 - Wolf, J. L. A1 - Pumpa, M. A1 - Lubenau, U. A1 - Knauer, S. A1 - Jaeger, P. A1 - Neumann, A. A1 - Svensson, K. A1 - Pöllmann, H. A1 - Lempp, C. A1 - Menezes, F. F. A1 - Hagemann, B. T1 - Towards defining reasonable minimum composition thresholds – Impacts of variable CO2 stream compositions on transport, injection and storage N2 - To set up recommendations on how to define “reasonable minimum composition thresholds” for CO2 streams to access CO2 pipeline networks, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the CCS chain. All investigations were based on a generic “CCS cluster scenario” in which CO2 streams captured from a spatial cluster of eleven emitters (seven fossil-fired power plants, two cement plants, one refinery and one steel mill) are collected in a regional pipeline network. The resulting CO2 stream (19.78 Mio t impure CO2 per year) is transported in a trunk line (onshore and offshore) and injected into five generic replicate storage structures (Buntsandstein saline aquifers) offshore. Experimental investigations and modeling of selected impacts revealed beneficial as well as adverse impacts of different impurities and their combinations. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the considered variable compositions and mass flow rates were observed. We recommend to define minimum composition thresholds for each specific CCS project through limiting i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of concentrations of critical impurities, and defining impurity combinations to be avoided. KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543004 DO - https://doi.org/10.1016/j.ijggc.2022.103589 SN - 1750-5836 VL - 114 SP - 1 EP - 14 PB - Elsevier CY - New York, NY AN - OPUS4-54300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Christopher, I A1 - Michalchuk, Adam A1 - Pulham, C. A1 - Morrison, C. T1 - Towards Computational Screening for New Energetic Molecules: Calculation of Heat of Formation and Determination of Bond Strengths by Local Mode Analysis N2 - The reliable determination of gas-phase and solid-state heats of formation are important considerations in energetic materials research. Herein, the ability of PM7 to calculate the gas-phase heats of formation for CNHO-only and inorganic compounds has been critically evaluated, and for the former, comparisons drawn with isodesmic equations and Atom equivalence methods. Routes to obtain solid-state heats of formation for a range of singlecomponent molecular solids, salts, and co-crystals were also evaluated. Finally, local vibrational mode analysis has been used to calculate bond length/force constant curves for seven different chemical bonds occurring in CHNO-containing molecules, which allow for rapid identification of the weakest bond, opening up great potential to rationalise decomposition pathways. Both metrics are important tools in rationalising the design of new energetic materials through computational screening processes. KW - Energetic materials KW - Density functional theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530371 DO - https://doi.org/10.3389/fchem.2021.726357 VL - 9 SP - 726357 AN - OPUS4-53037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, J. A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - Towards automation of the polyol process for the synthesis of silver nanoparticles N2 - Metal nanoparticles have a substantial impact across diferent felds of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver nanoparticles are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize silver nanoparticles often do not result in well-defned products, the main obstacles being high polydispersity or a lack of particle size tunability. We describe an automated approach to on-demand synthesis of adjustable particles with mean radii of 3 and 5 nm using the polyol route. The polyol process is a promising route for silver nanoparticles e.g., to be used as reference materials. We characterised the as-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. KW - Sillver KW - Nanoparticles KW - Automated synthesis KW - Chemputer KW - Scattering KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546803 DO - https://doi.org/10.1038/s41598-022-09774-w VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Springer AN - OPUS4-54680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Amelie A1 - Tentschert, Jutta A1 - Pieters, Raymond A1 - Bennet, Francesca A1 - Dirven, Hubert A1 - van den Berg, Annemijne A1 - Lenssen, Esther A1 - Rietdijk, Maartje A1 - Broßell, Dirk A1 - Haase, Andrea T1 - Towards a risk assessment framework for micro- and nanoplastic particles for human health N2 - Background Human exposure to micro- and nanoplastic particles (MNPs) is inevitable but human health risk assessment remains challenging for several reasons. MNPs are complex mixtures of particles derived from different polymer types, which may contain plenty of additives and/or contaminants. MNPs cover broad size distributions and often have irregular shapes and morphologies. Moreover, several of their properties change over time due to aging/ weathering. Case-by-case assessment of each MNP type does not seem feasible, more straightforward methodologies are needed. However, conceptual approaches for human health risk assessment are rare, reliable methods for exposure and hazard assessment are largely missing, and meaningful data is scarce. Methods Here we reviewed the state-of-the-art concerning risk assessment of chemicals with a specific focus on polymers as well as on (nano-)particles and fibres. For this purpose, we broadly screened relevant knowledge including guidance documents, standards, scientific publications, publicly available reports. We identified several suitable concepts such as: (i) polymers of low concern (PLC), (ii) poorly soluble low toxicity particles (PSLT) and (iii) fibre pathogenicity paradigm (FPP). We also aimed to identify promising methods, which may serve as a reasonable starting point for a test strategy. Results and conclusion Here, we propose a state-of-the-art modular risk assessment framework for MNPs, focusing primarily on inhalation as a key exposure route for humans that combines several integrated approaches to testing and assessment (IATAs). The framework starts with basic physicochemical characterisation (step 1), followed by assessing the potential for inhalative exposure (step 2) and includes several modules for toxicological assessment (step 3). We provide guidance on how to apply the framework and suggest suitable methods for characterization of physicochemical properties, exposure and hazard assessment. We put special emphasis on new approach methodologies (NAMs) and included grouping, where adequate. The framework has been improved in several iterative cycles by taking into account expert feedback and is currently being tested in several case studies. Overall, it can be regarded as an important step forward to tackle human health risk assessment. KW - Microplastics KW - Nanoplastics KW - Human health KW - Risk assessment KW - Integrated approaches to testing and assessment (IATAs) KW - Polymers of low concern (PLC) KW - Poorly soluble low toxicity particles (PSLT) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623790 DO - https://doi.org/10.1186/s12989-024-00602-9 SN - 1743-8977 VL - 21 IS - 1 SP - 1 EP - 21 PB - Springer Science and Business Media LLC AN - OPUS4-62379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - John, Elisabeth A1 - Weise, Matthias A1 - Radnik, Jörg A1 - Stockmann, Jörg Manfred A1 - Lange, Thorid A1 - Sahre, Mario A1 - Hodoroaba, Vasile-Dan T1 - Towards a New Reference Material—Analytical Challenges in Examining High-Entropy Alloy Thin Films N2 - A new high-entropy alloy (HEA) consisting of titanium, chromium, manganese, iron, and nickel was deposited as a thin-film on silicon substrates using magnetron sputtering from a novel segmented target composed of metal stripes. This material was explored with the goal to create a new reference material for surface analysis and evaluation of complex composite materials. The film's morphology was initially characterized by scanning electron microscopy (SEM), followed by crystallographic analysis using X-ray diffraction (XRD) and selected area electron diffraction (SAED). The two-dimensional compositional homogeneity was assessed using a combination of scanning and transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), X-ray fluorescence (XRF), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and X-ray photoelectron spectroscopy (XPS). The in-depth chemical composition was further analysed using ToF-SIMS and Auger electron spectroscopy (AES). Our findings demonstrate that it is possible to produce thin HEA films with a homogeneous in-depth composition from a segmented target. Notably, despite the fixed composition of the target, we were able to vary the HEA's composition by exploiting inhomogeneities within the magnetrons sputter plasma. Additionally, we successfully created HEA films with significant compositional gradients. T2 - ECASIA CY - Gothenburg, Sweden DA - 10.06.2024 KW - Reference material KW - High-entropy alloy KW - Thin-films PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625777 DO - https://doi.org/10.1002/sia.7387 SN - 1096-9918 SP - 1 EP - 8 PB - Wiley AN - OPUS4-62577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grimmer, Christoph A1 - Richter, Matthias A1 - Neuhaus, T. A1 - Prinz, Carsten A1 - Strzelczyk, Rebecca Skadi A1 - Colakoglu, Irem A1 - Horn, Wolfgang T1 - Towards a multi-VOC emission reference material with temporally constant emission profile for QA/QC of materials emission testing procedures N2 - Emission reference materials (ERMs) are sought after to further control and improve indoor air quality. The impregnation of porous materials with volatile organic compounds (VOCs) is a promising approach to produce ERMs. Different VOCs were used to impregnate various porous materials (mainly zeolites, activated carbons and a metal organic framework). The influence of different methodological parameters and material properties were studied to optimize the impregnation procedure and to find the best material/VOC combination. The impregnation procedure remains quite irreproducible, nevertheless, very good ERM candidates were identified. Two materials (zeolite 4 and AC 1 impregnated with n-hexadecane) showed a very stable emission over 14 days (<10 % change). Another material (AC 1 impregnated with toluene) showed a declining emission profile but with a very good in-batch reproducibility and a storage stability of up to 12 months. KW - Emission reference material KW - Porous materials KW - Indoor air quality KW - Emission test chamber KW - CO2 assisted impregnation KW - EN 16516 PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612238 DO - https://doi.org/10.1016/j.chemosphere.2024.143437 SN - 1879-1298 VL - 366 SP - 1 EP - 8 PB - Elsevier AN - OPUS4-61223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Bruno, Giovanni A1 - Hilgenberg, Kai T1 - Towards a Methodology for Component Design of Metallic AM Parts Subjected to Cyclic Loading N2 - The safe fatigue design of metallic components fabricated by additive manufacturing (AM) is still a largely unsolved problem. This is primarily due to (a) a significant inhomogeneity of the material properties across the component; (b) defects such as porosity and lack of fusion as well as pronounced surface roughness of the asuilt components; and (c) residual stresses, which are very often present in the as‐built parts and need to be removed by post‐fabrication treatments. Such morphological and microstructural features are very different than in conventionally manufactured parts and play a much bigger role in determining the fatigue life. The above problems require specific solutions with respect to the identification of the critical (failure) sites in AM fabricated components. Moreover, the generation of representative test specimens characterized by similar temperature cycles needs to be guaranteed if one wants to reproducibly identify the critical sites and establish fatigue assessment methods taking into account the effect of defects on crack initiation and early propagation. The latter requires fracture mechanics‐based approaches which, unlike common methodologies, cover the specific characteristics of so‐called short fatigue cracks. This paper provides a discussion of all these aspects with special focus on components manufactured by laser powder bed fusion (L‐PBF). It shows how to adapt existing solutions, identifies fields where there are still gaps, and discusses proposals for potential improvement of the damage tolerance design of L‐PBF components KW - L‐PBF KW - Fatigue KW - Fracture KW - Defects PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525822 DO - https://doi.org/10.3390/met11050709 VL - 11 IS - 5 SP - 709 PB - MDPI CY - Basel AN - OPUS4-52582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bennet, Francesca A1 - Burr, L. A1 - Schmid, D. A1 - Hodoroaba, Vasile-Dan T1 - Towards a method for quantitative evaluation of nanoparticle from suspensions via microarray printing and SEM analysis N2 - As part of the development of a library of accurate and efficient methods for measurement of nanoparticle properties, we develop and optimize a method for the efficient analysis of nanoparticle size distribution from suspensions via microprinting and digital analysis of electron microscopy (SEM and TEM) images, with the ultimate aim of automated quantitative concentration analysis (calculated from drop volume). A series of different nanoparticle suspensions (gold, latex, and SiO2 in varying sizes and concentrations) were printed onto TEM grids in a 4 x 4 array in the concentration range 7x10^8 to 1x10^11 nanoparticles/mL and imaged with SEM. Concentrations and printing conditions (temperature, relative humidity) were varied in order to minimize the coffee-ring effect. KW - Nanoparticles KW - Particle size distribution KW - Electron microscopy KW - Microarray printing KW - Sample preparation KW - Nanoparticle concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528455 DO - https://doi.org/10.1088/1742-6596/1953/1/012002 VL - 1953 SP - 012002 PB - IOP Publishing AN - OPUS4-52845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Günster, Jens T1 - Towards a debinding-free additive manufacturing of ceramics: A development perspective of water-based LSD and LIS technologies N2 - Ceramic additive manufacturing (AM) requires a complex process chain with various post-processing steps that require expensive machines and special expertise. The key to further market penetration is AM that makes it possible to integrate into an already established ceramic process chain. Most successful AM technologies for ceramics are, however, based on processes that initially have been developed for polymeric materials. For ceramics AM, polymers or precursors are loaded with ceramic particles. This strategy facilitates the entry into AM, however the introduction of organic additives into the ceramic process chain represents a considerable technological challenge to ultimately obtain a ceramic component after additive shaping. In the present communication, two technologies based on ceramic suspensions will be introduced, the “layerwise slurry deposition” (LSD) and “laser induced slip casting” (LIS) technology. Both technologies take advantage of the high packing densities reached by conventional slip casting and moreover enable the processing of fines, even nanoparticles. KW - Additive Manufacturing KW - Ceramic KW - Water-based KW - Debinding KW - Slurry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605531 DO - https://doi.org/10.1016/j.oceram.2024.100632 SN - 2666-5395 VL - 19 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Dao, Radek A1 - Komarov, Pavel A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Towards 3D determination of the surface roughness of core–shell microparticles as a routine quality control procedure by scanning electron microscopy N2 - AbstractRecently, we have developed an algorithm to quantitatively evaluate the roughness of spherical microparticles using scanning electron microscopy (SEM) images. The algorithm calculates the root-mean-squared profile roughness (RMS-RQ) of a single particle by analyzing the particle’s boundary. The information extracted from a single SEM image yields however only two-dimensional (2D) profile roughness data from the horizontal plane of a particle. The present study offers a practical procedure and the necessary software tools to gain quasi three-dimensional (3D) information from 2D particle contours recorded at different particle inclinations by tilting the sample (stage). This new approach was tested on a set of polystyrene core-iron oxide shell-silica shell particles as few micrometer-sized beads with different (tailored) surface roughness, providing the proof of principle that validates the applicability of the proposed method. SEM images of these particles were analyzed by the latest version of the developed algorithm, which allows to determine the analysis of particles in terms of roughness both within a batch and across the batches as a routine quality control procedure. A separate set of particles has been analyzed by atomic force microscopy (AFM) as a powerful complementary surface analysis technique integrated into SEM, and the roughness results have been compared. KW - Core–shell particles KW - Image analysis KW - Roughness KW - Scanning electron microscopy KW - Atomic force microscopy KW - Tilting KW - Batch analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607590 DO - https://doi.org/10.1038/s41598-024-68797-7 SN - 2045-2322 VL - 14 IS - 1 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-60759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Caianiello, Carlo A1 - Tichter, Tim A1 - Arenas, Luis F. A1 - Wilhelm, René T1 - Toward Symmetric Organic Aqueous Flow Batteries: Triarylamine‐Based Bipolar Molecules and Their Characterization via an Extended Koutecký–Levich Analysis N2 - Symmetric organic flow batteries (SOFBs) can potentially address membrane crossover problems by employing bipolar redox‐active organic molecules (BROMs). Herein, a triarylamine (TAA) skeleton was chosen as a posolyte moiety for a new class of bipolar molecules for pH‐neutral aqueous flow batteries (FBs). Pyridinium and viologen derivatives were tethered to the posolyte moiety, and the new compounds were characterized. Cyclic voltammetry revealed that only viologen with a highly hydrophilic substituent, connected to the TAA moiety via a Zincke reaction, could be reversibly reduced. Varying the supporting electrolyte concentration on the selected derivative revealed water solubility as a challenge for further development. The selected derivative, MeO‐TPA‐Vi‐DMAE, was subjected to hydrodynamic voltammetry, and a modified Koutecký–Levich analysis was developed to investigate the observed potential‐dependent currents at the hydrodynamically dominated region, which are often seen with redox‐active organic molecules. This model discarded a purely Ohmic effect, showing a useful Levich slope at a certain overpotential before the onset of a secondary reaction. TAA‐based BROMs hold promise for pH‐neutral aqueous SOFBs, and the results will guide the design of new derivatives. The three‐term Koutecký–Levich relation here introduced will be useful not only to develop BROM‐based FBs but will most likely appeal to a much broader audience. KW - Redox Flow Batteries KW - Koutecký-Levich Analysis KW - Rotating Disc Electrode KW - Redox-active Bipolar Molecules KW - Electrode Kinetics PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631476 DO - https://doi.org/10.1002/chem.202500815 SN - 1521-3765 SP - 1 EP - 15 PB - Wiley VHC-Verlag AN - OPUS4-63147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -