TY - JOUR A1 - Rosenkranz, D. A1 - Kriegel, F. L. A1 - Mavrakis, E. A1 - Pergantis, S. A. A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jakubowski, N. A1 - Laux, P. A1 - Panne, Ulrich A1 - Luch, A. T1 - Versatile dual-inlet sample introduction system for multi-mode single particle inductively coupled plasma mass spectrometry N2 - Metal-containing nanoparticles (NP) can be characterized with inductively coupled plasma mass spectrometers (ICP-MS) in terms of their size and number concentration by using the single-particle mode of the instrument (spICP-MS). The accuracy of measurement depends on the setup, operational conditions of the instrument and specific parameters that are set by the user. The transport efficiency of the ICP-MS is crucial for the quantification of the NP and usually requires a reference material with homogenous size distribution and a known particle number concentration. Currently, NP reference materials are available for only a few metals and in limited sizes. If particles are characterized without a reference standard, the results of both size and particle number may be biased. Therefore, a dual-inlet Setup for characterizing nanoparticles with spICP-MS was developed to overcome this problem. This setup is based on a conventional introduction system consisting of a pneumatic nebulizer (PN) for nanoparticle solutions and a microdroplet Generator (μDG) for ionic calibration solutions. A new and flexible interface was developed to facilitate the coupling of μDG, PN and the ICP-MS system. The interface consists of available laboratory components and allows for the calibration, nanoparticle (NP) characterization and cleaning of the arrangement, while the ICP-MS instrument is still running. Three independent analysis modes are available for determining particle size and number concentration. Each mode is based on a different calibration principle. While mode I (counting) and mode III (μDG) are known from the literature, mode II (sensitivity), is used to determine the transport efficiency by inorganic ionic Standard solutions only. It is independent of NP reference materials. The μDG based inlet system described here guarantees superior analyte sensitivities and, therefore, lower detection limits (LOD). The size dependent LODs achieved are less than 15 nm for all NP (Au, Ag, CeO2) investigated. KW - Spectrometer KW - Reference KW - Calibration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536121 DO - https://doi.org/10.3791/61653 SN - 1940-087X IS - 163 SP - 1 EP - 19 PB - MyJoVE Corporation CY - Cambridge, MA, USA AN - OPUS4-53612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Hanke, T. A1 - Muth, Thilo A1 - Riedel, Jens A1 - Schilling, Markus A1 - Schweizer, C. A1 - Skrotzki, Birgit A1 - Todor, A. A1 - Moreno Torres, Benjami A1 - Unger, Jörg F. A1 - Völker, Christoph A1 - Olbricht, Jürgen T1 - A Perspective on Digital Knowledge Representation in Materials Science and Engineering N2 - The amount of data generated worldwide is constantly increasing. These data come from a wide variety of sources and systems, are processed differently, have a multitude of formats, and are stored in an untraceable and unstructured manner, predominantly in natural language in data silos. This problem can be equally applied to the heterogeneous research data from materials science and engineering. In this domain, ways and solutions are increasingly being generated to smartly link material data together with their contextual information in a uniform and well-structured manner on platforms, thus making them discoverable, retrievable, and reusable for research and industry. Ontologies play a key role in this context. They enable the sustainable representation of expert knowledge and the semantically structured filling of databases with computer-processable data triples. In this perspective article, we present the project initiative Materials-open-Laboratory (Mat-o-Lab) that aims to provide a collaborative environment for domain experts to digitize their research results and processes and make them fit for data-driven materials research and development. The overarching challenge is to generate connection points to further link data from other domains to harness the promised potential of big materials data and harvest new knowledge. KW - Data infrastructures KW - Digital representations KW - Digital workflows KW - Knowledge graphs KW - Materials informatics KW - Ontologies KW - Vocabulary providers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546729 DO - https://doi.org/10.1002/adem.202101176 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-54672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Santos, C.I.L. A1 - Machado, W.S. A1 - Wegner, Karl David A1 - Gontijo, L.A.P. A1 - Bettini, J. A1 - Schiavon, M.A. A1 - Reiss, P. A1 - Aldakov, D. T1 - Hydrothermal Synthesis of Aqueous-Soluble Copper Indium Sulfide Nanocrystals and Their Use in Quantum Dot Sensitized Solar Cells N2 - facile hydrothermal method to synthesize water-soluble copper indium sulfide (CIS) nanocrystals (NCs) at 150 degrees C is presented. The obtained samples exhibited three distinct photoluminescence peaks in the red, green and blue spectral regions, corresponding to three size fractions, which could be separated by means of size-selective precipitation. While the red and green emitting fractions consist of 4.5 and 2.5 nm CIS NCs, the blue fraction was identified as in situ formed carbon nanodots showing excitation wavelength dependent emission. When used as light absorbers in quantum dot sensitized solar cells, the individual green and red fractions yielded power conversion efficiencies of 2.9% and 2.6%, respectively. With the unfractionated samples, the efficiency values approaching 5% were obtained. This improvement was mainly due to a significantly enhanced photocurrent arising from complementary panchromatic absorption. KW - Aqueous quantum dot KW - Solar cells KW - CUINS2 nanocrystals KW - Colloidal semiconductor nanocrystals PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517983 DO - https://doi.org/10.3390/nano10071252 VL - 10 IS - 7 SP - 1252 PB - MDPI AN - OPUS4-51798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dhamo, Lorena A1 - Wegner, Karl David A1 - Würth, Christian A1 - Häusler, I. A1 - Hodoroaba, Vasile-Dan A1 - Resch-Genger, Ute T1 - Assessing the influence of microwave-assisted synthesis parameters and stabilizing ligands on the optical properties of AIS/ZnS quantum dots N2 - Luminescent semiconductor quantum dots (QDs) are frequently used in the life and material sciences as reporter for bioimaging studies and as active components in devices such as displays, light-emitting diodes, solar cells, and sensors. Increasing concerns regarding the use of toxic elements like cadmium and lead, and hazardous organic solvents during QD synthesis have meanwhile triggered the search for heavy-metal free QDs using green chemistry syntheses methods. Interesting candidates are ternary AgInS2 (AIS) QDs that exhibit broad photoluminescence (PL) bands, large effective Stokes shifts, high PL quantum yields (PL QYs), and long PL lifetimes, which are particularly beneficial for applications such as bioimaging, white light-emitting diodes, and solar concentrators. In addition, these nanomaterials can be prepared in high quality with a microwave-assisted (MW) synthesis in aqueous solution. The homogeneous heat diffusion and instant temperature rise of the MW synthesis enables a better control of QD nucleation and growth and thus increases the batch-to-batch reproducibility. In this study, we systematically explored the MW synthesis of AIS/ZnS QDs by varying parameters such as the order of reagent addition, precursor concentration, and type of stabilizing thiol ligand, and assessed their influence on the optical properties of the resulting AIS/ZnS QDs. Under optimized synthesis conditions, water-soluble AIS/ZnS QDs with a PL QY of 65% and excellent colloidal and long-term stability could be reproducible prepared. KW - Quantum dots KW - Microwave-assisted synthesis KW - AgInS KW - Aqueous synthesis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567091 DO - https://doi.org/10.1038/s41598-022-25498-3 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 11 PB - Nature Publishing Group CY - London AN - OPUS4-56709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kang, Y. A1 - Nack, L. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Correction to: Quantitative considerations about the size dependency for cellular entry and excretion of colloidal nanoparticles for different cell types N2 - We regret to inform that the labels "NPs which remain in endosomes/lysosomes" and "exocytosed NPs" had been erroneously swapped in the sketch on the right side in Figure 2. The corrected Fig. 2 is displayed below. WJP apologizes for this error. KW - Cell proliferation KW - Exocytosis KW - Gold nanoparticles KW - Quantum dots KW - Uptake studies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554519 DO - https://doi.org/10.1007/s40828-022-00168-z VL - 8 IS - 17 SP - 1 EP - 2 PB - Springer CY - Berlin AN - OPUS4-55451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhuckory, S. A1 - Wegner, Karl David A1 - Qiu, X. A1 - Wu, Y.T. A1 - Jennings, T. L. A1 - Incamps, A. A1 - Hildebrandt, N. T1 - Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET N2 - Time-gated Förster resonance energy transfer (TG-FRET) between Tb complexes and luminescent semiconductor quantum dots (QDs) provides highly advantageous photophysical properties for multiplexed biosensing. Multiplexed Tb-to-QD FRET immunoassays possess a large potential for in vitro diagnostics, but their performance is often insufficient for their application under clinical conditions. Here, we developed a homogeneous TG-FRET immunoassay for the quantification of carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and prostatespecific antigen (PSA) from a single serum sample by multiplexed Tb-to-QD FRET. Tb–IgG antibody donor conjugates were combined with compact QD-F(ab’)2 antibody acceptor conjugates with three different QDs emitting at 605, 650, and 705 nm. Upon antibody–antigen–antibody Sandwich complex formation, the QD acceptors were sensitized via FRET from Tb, and the FRET ratios of QD and Tb TG luminescence intensities increased specifically with increasing antigen concentrations. Although limits of detection (LoDs: 3.6 ng/mL CEA, 3.5 ng/mL NSE, and 0.3 ng/mL PSA) for the triplexed assay were slightly higher compared to the single-antigen assays, they were still in a clinically relevant concentration range and could be quantified in 50 μL serum samples on a B·R·A·H·M·S KRYPTOR Compact PLUS clinical immunoassay plate reader. The simultaneous quantification of CEA, NSE, and PSA at different concentrations from the same serum sample demonstrated actual multiplexing Tb-to-QD FRET immunoassays and the potential of this technology for translation into clinical diagnostics. KW - Lanthanides KW - Nanoparticles KW - Biosensing KW - Multiplexing KW - FRET KW - Fluorescence KW - PSA KW - NSE KW - CEA PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512290 DO - https://doi.org/10.3390/molecules25163679 VL - 25 IS - 16 SP - 3679 PB - MDPI AN - OPUS4-51229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geißler, Daniel A1 - Wegner, Karl David A1 - Fischer, C. A1 - Resch-Genger, Ute T1 - Exploring Simple Particle-Based Signal Amplification Strategies in a Heterogeneous Sandwich Immunoassay with Optical Detection N2 - Heterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current “gold standard” enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions. A common concept to aim for detection limits comparable to those of enzymatic amplification reactions is the usage of polymer nanoparticles (NP) stained with a large number of chromophores. We explored different simple NP-based signal amplification strategies for heterogeneous sandwich immunoassays that rely on an extraction-triggered release step of different types of optically detectable reporters. Therefore, streptavidinfunctionalized polystyrene particles (PSP) are utilized as carriers for (i) the fluorescent dye coumarin 153 (C153) and (ii) hemin (hem) molecules catalyzing the luminol reaction enabling chemiluminescence (CL) detection. Additionally, (iii) NP labeling with hemin-based microperoxidase MP11 was assessed. For each amplification approach, the PSP was first systematically optimized regarding size, loading concentration, and surface chemistry. Then, for an immunoassay for the inflammation marker C- eactive protein (CRP), the analyte sensitivity achievable with optimized PSP ystems was compared with the established ELISA concept for photometric and CL detection. Careful optimization led to a limit of detection (LOD) of 0.1 ng/mL for MP11-labeled PSP and CL detection, performing similarly well to a photometric ELISA (0.13 ng/mL), which demonstrates the huge potential of our novel assay concept. KW - Nanoparticle KW - Fluorescence KW - Immunoassay KW - Quality assurance KW - Antibody KW - Polymer KW - Dye KW - Signal enhancement KW - CRP KW - Biosensing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597853 DO - https://doi.org/10.1021/acs.analchem.3c03691 SN - 1520-6882 VL - 96 IS - 13 SP - 5078 EP - 5085 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-59785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohammad, W. A1 - Wegner, Karl David A1 - Comby-Zerbino, C. A1 - Trouillet, V. A1 - Ogayer, M. P. A1 - Coll, J.-L. A1 - Marin, R. A1 - Jaque Garcia, D. A1 - Resch-Genger, Ute A1 - Antoine, R. A1 - Le Guevel, X. T1 - Enhanced brightness of ultra-small gold nanoparticles in the second biological window through thiol ligand shell control N2 - Gold-based nanoparticles below 2 nm in size are promising as luminescent probes for in vivo bioimaging, owing to their brightness and rapid renal clearance. However, their use as contrast agents in the near-infrared II (NIR-II, 1000–1700 nm) range remains challenging due to their low photoluminescence (PL) quantum yield. To address this, PL enhancement can be achieved by either rigidifying the ligand-shell structure or increasing the size of the ligand shell. In this study, we synthesized ultra-small gold nanoparticles stabilized by co-ligands, namely monothiol and short dithiol molecules. By precisely controlling the amount of reducing agent used during particle preparation, we successfully modulated the physicochemical properties of the co-ligand shell, including its size, composition, and structure. Consequently, we achieved a remarkable 60-fold increase in the absorption cross-section at 990 nm while maintaining the small size of the 1.5-nm metal core. The analytical and optical characterization of our thiol-capped gold nanoparticles indicates that the ligand shell size is governed by the quantity of the reducing agent, which, in turn, impacts the balance between radiative and non-radiative processes, thereby influencing the PL quantum yield. KW - Gold nanocluster KW - NIR-II fluorescence KW - SWIR KW - Nanomaterial design KW - Calibrated fluorescence measurements PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588117 DO - https://doi.org/10.1039/D3TC03021K SN - 2050-7526 VL - 11 IS - 42 SP - 14714 EP - 14724 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Resch-Genger, Ute T1 - The 2023 Nobel Prize in Chemistry: Quantum dots N2 - The 2023 Nobel Prize in Chemistry was awarded to Aleksey I. Ekimov (prize share 1/3), Louis E. Brus (prize share 1/3), and Moungi G. Bawendi (prize share 1/3) for groundbreaking inventions in the field of nanotechnology, i.e., for the discovery and synthesis of semiconductor nanocrystals, also termed quantum dots, that exhibit size-dependent physicochemical properties enabled by quantum size effects. This feature article summarizes the main milestones of the discoveries and developments of quantum dots that paved the road to their versatile applications in solid-state lighting, display technology, energy conversion, medical diagnostics, bioimaging, and image-guided surgery. KW - Quantum dots KW - Semiconductor nanocrystals KW - Luminescence KW - Quantitative spectroscopy KW - Quantum yield KW - Advanced nanomaterials KW - Quality assurance KW - Energy transfer PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597843 DO - https://doi.org/10.1007/s00216-024-05225-9 VL - 2024 SP - 1 EP - 11 PB - Springer CY - Cham AN - OPUS4-59784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tarantini, A. A1 - Wegner, Karl David A1 - Dussert, F. A1 - Sarret, G. A1 - Beal, D. A1 - Mattera, L. A1 - Lincheneau, C. A1 - Proux, O. A1 - Truffier-Boutry, D. A1 - Moriscot, C. A1 - Gallet, B. A1 - Jouneau, P.-H. A1 - Reiss, P. A1 - Carriere, M. T1 - Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation N2 - Due to their unique optical properties, quantum dots (QDs) are used in a number of optoelectronic devices and are forecasted to be used in the near future for biomedical applications. The most popular QD composition consists of cadmium selenide (CdSe) or cadmium telluride (CdTe), which has been shown to pose health risks due to the release of toxic cadmium (Cd) ions. Due to similar optical properties but lower intrinsic toxicity, indium phosphide (InP) QDs have been proposed as a safer alternative. Nevertheless, investigations regarding their safety and possible toxicological effects are still in their infancy. The fate and toxicity of seven different water-dispersible indium (In) based QDs, either pristine or after ageing in a climatic chamber, was evaluated. The core of these QDs was composed of indium, zinc and phosphorus (InZnP) or indium, zinc, phosphorus and sulfur (InZnPS). They were assessed either as core-only or as core-shell QDs, for which the core was capped with a shell of zinc, selenium and sulfur (Zn(Se,S)). Their Surface was functionalized using either penicillamine or glutathione. In their pristine form, these QDs showed essentially no cytotoxicity. The particular case of InZnPS QD showed that core-shell QDs were less cytotoxic than core-only QDs. Moreover, surface functionalization with either penicillamine or glutathione did not appreciably influence cytotoxicity but affected QD stability. These QDs did not lead to over-accumulation of reactive oxygen species in exposed cells, or to any oxidative damage to cellular DNA. However, accelerated weathering in a climatic chamber led to QD precipitation and degradation, together with significant cytotoxic effects. Ageing led to dissociation of IneP and ZneS bonds, and to complexation of In Zn ions with carboxylate and/or phosphate moieties. These results show that InZnP and InZnPS alloyed QDs are safer alternatives to CdSe QDs. They underline the necessity to preserve as much as possible the structural integrity of QDs, for instance by developing more robust shells, in order to ensure their safety for future applications. KW - Indium phosphide KW - Safe by design KW - Toxicity KW - EXAFS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483070 DO - https://doi.org/10.1016/j.impact.2019.100168 VL - 14 SP - 100168-1 EP - 100168-13 PB - Elsevier AN - OPUS4-48307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalot, G. A1 - Godard, A. A1 - Busser, B. A1 - Pliquett, J. A1 - Broekgaarden, M. A1 - Motto-Ros, V. A1 - Wegner, Karl David A1 - Resch-Genger, Ute A1 - Köster, U. A1 - Denat, F. A1 - Coll, J.-L. A1 - Bodio, E. A1 - Goze, C. A1 - Sancey, L. T1 - Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications N2 - Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on the nuclear capture of slow neutrons by stable 10B atoms followed by charged particle Emission that inducing extensive damage on a very localized level (<10 um). To be effcient, a suffcient amount of 10B should accumulate in the tumor area while being almost cleared from the normal surroundings. A water-soluble aza-boron-dipyrromethene dyes (BODIPY) fluorophore was reported to strongly accumulate in the tumor area with high and BNCT compatible Tumor/Healthy Tissue ratios. The clinically used 10B-BSH (sodium borocaptate) was coupled to the water-soluble aza-BODIPY platform for enhanced 10B-BSH tumor vectorization. We demonstrated a strong uptake of the compound in tumor cells and determined its biodistribution in mice-bearing tumors. A model of chorioallantoic membrane-bearing glioblastoma xenograft was developed to evidence the BNCT potential of such compound, by subjecting it to slow neutrons. We demonstrated the Tumor accumulation of the compound in real-time using optical imaging and ex vivo using elemental imaging based on laser-induced breakdown spectroscopy. The tumor growth was significantly reduced as compared to BNCT with 10B-BSH. Altogether, the fluorescent aza-BODIPY/10B-BSH compound is able to vectorize and image the 10B-BSH in the tumor area, increasing its theranostic potential for effcient approach of BNCT. KW - Aza-BODIPY KW - SWIR KW - NIR-I KW - Theranostic KW - Boron compound KW - Optical imaging PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512280 DO - https://doi.org/10.3390/cells9091953 VL - 9 IS - 9 SP - 1953 PB - MDPI AN - OPUS4-51228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Soares, J. X. A1 - Wegner, Karl David A1 - Ribeiro, D. S. M. A1 - Melo, A. A1 - Häusler, I. A1 - Santos, J. L. M. A1 - Resch-Genger, Ute T1 - Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control N2 - In the blossoming field of Cd-free semiconductor quantum dots (QDs), ternary I–III–VI QDs have received increasing attention due to the ease of the environmentally friendly synthesis of high-quality materials in water, their high photoluminescence (PL) Quantum yields (QYs) in the red and near infrared (NIR) region, and their inherently low toxicity. Moreover, their oxygen-insensitive long PL lifetimes of up to several hundreds of nanoseconds close a gap for applications exploiting the compound-specific parameter PL lifetime. To overcome the lack of reproducible synthetic methodologies and to enable a design-based control of their PL properties, we assessed and modelled the synthesis of high-quality MPA-capped AgInS2/ZnS (AIS/ZnS) QDs. Systematically refined Parameters included reaction time, temperature, Ag:In ratio, S:In ratio, Zn:In ratio, MPA:In ratio, and pH using a design-of-experiment approach. Guidance for the optimization was provided by mathematical models developed for the application-relevant PL parameters, maximum PL wavelength, QY, and PL lifetime as well as the elemental composition in terms of Ag:In:Zn ratio. With these experimental data-based models, MPA:In and Ag:In ratios and pH values were identified as the most important synthesis parameters for PL Control and an insight into the connection of these parameters could be gained. Subsequently, the experimental conditions to synthetize QDs with tunable emission and high QY were predicted. The excellent agreement between the predicted and experimentally found PL features confirmed the reliability of our methodology for the rational design of high quality AIS/ZnS QDs with defined PL features. This approach can be straightforwardly extended to other ternary and quaternary QDs and to doped QDs. KW - Modelling KW - Nanoparticle KW - AIS KW - Semiconductor quantum dot KW - Design of experiment KW - Photoluminescence KW - Quantum yield KW - Surface chemistry KW - Synthesis KW - Lifetime PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510075 DO - https://doi.org/10.1007/s12274-020-2876-8 VL - 13 IS - 9 SP - 2438 EP - 2450 PB - Springer AN - OPUS4-51007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Dussert, F. A1 - Truffier-Boutry, D. A1 - Benayad, A. A1 - Beal, D. A1 - Mattera, L. A1 - Ling, W. L. A1 - Carrière, M. A1 - Reiss, P. T1 - Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity N2 - With the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSexS1−x shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence Quantum yields (PLQY) > 50%and similar PL decay times (64–67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber. The alumina coated core/shell system exhibits the highest stability in terms of PLQY Retention as well as the lowest shift of the PL maximum and lowest increase of the PL linewidth, followed by the CSS QDs and finally the gradient shell system. By means of XPS studies we identify the degradation of the ZnS outer layer and concomitant xidation of the emissive InZnP core as the main origins of degradation in the gradient structure. These modifications do not occur in the case of the alumina-capped sample, which exhibits excellent chemical stability. The gradient shell and CSS systems could be transferred to the aqueous phase using surface ligand exchange with penicillamine. Cytotoxicity studies on human primary keratinocytes revealed that exposure for 24 h to 6.25–100 nM of QDs did not affect cell viability. However, a trend toward reduced cell proliferation is observed for higher concentrations of gradient shell and CSS QDs with a thin ZnS shell, while CSS QDs with a thicker ZnS shell do not exhibit any impact. KW - Indium phosphide KW - Quantum dots KW - Cytotoxicity KW - Photostability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494249 DO - https://doi.org/10.3389/fchem.2019.00466 VL - 7 SP - Article Number: 466 PB - Frontiers Media SA AN - OPUS4-49424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuner, Maximilian A1 - Lisec, Jan A1 - Picher, Marie-Idrissa A1 - Rigo, Massimo A1 - Konetzki, Jörg A1 - Haase, Hajo A1 - Koch, Matthias T1 - Development and Application of Isotope Labelled Internal Standards in a Sum Parameter Method for Ergot Alkaloid Screening of Food N2 - Ergot alkaloids are a group of toxic compounds, formed by fungi on infested grasses. In 2022, the European Commission set into effect maximum levels for the sum of the twelve major ergot alkaloids in multiple foods. To facilitate the laborious and costly individual quantification of the twelve major ergot alkaloids by HPLC–MS/MS or -FLD, we recently reported a sum parameter method (SPM) for ergot alkaloid quantification. Here, derivatization to lysergic acid hydrazide—a derivative of the mutual ergoline backbone in all ergot alkaloids—allowed simplified determination of all ergot alkaloids in flour via HPLC-FLD. For the measurement of more complex matrices like processed foods, we now developed a MS/MS-based SPM. Two internal standards (IS), isotopically labelled at different positions of the molecule, were synthesized and employed in the MS/MS-measurements. Method performance using either the 13CD3-labelled or the 15N2-labelled IS was evaluated on naturally contaminated rye and wheat flour samples as well as on processed food matrices. Employing the 13CD3-labelled IS leads to lower variances and better consistency with the reference data (obtained by the FLD-based SPM) in flour samples compared to the 15N2-labelled IS. The novel method significantly improves the measurement of ergot alkaloids in complex food matrices, due to their increased selectivity and thus lower interferences. Furthermore, the application of isotope labelled IS obviates the need for time-consuming steps like the determination of recovery rate based, matrix specific correction factors as described in the MS/MS-based European standard method for ergot alkaloid quantification (EN 17425). KW - Mycotoxins KW - Sum Parameter Method KW - Isotope Labelling KW - HPLC-MS/MS KW - Analytical Chemistry KW - Lysergic acid hydrazide PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588582 DO - https://doi.org/10.1007/s12161-023-02553-x SN - 1936-976X VL - 17 IS - 1 SP - 119 EP - 128 PB - Springer CY - New York, NY AN - OPUS4-58858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kislenko, Evgeniia A1 - Incel, A. A1 - Gawlitza, Kornelia A1 - Sellergren, B. A1 - Rurack, Knut T1 - Towards molecularly imprinted polymers that respond to and capture phosphorylated tyrosine epitopes using fluorescent bis-urea and bis-imidazolium receptors N2 - Early detection of cancer is essential for successful treatment and improvement in patient prognosis. Deregulation of post-translational modifications (PTMs) of proteins, especially phosphorylation, is present in many types of cancer. Therefore, the development of materials for the rapid sensing of low abundant phosphorylated peptides in biological samples can be of great therapeutic value. In this work, we have synthesised fluorescent molecularly imprinted polymers (fMIPs) for the detection of the phosphorylated tyrosine epitope of ZAP70, a cancer biomarker. The polymers were grafted as nanometer-thin shells from functionalised submicron-sized silica particles using a reversible addition-fragmentation chain-transfer (RAFT) polymerisation. Employing the combination of fluorescent urea and intrinsically cationic bis-imidazolium receptor cross-linkers, we have developed fluorescent sensory particles, showing an imprinting factor (IF) of 5.0. The imprinted polymer can successfully distinguish between phosphorylated and non-phosphorylated tripeptides, reaching lower micromolar sensitivity in organic solvents and specifically capture unprotected peptide complements in a neutral buffer. Additionally, we have shown the importance of assessing the influence of counterions present in the MIP system on the imprinting process and final material performance. The potential drawbacks of using epitopes with protective groups, which can co-imprint with targeted functionality, are also discussed. KW - Functional monomers KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588089 DO - https://doi.org/10.1039/d3tb01474f SN - 2050-750X SP - 1 EP - 10 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-58808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tatzel, M. A1 - Frings, P. J. A1 - Oelze, Marcus A1 - Herwartz, D. A1 - Lünsdorf, K. A1 - Wiedenbeck, M. T1 - Chert oxygen isotope ratios are driven by Earth's thermal evolution N2 - The 18O/16O ratio of cherts (δ18Ochert) increases nearly monotonically by ~15‰ from the Archean to present. Two end-member explanations have emerged: cooling seawater temperature (TSW) and increasing seawater δ18O (δ18Osw). Yet despite decades of work, there is no consensus, leading some to view the δ18Ochert record as pervasively altered. Here, we demonstrate that cherts are a robust archive of diagenetic temperatures, despite metamorphism and exposure to meteoric fluids, and show that the timing and temperature of quartz precipitation and thus δ18Ochert are determined by the kinetics of silica diagenesis. A diagenetic model shows that δ18Ochert is influenced by heat flow through the sediment column. Heat flow has decreased over time as planetary heat is dissipated, and reasonable Archean-modern heat flow changes account for ~5‰ of the increase in δ18Ochert, obviating the need for extreme TSW or δ18Osw reconstructions. The seawater oxygen isotope budget is also influenced by solid Earth cooling, with a recent reconstruction placing Archean δ18OSW 5 to 10‰ lower than today. Together, this provides an internally consistent view of the δ18Ochert record as driven by solid Earth cooling over billion-year timescales that is compatible with Precambrian glaciations and biological. KW - Climate KW - Oxygen isotope ratios KW - Silica diagenesis KW - Early Earth KW - Heat flow PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569359 DO - https://doi.org/10.1073/pnas.2213076119 SN - 0027-8424 VL - 119 IS - 51 SP - 1 EP - 7 PB - National Academy of Sciences CY - Washington, DC AN - OPUS4-56935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kubheka, G. A1 - Climent, Estela A1 - Tobias, Charlie A1 - Rurack, Knut A1 - Mack, J. A1 - Nyokong, T. T1 - Multiplexed Detection of Human Papillomavirus Based on AzaBODIPY-Doped Silica-Coated Polystyrene Microparticles N2 - Human papillomavirus (HPV) DNA detection can enable the early diagnosis of high-risk HPV types responsible for cervical cancer. HPV detection is also essential for investigating the clinical behavior and epidemiology of particular HPV types, characterization of study populations in HPV vaccination trials and monitoring the efficacy of HPV vaccines. In this study, two azaBODIPY dyes (1 and 2) were used as references and were doped into polystyrene particles (PS40), while a short HPV DNA single strand was used as a target molecule and was covalently bound to the silica shell. These particles were employed as optical probes in 1:1 hybridization assays, and their potential applicability as a tool for multiplex assays for the detection of different strands of HPV was evaluated using flow cytometry. A good separation in the fluorescence of the four different voncentrations prepared for each dye was observed. To perform the hybridization assays, HPV18, HPV16, HPV11 and HPV6 single strands were attached to the particles through EDC-mediated coupling. The c-DNA-1-PS40 and c-DNA-2-PS40 particles exhibited low limit of detection (LOD) and quantification (LOQ) values for HPV11, and a narrow detection range was obtained. Multiplexed assay experiments were successfully performed for both particles, and the results proved that c-DNA-1-PS40 could potentially be used as a tool for multiplexing assays and merits further in-depth study in this context. KW - Flow cytometry KW - BODIPY dyes KW - Core-shell particles KW - Multiplexed assay KW - Human papillomavirus PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567358 DO - https://doi.org/10.3390/chemosensors11010001 SN - 2227-9040 VL - 11 IS - 1 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-56735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sowoidnich, K. A1 - Maiwald, M. A1 - Ostermann, Markus A1 - Sumpf, B. T1 - Shifted excitation Raman difference spectroscopy for soil component identification and soil carbonate determination in the presence of strong fluorescence interference N2 - Detailed knowledge about soil composition is an important prerequisite for many applications, for example precision agriculture. Current standard laboratory methods are complex and time-consuming but could be complemented by non-invasive optical techniques. Its capability to provide a molecular fingerprint of individual soil components makes Raman spectroscopy a very promising candidate. A major challenge is strong fluorescence interference inherent to soil, but this issue can be overcome effectively using shifted excitation Raman difference spectroscopy (SERDS). A customized dual-wavelength diode laser emitting at 785.2 and 784.6 nm was used to investigate 117 soil samples collected from an agricultural field along a distance of 624 m and down to depths of 1 m. To address soil spatial heterogeneity, a raster scan approach comprising 100 measurement spots per sample was applied. Based on the Raman spectroscopic fingerprint extracted from intense fluorescence interference by SERDS, 13 mineral soil constituents were identified, and even closely related molecular species could be discriminated, for example polymorphs of titanium dioxide and calcium carbonate. For the first time, the capability of SERDS is demonstrated to predict the calcium carbonate content as an important soil parameter using partial least squares regression (R2 = 0.94, root mean square error of cross-validation RMSECV = 2.1%). Our findings demonstrate that SERDS can extract a wealth of spectroscopic information from disturbing backgrounds enabling qualitative and quantitative soil analysis. This highlights the large potential of SERDS for precision agriculture but also in further application areas, for example geology, cultural heritage and planetary exploration. KW - Calcium carbonate KW - Raman spectroscopy KW - Soil KW - X-Ray fluorescence KW - SERDS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569016 DO - https://doi.org/10.1002/jrs.6500 SN - 0377-0486 IS - Special Issue SP - 1 EP - 14 PB - John Wiley & Sons Ltd. CY - Hoboken, New Jersey, USA AN - OPUS4-56901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burnage, Samual A1 - Bell, Jérémy A1 - Wan, Wei A1 - Kislenko, Evgeniia A1 - Rurack, Knut T1 - Combining a hybrid chip and tube microfluidic system with fluorescent molecularly imprinted polymer (MIP) core–shell particles for the derivatisation, extraction, and detection of peptides with N-terminating phosphorylated tyrosine N2 - The reliable identification and quantitation of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, an area of particular interest when attempting to diagnose and treat diseases at an early stage. We have developed a synthetic probe for targeting phosphorylated amino acids, based on core–shell submicron-sized particles consisting of a silica core, coated with a molecularly imprinted polymer (MIP) shell. The MIP layer contains a fluorescent probe crosslinker which binds selectively to phosphorylated tyrosine (pY) moieties with a significant imprinting factor (IF) and responds with a "light-up” fluorescence signal. The bead-based ratiometric detection scheme has been successfully transferred to a microfluidic chip format and its applicability to rapid assays has been exemplarily shown by discriminating a pY-terminating oligopeptide against its nonphosphorylated counterpart. Such miniaturised devices could lead to an automated pY or pY N-terminated peptide measurement system in the future. The setup combines a modular microfluidic system for amino acid derivatisation, extraction (by micropillar co-flow) and selective adsorption and detection with the fluorescent MIP core–shell particle probes. A miniaturised optical assembly for low-light fluorescence measurements was also developed, based on miniaturised opto-electronic parts and optical fibres. The emission from the MIP particles upon binding of pY or pY N-terminated peptides could be monitored in real-time. KW - Microfluidics KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569204 DO - https://doi.org/10.1039/d2lc00955b SN - 1473-0197 VL - 23 IS - 3 SP - 466 EP - 474 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martusevich, A. A1 - Kornev, R. A1 - Ermakov, A. A1 - Gornushkin, Igor A1 - Nazarov, V. A1 - Shabarova, L. A1 - Shkrunin, V. T1 - Spectroscopy of Laser-Induced Dielectric Breakdown Plasma in Mixtures of Air with Inert Gases Ar, He, Kr, and Xe N2 - The generation of ozone and nitrogen oxides by laser-induced dielectric breakdown (LIDB) in mixtures of air with noble gases Ar, He, Kr, and Xe is investigated using OES and IR spectroscopy, mass spectrometry, and absorption spectrophotometry. It is shown that the formation of NO and NO2 noticeably depends on the type of inert gas; the more complex electronic configuration and the lower ionization potential of the inert gas led to increased production of NO and NO2. The formation of ozone occurs mainly due to the photolytic reaction outside the gas discharge zone. Equilibrium thermodynamic analysis showed that the formation of NO in mixtures of air with inert gases does not depend on the choice of an inert gas, while the equilibrium concentration of the NO+ ion decreases with increasing complexity of the electronic configuration of an inert gas. KW - Laser-induced dielectric breakdown (LIDB) KW - Nitrogen monoxide KW - Nitrogen dioxide KW - Ozone KW - Emission spectroscopy KW - Inert gases KW - Thermodynamic analysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568258 DO - https://doi.org/10.3390/s23020932 SN - 1424-8220 VL - 23 IS - 2 SP - 1 EP - 13 PB - MDPI CY - Basel, Switzerland AN - OPUS4-56825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Menero-Valdés, P. A1 - Chronakis, Michail Ioannis A1 - Fernández, B. A1 - Quarles Jr., C. D. A1 - González-Iglesias, H. A1 - Meermann, Björn A1 - Pereiro, R. T1 - Single Cell–ICP–ToF-MS for the Multiplexed Determination of Proteins: Evaluation of the Cellular Stress Response N2 - An automated and straightforward detection and data treatment strategy for the determination of the protein relative concentration in individual human cells by single cell–inductively coupled plasma–time-of-flight mass spectrometry (sc-ICP-ToF-MS) is proposed. Metal nanocluster (NC)-labeled specific antibodies for the target proteins were employed, and ruthenium red (RR) staining, which binds to the cells surface, was used to determine the number of cell events as well as to evaluate the relative volume of the cells. As a proof of concept, the expression of hepcidin, metallothionein-2, and ferroportin employing specific antibodies labeled with IrNCs, PtNCs, and AuNCs, respectively, was investigated by sc-ICP-ToF-MS in human ARPE-19 cells. Taking into account that ARPE-19 cells are spherical in suspension and RR binds to the surface of the cells, the Ru intensity was related to the cell volume (i.e., the cell volume is directly proportional to (Ru intensity)3/2), making it possible to determine not only the mass of the target proteins in each individual cell but also the relative concentration. The proposed approach is of particular interest in comparing cell cultures subjected to different supplementations. ARPE-19 cell cultures under two stress conditions were compared: a hyperglycemic model and an oxidative stress model. The comparison of the control with treated cells shows not only the mass of analyzed species but also the relative changes in the cell volume and concentration of target proteins, clearly allowing the identification of subpopulations under the respective treatment. KW - Peptides and Proteins KW - Immunology KW - Metals PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581630 DO - https://doi.org/10.1021/acs.analchem.3c02558 VL - 95 IS - 35 SP - 13322 EP - 13329 PB - ACS Publications AN - OPUS4-58163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Eckert, J. G. A1 - Lutowski, M. A1 - Geißler, D. A1 - Hertwig, A. A1 - Hidde, G. A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads N2 - Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 μm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials. KW - Optical spectroscopy KW - Particle KW - Optical assay KW - IR spectroscopy; conductometry KW - Fluorescence KW - Quantum yield KW - Quality assurance KW - Nano KW - Synthesis KW - Surface chemistry KW - Quantification KW - Method PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581502 DO - https://doi.org/10.1038/s41598-023-38518-7 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-58150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Jens A1 - Hufgard, Josefin A1 - You, Yi T1 - LIBS at high duty-cycles: effect of repetition rate and temporal width on the excitation laser pulses N2 - Laser-induced breakdown spectroscopy (LIBS) is becoming a more mature technology every year with new variants such as laser ablation molecular isotopic spectrometry, reheating by various discharge techniques, and multiple pulse excitation schemes, in which sometimes lasers of different pulse lengths are used. However, lasers with inherent parameters like pulse length and repetition rate are still almost exclusively employed. Recent years have witnessed the advent of novel high-repetition-rate laser concepts for machining processes, like welding, milling, and engraving. Here, a comprehensive study of single-pulse LIBS spectra of a single aluminum target is presented to showcase the applicability of flexible high duty-cycle master oscillator power amplifier (MOPA) lasers. Although traditional flashlamp-pumped Fabry–Pérot lasers only permit a variation in the pulse energy and are operated at very low duty-cycles, MOPA lasers add repetition rate and pulse length as variable parameters. A thorough analysis of the temporal plasma behavior revealed the emission dynamic to closely match the excitation laser pulse pattern. An aluminum sample’s spectral response was shown to be significantly impacted by variations in both rate and length. Although the spectral emission strength of the elemental lines of Al, Sr, and Ca all peaked at slightly different parameter settings, the strongest impact was found on the relative abundance of molecular AlO bands. Unlike in previous laser ablation molecular isotopic spectrometry (LAMIS) publications, the latter could be readily detected with a good intensity and well-resolved spectral features without any temporal gating of the detector. This finding, together with the fact that MOPA lasers are both inexpensive and dependable, makes for a promising combination for future studies including the detection of diatomic band structures. KW - Laser-induced breakdown spectroscopy KW - LIBS PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583300 DO - https://doi.org/10.3389/fphy.2023.1241533 SN - 2296-424X VL - 11 SP - 1 EP - 8 AN - OPUS4-58330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pätzold, Stefan A1 - Ostermann, Markus A1 - Heggemann, Tobias A1 - Wehrle, Ralf T1 - Impact of potassium fertilisation on mobile proximal gamma-ray spectrometry: case study on a long-term field trial N2 - Mobile proximal gamma-ray spectrometry (GS) is an emerging approach to estimate soil texture directly in the field. It relies on gamma radiation emitted during the natural decay of potassium-40 (K-40) and other isotopes. The K-40 counts are correlated with total K content, mineralogical soil composition and therefore with soil texture. Yet, it is not clear if K fertilisation impacts the ratio of K-40 to total K which would necessitate to take the fertilisation history into account for soil sensing applications. To elucidate this question, a well-documented long-term experiment was selected. The soils of the Rengen grassland experiment (55 plots) were investigated for total K (XRF-K) and for K-40 via mobile proximal GS. No significant differences in XRF-K and K-40 were found between the treatments with and without K fertilisation, although formely published results point to negative and positive K balances, respectively. Fertiliser analysis revealed a ratio of K-40 to total K that was almost identical to the natural abundance of 0.0117%. It was concluded that it is not necessary to take K fertilisation history into account when predicting soil texture from mobile proximal GS on agricultural land for, e.g., precision farming purposes. KW - Soil heterogeneity KW - Potash KW - Isotope ratio KW - Proximal soil sensing KW - XRF PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584115 DO - https://doi.org/10.1007/s11119-023-10071-3 SN - 1573-1618 SP - 1 EP - 11 PB - Springer Nature CY - Berlin AN - OPUS4-58411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Potopnyk, M. A1 - Mech-Piskorz, J. A1 - Angulo, G. A1 - Ceborska, M. A1 - Luboradzki, R. A1 - Andresen, Elina A1 - Gajek, A. A1 - Wisniewska, A. A1 - Resch-Genger, Ute T1 - Aggregation/Crystallization-Induced Emission in Naphthyridine-Based Carbazolyl-Modified Donor-Acceptor Boron Dyes Tunable by Fluorine Atoms N2 - Four donor-acceptor boron difluoride complexes based on the carbazole electron donor and the [1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridine acceptor were designed, synthesized, and systematically spectroscopically investigated in solutions, in the solid states, and dye-doped polymer films. The dyes exhibit an intense blue to red solid-state emission with photoluminescence quantum yields of up to 56% in pure dye samples and 86% in poly(methyl methacrylate) films. All boron complexes show aggregation-induced emission and reversible mechanofluorochromism. The optical properties of these dyes and their solid state luminescence can be tuned by substitution pattern, i.e., the substituents at the naphthyridine unit. Exchange of CH3- for CF3-groups does not only increase the intramolecular charge transfer character, but also provides a crystallization-induced emission enhancement. KW - Spectroscopy KW - Dye KW - Luminescence KW - Sensor KW - Fluorescence KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Synthesis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597426 DO - https://doi.org/10.1002/chem.202400004 SN - 0947-6539 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-59742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Labrador-Paez, Lucia, L. A1 - Kankare, J. A1 - Hyppanen, I. A1 - Soukka, T. A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Widengren, J A1 - Liu, H. T1 - Frequency-Domain Method for Characterization of Upconversion Luminescence Kinetics N2 - The frequency-domain (FD) method provides an alternative to the commonly used time-domain (TD) approach in characterizing the luminescence kinetics of luminophores, with its own strengths, e.g., the capability to decouple multiple lifetime components with higher reliability and accuracy. While extensively explored for characterizing luminophores with down-shifted emission, this method has not been investigated for studying nonlinear luminescent materials such as lanthanide-doped upconversion nanoparticles (UCNPs), featuring more complicated kinetics. In this work, employing a simplified rate-equation model representing a standard two-photon energy-transfer upconversion process, we thoroughly analyzed the response of the luminescence of UCNPs in the FD method. We found that the FD method can potentially obtain from a single experiment the effective decay rates of three critical energy states of the sensitizer/activator ions involved in the upconversion process. The validity of the FD method is demonstrated by experimental data, agreeing reasonably well with the results obtained by TD methods. KW - Quality assurance KW - Luminescence KW - Method KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Lifetime KW - Method development PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597435 DO - https://doi.org/10.1021/acs.jpclett.3c00269 SP - 3436 EP - 3444 AN - OPUS4-59743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansurova, Maria A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Rurack, Knut A1 - Bartholmai, Matthias A1 - Bell, Jérémy T1 - On-Site Analytical Tool Based on Crude Oil Fluorescence and Chemometrics for the Rapid Determination of the Nature and Essential Properties of Oil Spills N2 - With the reduction of large oil spills because of stricter regulations and safety measures, the question of how to manage smaller oil spills arises. Few on-site analytical tools are available for first responders or other law enforcement personnel to rapidly test for crude oil in the early management of localized polluted areas. The approach reported here relies on well-described computer-assisted multivariate data analysis of the intrinsic fluorescence fingerprints of crude oils to build a multivariate model for the rapid classification of crude oils and the prediction of their properties. Thanks to a dedicated robust portable reader, the method allowed classification and accurate prediction of various properties of crude oil samples like density (according to API, the American Petroleum Institute and viscosity as well as composition parameters such as volume fractions of paraffins or aromatics. In this way, autonomous operation in on-site or in-the-field applications becomes possible based on the direct (undiluted and untreated) measurement of samples and a rapid, tablet-operated readout system to yield a robust and simple analytical test with superior performance. Testing in real-life scenarios allowed the successful classification and prediction of a number of oil spill samples as well as weathered samples that closely resemble samples collected by first responders. KW - Oil spills KW - Fluorescence KW - PCA KW - Petroleum KW - Rapid test KW - Portable PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595442 DO - https://doi.org/10.1021/acsestwater.3c00648 VL - 4 IS - 2 SP - 621 EP - 627 PB - American Chemical Society (ACS) AN - OPUS4-59544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Törne, Wipert Jannik A1 - Klyk-Seitz, Urszula-Anna A1 - Piechotta, Christian T1 - Developing a GC-EI-MS/MS method for quantifying warfarin and five hydroxylated metabolites generated by the Fenton reaction N2 - AbstractSince the 1950s, Warfarin has been used globally as both a prescription drug and a rodenticide. Research has shown that warfarin and other rodenticides are present in the environment and food chain. However, emerging contaminants are subject to degradation by biotic and abiotic processes and advanced oxidation processes. In some cases, detecting the parent compound may not be possible due to the formation of structurally changed species. This approach aims to identify hydroxylated transformation products of warfarin in a laboratory setting, even after the parent compound has undergone degradation. Therefore, the Fenton reaction is utilized to insert hydroxylation into the parent compound, warfarin, by hydroxyl and hydroperoxyl radicals generated by Fe2+/Fe3+ redox reaction with hydrogen peroxide. Using multiple reaction monitoring, a GC–MS/MS method, incorporating isotopically labeled reference compounds, is used to quantify the expected derivatized species. The analytes are derivatized using trimethyl-3-trifluoromethyl phenyl ammonium hydroxide, and the derivatization yield of warfarin is determined by using isotopically labeled reference compounds. The method has a linear working range of 30 to 1800 ng/mL, with detection limits ranging from 18.7 to 67.0 ng/mL. The analytes are enriched using a C18-SPE step, and the recovery for each compound is calculated. The Fenton reaction generates all preselected hydroxylated transformation products of warfarin. The method successfully identifies that 4′-Me-O-WAR forms preferentially under the specified experimental conditions. By further optimizing the SPE clean-up procedures, this GC–MS-based method will be suitable for detecting transformation products in more complex matrices, such as environmental water samples. Overall, this study provides a better understanding of warfarin’s degradation and offers a robust analytical tool for investigating its transformation products. KW - Health, Toxicology and Mutagenesis KW - Pollution KW - Environmental Chemistry KW - General Medicine PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595737 DO - https://doi.org/10.1007/s11356-024-32133-3 SN - 0944-1344 VL - 31 SP - 16986 EP - 16994 PB - Springer Science and Business Media LLC AN - OPUS4-59573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kornev, Roman A1 - Gornushkin, Igor A1 - Shabarova, Lubov A1 - Kadomtseva, Alena A1 - Mochalov, Georgy A1 - Rekunov, Nikita A1 - Romanov, Sergey A1 - Medov, Vitaly A1 - Belousova, Darya A1 - Maleev, Nikita T1 - Plasma-Chemical Disposal of Silicon and Germanium Tetrachlorides Waste by Hydrogen Reduction N2 - The processes of hydrogen reduction of silicon and germanium chlorides under the conditions of high-frequency (40.68 MHz) counteracted arc discharge stabilized between two rod electrodes are investigated. The main gas-phase and solid products of plasma-chemical transformations are determined. Thermodynamic analysis of SiCl4 + H2 and GeCl4 + H2 systems for optimal process parameters was carried out. Using the example of hydrogen reduction of SiCl4 by the method of numerical modeling, gas-dynamic and thermal processes for this type of discharge are investigated. The impurity composition of gas-phase and solid reaction products is investigated. The possibility of single-stage production of high-purity Si and Ge mainly in the form of compact ingots, as well as high-purity chlorosilanes and trichlorogermane, is shown. KW - High-frequency arc discharge KW - Hydrogen reduction KW - Silicon chlorides KW - Germanium chlorides PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594454 DO - https://doi.org/10.3390/sci6010001 VL - 6 IS - 1 SP - 1 EP - 12 PB - MDPI AG AN - OPUS4-59445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Kun A1 - Carrod, Andrew J. A1 - Del Giorgio, Elena A1 - Hughes, Joseph A1 - Rurack, Knut A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan A1 - Harrad, Stuart A1 - Pikramenou, Zoe T1 - Luminescence Lifetime-Based Sensing Platform Based on Cyclometalated Iridium(III) Complexes for the Detection of Perfluorooctanoic Acid in Aqueous Samples N2 - Luminescence lifetimes are an attractive analytical method for detection due to its high sensitivity and stability. Iridium probes exhibit luminescence with long excited-state lifetimes, which are sensitive to the local environment. Perfluorooctanoic acid (PFOA) is listed as a chemical of high concern regarding its toxicity and is classified as a “forever chemical”. In addition to strict limits on the presence of PFOA in drinking water, environmental contamination from industrial effluent or chemical spills requires rapid, simple, accurate, and cost-effective analysis in order to aid containment. Herein, we report the fabrication and function of a novel and facile luminescence sensor for PFOA based on iridium modified on gold surfaces. These surfaces were modified with lipophilic iridium complexes bearing alkyl chains, namely, IrC6 and IrC12, and Zonyl-FSA surfactant. Upon addition of PFOA, the modified surfaces IrC6-FSA@Au and IrC12-FSA @Au show the largest change in the red luminescence signal with changes in the luminescence lifetime that allow monitoring of PFOA concentrations in aqueous solutions. The platform was tested for the measurement of PFOA in aqueous samples spiked with known concentrations of PFOA and demonstrated the capacity to determine PFOA at concentrations >100 μg/L (240 nM). KW - Perfluorooctanoic Acid (PFOA) KW - Cyclometalated iridium (III) complexes KW - Luminescent lifetime KW - Optically active surfaces KW - ToF-SIMS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594535 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.3c04289 DO - https://doi.org/10.1021/acs.analchem.3c04289 VL - 96 IS - 4 SP - 1565 EP - 1575 PB - American Chemical Society (ACS) AN - OPUS4-59453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gehrenkemper, Lennart A1 - Rühl, Isabel A1 - Westphalen, Tanja A1 - Simon, Fabian A1 - von der Au, Marcus A1 - Cossmer, Antje A1 - Meermann, Björn T1 - Investigating the uptake and fate of per- and polyfluoroalkylated substances (PFAS) in bean plants (Phaseolus vulgaris): comparison between target MS and sum parameter analysis via HR-CS-GFMAS N2 - AbstractIn this study, we present a screening method based on molecular absorption spectrometry to study PFAS uptake and fate in plants. To evaluate the suitability of this method we analyzed plant extracts with molecular absorption spectrometry (MAS) as well as liquid chromatography–tandem mass spectrometry (LC–MS/MS) for mass balance studies (w(F)). French bean plants (Phaseolus vulgaris) were grown on soil spiked using eight PFAS substances that vary in chain length and functional group composition. Specifically, these include three short-chained (C4–C5), five long-chained (C7–C10) carboxylic acids, one sulfonic acid and one sulfonic amide moieties. To investigate substance-specific PFAS uptake systematically, PFAS were spiked as single substance spike. Additionally, we studied one mixture of the investigated substances in equal proportions regarding w(F) and four PFAS mixtures of unknown composition. After 6 weeks, the plants were separated into four compartments. We analyzed the four compartments as well as the soil for extractable organically bound fluorine (EOF) by high resolution-continuum source-graphite furnace-molecular absorption spectrometry (HR-CS-GFMAS) as well as for sum of ten target-PFAS by LC–MS/MS. All three short-chained PFAS perfluorobutanoic acid (PFBA), perfluorobutanoic sulfonic acid (PFBS) and perfluoropentanoic acid (PFPeA) were determined in high concentrations mainly in the fruits of the investigated plants while long-chained PFAS perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were mainly determined in roots. PFBS was determined in remarkably high concentrations in leaves compartment by both quantification methods. Overall, comprehensive results of single substance spikes were in good agreement for both methods except for a few cases. Hence, two phenomena were identified: for mixed PFAS spikes of unknown composition huge differences between EOF and sum of target PFAS were observed with systematically higher EOF values. Overall, both methods indicate comparable results with MS being more reliable for known PFAS contamination and MAS being more valuable to identify PFAS exposure of unknown composition. Graphical Abstract KW - Pollution PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589394 DO - https://doi.org/10.1186/s12302-023-00811-7 VL - 35 IS - 104 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-58939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mrkwitschka, Paul A1 - Rühle, Bastian A1 - Kuchenbecker, Petra A1 - Löhmann, Oliver A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Embedding and cross-sectioning as a sample preparation procedure for accurate and representative size and shape measurement of nanopowders N2 - Reliable measurement of the size of polydisperse, complex-shaped commercial nanopowders is a difficult but necessary task, e.g., for regulatory requirements and toxicity risk assessment. Suitable methods exist for the accurate characterization of the size of non-aggregated, stabilized, spherical and monodisperse nanoparticles. In contrast, industrial nanoscale powders usually require dedicated sample preparation procedures developed for the analysis method of choice. These nano-powders tend to agglomerate and/or aggregate, a behavior which in combination with an innate broad particle size distribution and irregular shape often significantly alters the achievable accuracy of the measured size parameters. The present study systematically tests two commercially available nanoscale powders using different sample preparation methods for correlative analysis by scanning electron microscopy, dynamic light scattering, Brunauer–Emmet–Teller method and differential mobility analysis. One focus was set on the sample preparation by embedding nanoparticles in carbon-based hot-mounting resin. Literature on this topic is scarce and the accuracy of the data extracted from cross sections of these particles is unclearly stated. In this paper systematic simulations on the deviation of the size parameters of well-defined series of nanoparticles with different shapes from the nominal value were carried out and the contributing factors are discussed. KW - Nanopowder KW - Electron microscopy KW - Sample preparation KW - Cross-sectioning KW - Cerium oxide KW - Zinc oxide PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593289 DO - https://doi.org/10.1038/s41598-023-51094-0 SN - 2045-2322 VL - 14 SP - 1 EP - 10 PB - Springer Nature CY - London AN - OPUS4-59328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Inostroza, Manuel A1 - Fernandez, Bárbara A1 - Aguilera, Felipe A1 - Layana, Susana A1 - Walter, Thomas R. A1 - Zimmer, Martin A1 - Rodríguez-Díaz, Augusto A1 - Oelze, Marcus T1 - Physical and chemical characteristics of active sulfur flows observed at Lastarria volcano (northern Chile) in January 2019 N2 - Molten sulfur is found in various subaerial volcanoes. However, limited records of the pools and flows of molten sulfur have been reported: therefore, questions remain regarding the physicochemical processes behind this phenomenon. A suite of new sulfur flows, some of which active, was identified at the Lastarria volcano (northern Chile) and studied using satellite imagery, in situ probing, and temperature and video recording. This finding provides a unique opportunity to better understand the emplacement mechanisms and mineral and chemical compositions of molten sulfur, in addition to gaining insight into its origin. Molten sulfur presented temperatures of 124–158°C, with the most prolonged sulfur flow reaching 12 m from the source. Photogrammetric tools permitted the identification of levees and channel structures, with an estimated average flow speed of 0.069 m/s. Field measurements yielded a total volume of 1.45 ± 0.29 m3 of sulfur (equivalent to ∼2.07 tons) mobilized during the January 2019 event for at least 408 min. Solidified sulfur was composed of native sulfur with minor galena and arsenic- and iodine-bearing minerals. Trace element analysis indicated substantial enrichment of Bi, Sb, Sn, Cd, as well as a very high concentration of As (&gt;40.000 ppm). The January 2019 molten sulfur manifestations in Lastarria appear to be more enriched in As compared to the worldwide known volcanoes with molten sulfur records, such as the Shiretoko-Iozan and Poás volcanoes. Furthermore, their rheological properties suggest that the “time of activity” in events such as this could be underestimated as flows in Lastarria have moved significantly slower than previously thought. The origin of molten sulfur is ascribed to the favorable S-rich chemistry of fumarolic gases and changes in host rock permeability (fracture opening). Molten sulfur in Lastarria correlates with a peak in activity characterized by high emissions of SO2 and other acid species, such as HF and HCl, in addition to ground deformation. Consequently, molten sulfur was framed within a period of volcanic unrest in Lastarria, triggered by changes in the magmatic-hydrothermal system. The appearance of molten sulfur is related to physicochemical perturbations inside the volcanic system and is perhaps a precursor of eruptive activity, as observed in the Poás and Turrialba volcanoes. KW - General Earth and Planetary Sciences PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590331 DO - https://doi.org/10.3389/feart.2023.1197363 VL - 11 SP - 1 EP - 18 PB - Frontiers Media SA AN - OPUS4-59033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rieger, Philip A1 - Magnall, Joseph M. A1 - Gleeson, Sarah A. A1 - Oelze, Marcus T1 - Pyrite chemistry records a multistage ore forming system at the Proterozoic George Fisher massive sulfide Zn-Pb-Ag deposit, Mount Isa, Australia N2 - Trace element (TE) analysis of pyrite via LA-ICP-MS can be used to reconstruct the conditions of pyrite formation in complex mineral systems. The Carpentaria province in northern Australia is host to some of the world’s highest value Zn-Pb (+Ag, Cu) deposits. The genesis of many of these deposits is controversial, with competing models of single-vs. multi-stage ore formation. In this study, LA-ICP-MS data of paragenetically constrained pyrite from the George Fisher Zn-Pb-Ag deposit has been analysed to investigate the chemistry of different stages of ore formation. Pyrite from correlative unmineralized host rocks has also been analysed to investigate evidence of distal hydrothermal anomalism. All LA-ICP-MS data have been statistically evaluated (principal component analysis) and interpreted together with whole rock lithogeochemical data of the same samples. Pre-ore diagenetic pyrite is compositionally similar to other Proterozoic diagenetic pyrite, with some evidence of minor hydrothermal anomalism that with further analysis could help define distal alteration. Pyrite from the different ore stages are compositionally distinct, consistent with a multi-stage system. Ore stage 1 pyrite exceeds background contents of Co, Cu, Zn, As, Ag, Sb, Tl, and Pb and has elevated Co/Ni ratios, whereas only Ni and Co are above background abundances in ore stage 2 and 3 pyrite, of which only ore stage 3 pyrite has high Co/Ni ratios. Ore stage 1 pyrite has a similar composition to hydrothermal pyrite in the undeformed northern Carpentaria CD-type deposits and was likely syn-diagenesis. Ore stage 2 was syn-deformation, and resulted in replacement and recrystallization of pre-existing pyrite, and the expulsion of incompatible TEs. Ore stage 3 formed via a later Cu-Zn-Pb mineralizing event that resulted in a new geochemically distinct generation of Co-rich pyrite. Overall, this study demonstrates the value of paragenetically-constrained pyrite TE data for refining genetic models in complex sediment hosted mineral systems. KW - General Earth and Planetary Sciences PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590407 DO - https://doi.org/10.3389/feart.2023.892759 VL - 11 SP - 1 EP - 19 PB - Frontiers Media SA AN - OPUS4-59040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erler, A. A1 - Riebe, D. A1 - Beitz, T. A1 - Löhmannsröben, H.-G. A1 - Leenen, M. A1 - Pätzold, S. A1 - Ostermann, Markus A1 - Wójcik, M. T1 - Mobile Laser-Induced Breakdown Spectroscopy for Future Application in Precision Agriculture—A Case Study N2 - In precision agriculture, the estimation of soil parameters via sensors and the creation of nutrient maps are a prerequisite for farmers to take targeted measures such as spatially resolved fertilization. In this work, 68 soil samples uniformly distributed over a field near Bonn are investigated using laser-induced breakdown spectroscopy (LIBS). These investigations include the determination of the total contents of macro- and micronutrients as well as further soil parameters such as soil pH, soil organic matter (SOM) content, and soil texture. The applied LIBS instruments are a handheld and a platform spectrometer, which potentially allows for the single-point measurement and scanning of whole fields, respectively. Their results are compared with a high-resolution lab spectrometer. The prediction of soil parameters was based on multivariate methods. Different feature selection methods and regression methods like PLS, PCR, SVM, Lasso, and Gaussian processes were tested and compared. While good predictions were obtained for Ca, Mg, P, Mn, Cu, and silt content, excellent predictions were obtained for K, Fe, and clay content. The comparison of the three different spectrometers showed that although the lab spectrometer gives the best results, measurements with both field spectrometers also yield good results. This allows for a method transfer to the in-field measurements KW - LIBS KW - Precision agriculture KW - Soil KW - Multivariate methods KW - Feature selection PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580777 DO - https://doi.org/10.3390/s23167178 VL - 23 IS - 16 SP - 1 EP - 17 PB - MDPI AG CY - Basel, Schweiz AN - OPUS4-58077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - On the use of Carbograph 5TD as an adsorbent for sampling VVOCs: validation of an analytical method N2 - A standardised method for the analysis of very volatile organic compounds (VVOCs) in indoor air is still missing. This study evaluates the use of Carbograph 5TD as an adsorbent for 60 compounds (47 VVOCs + 13 VOCs) by comparing their recoveries with different spiking modes. The influence of the spiking of the tubes in dry nitrogen, humidified air or along the whole flushing duration mimicking real sampling was investigated. 49 substances (36 VVOCs from C1 to C6) had recoveries over 70% on the adsorbent in humidified air and were validated. The linearity of the calibration curves was verified for every spiking mode and the limits of detection (LOD) and quantification (LOQ) were determined. The LOQs were lower than the existing indoor air guideline values. The robustness of the method was considered by studying the influence of the sampling volume, the sampling flow rate, the humidity level and the storage of the tubes. In general, the most volatile or polar substances were the less robust ones. The combined measurement uncertainty was calculated and lies below 35% for a vast majority of the substances. An example of an emission chamber test using polyurethane foam is shown: Carbograph 5TD performs much better than Tenax® TA for VVOCs and emissions from n-butane were quantified with combined measurement uncertainty. KW - VVOC KW - Gas chromatography KW - Thermal desorption KW - Air sampling PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581113 DO - https://doi.org/10.1039/D3AY00677H VL - 15 IS - 31 SP - 3810 EP - 3821 AN - OPUS4-58111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michail Ioannis, Chronakis A1 - Marcus, von der Au A1 - Meermann, Björn T1 - Single cell-asymmetrical flow field-flow fractionation/ICP-time of flight-mass spectrometry (sc-AF4/ICP-ToF-MS): an efficient alternative for the cleaning and multielemental analysis of individual cells N2 - Asymmetrical Flow Field-Flow Fractionation (AF4), as a cleaning technique, was combined on-line with the multielemental analytical capabilities of an Inductively Coupled Plasma-Time of Flight-Mass Spectrometer (ICP-ToF-MS). In that manner, the heavy ionic matrix effect of untreated cells' samples can be significantly reduced. As a proof of concept, commercial baker's yeast cells were analysed. KW - AF4 KW - Single Cell KW - Cleaning PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576419 DO - https://doi.org/10.1039/d2ja00264g SN - 0267-9477 VL - 37 IS - 12 SP - 2691 EP - 2700 PB - Royal Society of Chemistry AN - OPUS4-57641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Gornushkin, Igor B. T1 - Investigation of a method for the correction of self-absorption by Planck function in laser induced breakdown spectroscopy N2 - The electron density and temperature of a laser-induced plasma can be determined from the width and intensity of the spectral lines, provided that the corresponding optical transitions are optically thin. However, the lines in laser induced plasma are often self-absorbed. One of the methods of correction of this effect is based on the use of the Planck function and an iterative numerical calculation of the plasma temperature. In this study, the method is further explored and its inherent errors and limitations are evaluated. For this, synthetic spectra are used that fully correspond to the assumed conditions of a homogeneous isothermal plasma at local thermodynamic equilibrium. Based on the error analysis, the advantages and disadvantages of the method are discussed in comparison with other methods of self-absorption correction. KW - LIBS KW - Self-absorption KW - Planck function PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572677 DO - https://doi.org/10.1039/D2JA00352J SN - 0267-9477 SP - 1 EP - 6 PB - Royal Society of Chemistry (RSC) AN - OPUS4-57267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuner, Maximilian A1 - Lisec, Jan A1 - Mauch, Tatjana A1 - Konetzki, J. A1 - Haase, H. A1 - Koch, Matthias T1 - Quantification of Ergot Alkaloids via Lysergic Acid Hydrazide—Development and Comparison of a Sum Parameter Screening Method N2 - Ergot alkaloids are a group of mycotoxins occurring in products derived from various grasses (e.g., rye) and have been regulated in the EU recently. The new maximum levels refer to the sum of the six most common ergot alkaloids in their two stereoisomeric forms in different food matrices. Typically, these twelve compounds are individually quantified via HPLC-MS/MS or -FLD and subsequently summed up to evaluate food safety in a time-consuming process. Since all these structures share the same ergoline backbone, we developed a novel sum parameter method (SPM) targeting all ergot alkaloids simultaneously via lysergic acid hydrazide. After extraction and clean-up, in analogy to the current European standard method EN 17425 (ESM) for ergot alkaloid quantitation, the samples were derivatized by an optimized hydrazinolysis protocol, which allowed quantitative conversion after 20 min at 100 °C. The new SPM was evaluated against another established HPLC-FLD-based method (LFGB) and the HPLC-MS/MS-based ESM using six naturally contaminated rye and wheat matrix reference materials. While the SPM provided comparable values to the ESM, LFGB showed deviating results. Determined recovery rates, limits of detection and quantification of all three employed methods confirm that the new SPM is a promising alternative to the classical approaches for ergot alkaloid screening in food. KW - Ergot alkaloids KW - Sum Parameter KW - Mycotoxins KW - Derivatization KW - Hydrazinolysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573968 DO - https://doi.org/10.3390/molecules28093701 SN - 0015-2684 VL - 28 IS - 9 SP - 3701 PB - MDPI CY - Basel AN - OPUS4-57396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Andrea ED - Reese, M. ED - Goldhammer, T. ED - Schmalsch, C. ED - Weber, J. ED - Bannick, C. G. T1 - Spectroscopic evidence for adsorption of natural organic matter on microplastics N2 - The interaction of microcroplastics (MP) with dissolved organic matter, especially humic substances, is of great importance in understanding the behavior of microplastics in aquatic ecosystems. Surface modification by humic substances plays an essential role in transport and interaction of MP with abiotic and biotic components. Previous studies on the interaction between MP and humic substances were largely based on a model compound, humic acid (Sigma-Aldrich). In our work, we therefore investigated the interaction of natural organic matter (NOM) sampled from a German surface water with low-density polyethylene particles (LDPE). Highpressure size exclusion chromatography (HPSEC) and UV/vis absorption and fluorescence spectroscopy were used to characterize the incubation solutions after modifications due to the presence of LDPE, and Raman spectroscopy was used to characterize the incubated microplastics. While the studies of the solutions generally showed only very small effects, Raman spectroscopic studies allowed clear evidence of the binding of humic fractions to MP. The comparison of the incubation of NOM and a lignite fulvic acid which also was tested further showed that specific signatures of the humic substances used could be detected by Raman spectroscopy. This provides an elegant opportunity to conduct broader studies on this issue in the future. KW - Humic matter KW - Raman KW - HPSEC KW - Fluorescence KW - MCR PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574519 DO - https://doi.org/10.1002/appl.202200126 SN - 2702-4288 SP - 1 EP - 30 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Ebel, Kenny A1 - Heinze, Katja A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby N2 - Photodynamic therapy (PDT) used for treating cancer relies on the generation of highly reactive oxygen species, for example, singlet oxygen 1O2, by light-induced excitation of a photosensitizer (PS) in the presence of molecular oxygen, inducing DNA damage in close proximity of the PS. Although many precious metal complexes have been explored as PS for PDT and received clinical approval, only recently, the potential of photoactive complexes of nonnoble metals as PS has been discovered. Using the DNA origami technology that can absolutely quantify DNA strand break cross sections, we assessed the potential of the luminescent transition metal complex [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) to damage DNA in an air-saturated aqueous environment upon UV/Vis illumination. The quantum yield for strand breakage, that is, the ratio of DNA strand breaks to the number of absorbed photons, was determined to 1–4%, indicating efficient transformation of photons into DNA strand breaks by [Cr(ddpd)2]3+. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - PDT KW - Singlet oxygen KW - DNA KW - Origami KW - Quantum yield PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573631 DO - https://doi.org/10.1002/chem.202203719 SP - 1 EP - 7 AN - OPUS4-57363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Behnke, Thomas A1 - Gienger, J. A1 - Resch-Genger, Ute T1 - Efficiency scale for scatteringluminescent particles linkedto fundamental and measurablespectroscopic properties N2 - Comparing the performance of molecular and nanoscale luminophores and luminescent microand nanoparticles and estimating achievable signal amplitudes and limits of detection requires a standardizable intensity scale. This initiated the development of the relative MESF (number of molecules of equivalent soluble fluorochromes) and ERF (equivalent reference fluorophores) scales for flow cytometry and fluorescence microscopy. Both intensity scales rely on fluorescence intensity values assigned to fluorescent calibration beads by an intensity comparison to spectrally closely matching fluorophore solutions of known concentration using a spectrofluorometer. Alternatively, the luminophore or bead brightness (B) can be determined that equals the product of the absorption cross section (σa) at the excitation wavelength (σa(λex)) and the photoluminescence quantum yield (Φpl). Thereby, an absolute scale based on fundamental and measurable spectroscopic properties can be realized which is independent of particle size, material, and luminophore staining or labeling density and considers the sensitivity of the optical properties of luminophores to their environment. Aiming for establishing such a brightness scale for light-scattering dispersions of luminescent particles with sizes exceeding a few ten nanometers, we demonstrate how the brightness of quasi-monodisperse 25 nm, 100 nm, and 1 μm sized polystyrene particles (PSP), loaded with two different dyes in varying concentrations, can be obtained with a single custom-designed integrating sphere setup that enables the absolute determination of Φpl and transmittance and diffuse reflectance measurements. The resulting Φpl, σa(λex), imaginary parts of the refractive index, and calculated B values of these samples are given in dependence of the number of incorporated dye molecule per particle. Finally, a unitless luminescence efficiency (LE) is defined allowing for the direct comparison of luminescence efficiencies of particles with different sizes. KW - Brightness KW - Quantum yield KW - Cross section KW - Lluminescence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573680 DO - https://doi.org/10.1038/s41598-023-32933-6 VL - 13 IS - 1 SP - 14 PB - Nature AN - OPUS4-57368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598629 DO - https://doi.org/10.1039/D3MA00476G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Krom, I. A1 - Heikens, D. A1 - Horn, Wolfgang A1 - Wilke, Olaf A1 - Richter, Matthias A1 - Baldan, A. T1 - Metrological generation of SI-traceable gas-phase standards and reference materials for (semi-) volatile organic compounds N2 - EN 16516 sets specifications for the determination of emissions into indoor air from construction products. Reliable, accurate and International System of Unit (SI)-traceable measurement results of the emissions are the key to consumer protection. Such measurement results can be obtained by using metrologically traceable reference materials. Gas-phase standards of volatile organic compounds (VOCs) in air can be prepared by a variety of dynamic methods according to the ISO 6145 series. However, these methods are not always applicable for semi-VOCs (SVOCs) due to their high boiling point and low vapour pressure. Therefore, a novel dynamic gas mixture generation system has been developed. With this system gas-phase standards with trace level VOCs and SVOCs in air can be prepared between 10 nmol mol−1 and 1000 nmol mol−1. The VOCs and SVOCs in this study have normal boiling points ranging from 146 °C to 343 °C. Metrologically traceable reference materials of the gas-phase standard were obtained by sampling of the VOC gas-phase standard into Tenax TA® sorbent material in SilcoNert® coated stainless steel tubes. Accurately known masses between 10 ng and 1000 ng per VOC were sampled. These reference materials were used to validate the dynamic system. Furthermore, the storage and stability periods of the VOCs in the reference materials were determined as these are crucial characteristics to obtain accurate and SI-traceable reference materials. In a round robin test (RRT), the reference materials were used with the aim of demonstrating the feasibility of providing SI-traceable standard reference values for SVOCs for interlaboratory comparison purposes. Based on the results from the validation, the storage and stability studies and the RRT, gas-phase standards and reference materials of VOCs and SVOCs with relative expanded uncertainties between 5% and 12% (k = 2) have been developed. These reference standards can be used as calibrants, reference materials or quality control materials for the analysis of VOC emissions. KW - SVOC KW - Dynamic calibration gas mixtures KW - Reference materials KW - Indoor air KW - Thermal desorption PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565978 DO - https://doi.org/10.1088/1361-6501/aca704 VL - 34 IS - 3 SP - 1 EP - 13 PB - IOP Publishing AN - OPUS4-56597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - Morell, Daniel A1 - von der Au, Marcus A1 - Wittstock, Gunther A1 - Ozcan, Ozlem A1 - Witt, Julia T1 - Transpassive Metal Dissolution vs. Oxygen Evolution Reaction: Implication for Alloy Stability and Electrocatalysis T1 - Transpassive Metallauflösung vs. Sauerstoffentwicklung: Auswirkungen auf Legierungsstabilität und Elektrokatalyse N2 - Multi-principal element alloys (MPEAs) are gaining interest in corrosion and electrocatalysis research due to their electrochemical stability across a broad pH range and the design flexibility they offer. Using the equimolar CrCoNi alloy, we observe significant metal dissolution in a corrosive electrolyte (0.1 M NaCl, pH 2) concurrently with the oxygen evolution reaction (OER) in the transpassive region despite the absence of hysteresis in polarization curves or other obvious corrosion indicators. We present a characterization scheme to delineate the contribution of OER and alloy dissolution, using scanning electrochemical microscopy (SECM) for OER-onset detection, and quantitative chemical analysis with inductively coupled-mass spectrometry (ICP-MS) and ultraviolet visible light (UV-Vis) spectroscopy to elucidate metal dissolution processes. In-situ electrochemical atomic force microscopy (EC-AFM) revealed that the transpassive metal dissolution on CrCoNi is dominated by intergranular corrosion. These results have significant implications for the stability of MPEAs in corrosion systems, emphasizing the necessity of analytically determining metal ions released from MPEA electrodes into the electrolyte when evaluating Faradaic efficiencies of OER catalysts. The release of transition metal ions not only reduces the Faradaic efficiency of electrolyzers but may also cause poisoning and degradation of membranes in electrochemical reactors. N2 - Multi-Hauptelement-Legierungen (MPEAs) gewinnen in der Korrosions- und Elektrokatalyseforschung aufgrund ihrer elektrochemischen Stabilität über einen breiten pH-Bereich und der Vielfalt der möglichen chemischen Zusammensetzungen zunehmend an Interesse. In unseren Untersuchungen mit der äquimolaren CrCoNi-Legierung in einem sauren Elektrolyten (0.1 M NaCl, pH 2) beobachteten wir eine signifikante Metallauflösung, die mit der Sauerstoffentwicklungsreaktion (OER) im transpassiven Bereich einhergeht, obwohl in zyklischen Polarisationskurven keine Hysterese auftrat oder andere offensichtliche Korrosionsindikatoren vorlagen. In diesem Artikel wird ein Charakterisierungskonzept eingeführt, dass die Beiträge der OER und der Legierungsauflösung differenziert. Hierfür kommt die elektrochemische Rastermikroskopie (SECM) zum Nachweis des Beginns der OER und die quantitative chemische Analyse mit induktiv gekoppelter Massenspektrometrie (ICP-MS) und UV/Vis-Spektrometrie zur Aufklärung der Metallauflösungsprozesse zum Einsatz. Die elektrochemische In situ-Atomkraftmikroskopie (EC-AFM) zeigte, dass die intergranulare Korrosion der dominierende Mechanismus der transpassive Metallauflösung von CrCoNi ist. Diese Ergebnisse besitzen erhebliche Auswirkungen für die Beurteilung der Stabilität von MPEAs in Korrosionssystemen und der Stromausbeute von OER-Katalysatoren auf der Basis von MPEAs. Die Daten unterstreichen die Notwendigkeit der analytischen Bestimmung von Metallionen, die von MPEA-Elektroden freigesetzt werden. Die Freisetzung von Übergangsmetallionen verringert nicht nur die Stromausbeute von Elektrolyseuren, sondern kann zu einer Schädigung von Membranen in elektrochemischen Reaktoren führen. KW - Transpassive dissolution KW - Corrosion KW - Multi-prinicpal element alloys (MPEAs) KW - Passivation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597045 DO - https://doi.org/10.1002/anie.202317058 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-59704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Lommel, Lukas A1 - Braun, Ulrike A1 - Meyer, Klas A1 - Paul, Andrea T1 - Development of a Low-Cost Method for Quantifying Microplastics in Soils and Compost Using Near-Infrared Spectroscopy N2 - Near-infrared (NIR) spectroscopy is a promising candidate for low-cost, nondestructive, and highthroughput mass quantification of microplastics in environmental samples. Widespread application of the technique is currently hampered mainly by the low sensitivity of NIR spectroscopy compared to thermoanalytical approaches commonly used for this type of analysis. This study shows how the application of NIR spectroscopy for mass quantification of microplastics can be extended to smaller analyte levels by combining it with a simple and rapid microplastic enrichment protocol. For this purpose, the widely used flotation of microplastics in a NaCl solution, accelerated by centrifugation, was chosen which allowed to remove up to 99 % of the matrix at recovery rates of 83–104 %. The spectroscopic measurements took place directly on the stainless-steel filters used to collect the extracted particles to reduce sample handling to a minimum. Partial least squares regression (PLSR) models were used to identify and quantify the extracted microplastics in the mass range of 1–10 mg. The simple and fast extraction procedure was systematically optimized to meet the requirements for the quantification of microplastics from common PE-, PP-, and PS-based packaging materials with a particle size < 1 mm found in compost or soils with high natural organic matter content (> 10 % determined by loss on ignition). Microplastics could be detected in model samples at a mass fraction of 1 mg g-1. The detectable microplastic mass fraction is about an order of magnitude lower compared to previous studies using NIR spectroscopy without additional enrichment. To emphasize the cost-effectiveness of the method, it was implemented using some of the cheapest and most compact NIR spectrometers available. KW - Mikroplastik KW - NIR KW - Sensor KW - Kompost KW - Multivariat PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552605 DO - https://doi.org/10.1088/1361-6501/ac5e5f VL - 33 IS - 7 SP - 1 EP - 13 PB - IOP Publishing Ltd. CY - Bristol AN - OPUS4-55260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Wolf, Jakob A1 - Meyer, Klas A1 - Kern, S. A1 - Angelone, D. A1 - Leonov, A. A1 - Cronin, L. A1 - Emmerling, Franziska T1 - Standardization and control of Grignard reactions in a universal chemical synthesis machine using online NMR T1 - Standardisierung und Kontrolle von Grignard-Reaktionen mittels Online-NMR in einer universellen chemischen Syntheseplattform N2 - A big problem with the chemistry literature is that it is not standardized with respect to precise operational parameters, and real time corrections are hard to make without expert knowledge. This lack of context means difficult reproducibility because many steps are ambiguous, and hence depend on tacit knowledge. Here we present the integration of online NMR into an automated chemical synthesis machine (CSM aka. “Chemputer” which is capable of small-molecule synthesis using a universal programming language) to allow automated analysis and adjustment of reactions on the fly. The system was validated and benchmarked by using Grignard reactions which were chosen due to their importance in synthesis. The system was monitored in real time using online-NMR, and spectra were measured continuously during the reactions. This shows that the synthesis being done in the Chemputer can be dynamically controlled in response to feedback optimizing the reaction conditions according to the user requirements. N2 - Ein Problem der chemischen Literatur ist die fehlende Standardisierung bezüglich genauer Bedingungen, auch Echtzeit-Korrekturen sind ohne Expertenwissen nur schwer möglich. Dieser Mangel an Details erschwert experimentelle Reproduzierbarkeit, da Schritte oft mehrdeutig sind und daher von implizitem Wissen abhängen. Hier präsentieren wir die Integration von Online-NMR Spektroskopie in eine automatisierte chemische Syntheseplattform (CSM aka. “Chemputer”, unter Verwendung einer universellen Programmiersprache zur Synthese kleiner Moleküle fähig), um eine automatisierte Analyse und Anpassung von Reaktionen im laufenden Betrieb zu ermöglichen. Das System wurde anhand von Grignard-Reaktionen, die aufgrund ihrer Bedeutung für die Synthese ausgewählt wurden, validiert und einem Härtetest unterzogen. Synthesen wurden in Echtzeit mit Online-NMR überwacht, und die Spektren wurden während der Reaktionen kontinuierlich aufgenommen und analysiert. Dies zeigt, dass der Chemputer dynamisch mittels einer Regelung kontrolliert werden kann, um die Reaktionsbedingungen entsprechend den Anforderungen des Benutzers zu optimieren. KW - Grignard reaction KW - NMR spectroscopy KW - Process analytical technology KW - Process control KW - Grignard-Reaktion KW - NMR-Spektroskopie KW - Prozessanalytik KW - Prozesskontrolle PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531260 DO - https://doi.org/10.1002/anie.202106323 SN - 1521-3773 SN - 1433-7851 N1 - Bibliografische Angaben für die deutsche Version: Angewandte Chemie 2021, Jg. 133, S. 1–7, ISSN 0044-8249, ISSN 1521-3757, https://doi.org/10.1002/ange.202106323 - Bibliographic information for the German version: Angewandte Chemie 2021, vol. 133, p. 1–7, ISSN 0044-8249, ISSN 1521-3757, https://doi.org/10.1002/ange.202106323 VL - 60 IS - 43 SP - 1 EP - 6 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53126 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Gornushkin, Igor A1 - Griesche, Axel A1 - Kannengiesser, Thomas A1 - Treutler, Kai A1 - Wesling, Volker T1 - In situ chemical analysis of duplex stainless steel weld by laser induced breakdown spectroscopy N2 - The high corrosion resistance and good mechanical properties of duplex stainless steel (DSS) are due to its special chemical composition, which is a balanced phase ratio of ferrite (α) and austenite (γ). Many industrial applications require the integration of DSS components. For this, Gas tungsten arc welding (GTAW) is an excellent choice, as it allows an automated operation with high reproducibility. However, when the weld pool solidifies, critical ratios of α- and γ- phases can occur, which lead to solidification cracking, increased susceptibility to corrosion, and a decrease in ductility and critical strength. Previous studies have shown that these defects can be caused by the accumulation of manganese and chromium in the heat affected zone (HAZ), requiring ongoing monitoring of this accumulation. A suitable method for such monitoring is laser-induced breakdown spectroscopy (LIBS), which can be used in two operating modes: calibration using standard reference samples and calibration-free. Unlike conventional quantitative LIBS measurements, which require reference samples to generate a calibration curve, calibration-free LIBS (CF-LIBS) allows chemical compositions to be determined solely from the emission spectrum of the plasma. Numerous publications show that CF-LIBS is a fast and efficient analytical method for the quantitative analysis of metal samples. In this work, CF-LIBS is applied to spectra obtained during GTAW DSS welding and the result is compared with those obtained by PLS analysis. A good correlation was found between both types of analysis, demonstrating the suitability of the CF-LIBS method for this application. The CF-LIBS method has a significant advantage over conventional LIBS due to the rapid in situ measurement of concentrations of major alloying elements without calibration procedure. This, combined with fast feedback and appropriate adjustment of welding parameters, helps prevent welding defects. KW - Duplex stainless steels KW - In situ measurement KW - LIBS KW - GMAW PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597940 DO - https://doi.org/10.1016/j.sab.2024.106899 SN - 0584-8547 VL - 214 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Groschke, Matthias A1 - Becker, Roland T1 - Comparison of carrier gases for the separation and quantification of mineral oil hydrocarbon (MOH) fractions using online coupled high performance liquid chromatography-gas chromatography-flame ionisation detection N2 - On-line coupled high performance liquid chromatography-gas chromatography-flame ionisation detection (HPLC-GC-FID) was used to compare the effect of hydrogen, helium and nitrogen as carrier gases on the chromatographic characteristics for the quantification of mineral oil hydrocarbon (MOH) traces in food related matrices. After optimisation of chromatographic parameters nitrogen carrier gas exhibited characteristics equivalent to hydrogen and helium regarding requirements set by current guidelines and standardisation such as linear range, quantification limit and carry over. Though nitrogen expectedly led to greater peak widths, all required separations of standard compounds were sufficient and humps of saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) were appropriate to enable quantitation similar to situations where hydrogen or helium had been used. Slightly increased peak widths of individual hump components did not affect shapes and widths of the MOSH and MOAH humps were not significantly affected by the use of nitrogen as carrier gas. Notably, nitrogen carrier gas led to less solvent peak tailing and smaller baseline offset. Overall, nitrogen may be regarded as viable alternative to hydrogen or helium and may even extend the range of quantifiable compounds to highly volatile hydrocarbon eluting directly after the solvent peak. KW - Mineral oil hydrocarobons KW - Food KW - Liquid chromatography KW - Gas chromatography KW - MOSH/MOAH PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601450 DO - https://doi.org/10.1016/j.chroma.2024.464946 SN - 0021-9673 VL - 1726 SP - 1 EP - 7 PB - Elsevier CY - New York, NY AN - OPUS4-60145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Recknagel, Sebastian A1 - Prinz, Carsten A1 - Vogel, Kristin A1 - Koch, Matthias A1 - Becker, Roland T1 - eCerto—versatile software for interlaboratory data evaluation and documentation during reference material production N2 - The statistical tool eCerto was developed for the evaluation of measurement data to assign property values and associated uncertainties of reference materials. The analysis is based on collaborative studies of expert laboratories and was implemented using the R software environment. Emphasis was put on comparability of eCerto with SoftCRM, a statistical tool based on the certification strategy of the former Community Bureau of Reference. Additionally, special attention was directed towards easy usability from data collection through processing, archiving, and reporting. While the effects of outlier removal can be flexibly explored, eCerto always retains the original data set and any manipulation such as outlier removal is (graphically and tabularly) documented adequately in the report. As a major reference materials producer, the Bundesanstalt für Materialforschung und -prüfung (BAM) developed and will maintain a tool to meet the needs of modern data processing, documentation requirements, and emerging fields of RM activity. The main features of eCerto are discussed using previously certified reference materials. KW - Reference material KW - Statistics KW - Software KW - Collaborative trial PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591851 DO - https://doi.org/10.1007/s00216-023-05099-3 SP - 1 EP - 9 PB - Springer Science and Business Media LLC AN - OPUS4-59185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Souza Machado, A. A. A1 - Lau, C. W. A1 - Kloas, W. A1 - Bergmann, J. A1 - Bachelier, J. B. A1 - Faltin, E. A1 - Becker, Roland A1 - Görlich, A. S. A1 - Rillig, M. C. T1 - Microplastics can change soil properties and affect plant performance N2 - Microplastics can affect biophysical properties of the soil. However, little is known about the cascade of events in fundamental levels of terrestrial ecosystems, i.e., starting with the changes in soil abiotic properties and propagating across the various components of soil−plant interactions, including soil microbial communities and plant traits. We investigated here the effects of six different microplastics (polyester fibers, polyamide beads, and four fragment types: polyethylene, polyester terephthalate, polypropylene, and polystyrene) on a broad suite of proxies for soil health and performance of spring onion (Allium fistulosum). Significant changes were observed in plant biomass, tissue elemental composition, root traits, and soil microbial activities. These plant and soil responses to microplastic exposure were used to propose a causal model for the mechanism of the effects. Impacts were dependent on particle type, i.e., microplastics with a shape similar to other natural soil particles elicited smaller differences from control. Changes in soil structure and water dynamics may explain the observed results in which polyester fibers and polyamide beads triggered the most pronounced impacts on plant traits and function. The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity. KW - Mikroplastik KW - Boden KW - Pflanzenwachstum PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484181 DO - https://doi.org/10.1021/acs.est.9b01339 SN - 0013-936X SN - 1520-5851 VL - 53 IS - 10 SP - 6044 EP - 6052 PB - ACS AN - OPUS4-48418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dorgerloh, Ute A1 - Becker, Roland A1 - Riedel, Juliane A1 - Hofmann, Andrea T1 - Comparison of gas- and liquid chromatography-mass spectrometry for trace analysis of anilines in groundwater N2 - Three chromatographic procedures were investigated regarding their potential for the quantification of aniline and 19 of its methylated and chlorinated derivatives in groundwater. These methods were based on liquid-liquid-extraction in combination with gas chromatography and single quadrupole mass spectrometry (GC/MS) according to German standard DIN 38407-16:1999 and its extension using tandem mass spectrometry (GC/MS-MS), both following liquid-liquid extraction, and as third alternative the direct injection of the water sample into a liquid chromatograph coupled to tandem mass spectrometry (LC/MS-MS). Results were compared using fortified water and real-world contaminated groundwater used in an interlaboratory comparison. It could be shown that GC/MS and GC/MS-MS yielded results deviating less than 10% from each other while all three procedure displayed quantification results deviating less than 15% from the intercomparison reference values in case of each analyte in the concentration range between 1 and 45 µg L-1. Though GC/MS-MS displays a ten-fold higher sensitivity than single quadrupole GC/MS, the precision of both methods in the concentration range was similar. LC/MS-MS has the advantage of no further sample preparation due to the direct injection and leads for methylanilines and meta-, para- substituted chloroanilines to results sufficiently equivalent to the standardised GC/MS method. However, LC/MS-MS is not suitable for ortho-chloroaniline derivates due to significantly lower ion yields than meta- and para-substituted chloroanilines. KW - Interlaboratory comparison KW - Aniline KW - Chloroanilines KW - Methylanilines KW - Groundwater KW - GC/MS KW - GC/MS-MS KW - LC/MS-MS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535793 DO - https://doi.org/10.1080/03067319.2021.1987423 VL - 103 IS - 19 SP - 8465 EP - 8477 PB - Taylor & Francis CY - London AN - OPUS4-53579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Heyn, L. A1 - Jung, Christian T1 - Indoor exposure to airborne polycyclic aromatic hydrocarbons: A comparison of stir bar sorptive extraction and pump sampling N2 - Stir bar sorptive extraction (SBSE) was compared with standardized pump sampling regarding the prospects to assess airborne levels of polycyclic aromatic hydrocarbons (PAHs) in indoor environments. A historic railway water tower, which will be preserved as a technical monument for museum purposes, was sampled with both approaches because the built-in insulationmaterial was suspected to release PAHs to the indoor air. The 16 PAHs on the US EPA list were quantified using gas chromatography with mass spectrometric detection in filters from pump sampling after solvent extraction and on SBSE devices after thermal desorption. SBSEwas seen to sample detectable PAHmasseswith excellent repeatability and a congener pattern largely similar to that observed with pump sampling. Congener patterns were however significantly different from that in the PAH source because release from the insulation material is largely triggered by the respective congener vapor pressures. Absolute masses in the ng range sampled by SBSE corresponded to airborne concentrations in the ng L−1 range determined by pump sampling. Principle differences between SBSE and pump sampling as well as prospects of SBSE as cost-effective and versatile complement of pump sampling are discussed. KW - Polycyclic aromatic hydrocarbons KW - Adsorption KW - Extraction KW - Indoor air PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537427 DO - https://doi.org/10.1002/eng2.12419 VL - 3 IS - 12 SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-53742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dorgerloh, Ute A1 - Becker, Roland A1 - Kaiser, M. T1 - Evidence for the formation of difluoroacetic acid in chlorofluorocarbon-contaminated ground water N2 - The concentrations of difluoroacetic acid (DFA) and trifluoroacetic acid (TFA) in rainwater and surface water from Berlin, Germany resembled those reported for similar urban areas, and the TFA/DFA ratio in rainwater of 10:1 was in accordance with the literature. In contrast, nearby ground water historically contaminated with 1,1,2-trichloro-1,2,2-trifluoroethane (R113) displayed a TFA/DFA ratio of 1:3. This observation is discussed versus the inventory of microbial Degradation products present in this ground water along with the parent R113 itself. A microbial Transformation of chlorotrifluoroethylene (R1113) to DFA so far has not been reported for environmental media, and is suggested based on well-established mammalian metabolic pathways. KW - Fluoroacetic acid KW - DFA KW - TFA KW - Rainwater KW - Ground water KW - Degradation of refrigerants PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475569 DO - https://doi.org/10.3390/molecules24061039 SN - 1420-3049 VL - 24 IS - 6 SP - 1039, 1 EP - 6 PB - MDPI CY - Basel AN - OPUS4-47556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Iglesias, C. A1 - Markovina, A. A1 - Nirmalananthan-Budau, N. A1 - Resch-Genger, Ute A1 - Klinger, D. T1 - Optically monitoring the microenvironment of a hydrophobic cargo in amphiphilic nanogels: influence of network composition on loading and release N2 - Amphiphilic nanogels (ANGs) are promising carriers for hydrophobic cargos such as drugs, dyes, and catalysts. Loading content and release kinetics of these compounds are controlled by type and number of hydrophobic groups in the amphiphilic copolymer network. Thus, understanding the interactions between cargo and colloidal carrier is mandatory for a tailor-made and cargo-specific ANG design. To systematically explore the influence of the network composition on these interactions, we prepared a set of ANGs of different amphiphilicity and loaded these ANGs with varying concentrations of the solvatochromic dye Nile Red (NR). Here, NR acts as a hydrophobic model cargo to optically probe the polarity of its microenvironment. Analysis of the NR emission spectra as well as measurements of the fluorescence quantum yields and decay kinetics revealed a decrease in the polarity of the NR microenvironment with increasing hydrophobicity of the hydrophobic groups in the ANG network and dye–dye interactions at higher loading concentrations. At low NR concentrations, the hydrophobic cargo NR is encapsulated in the hydrophobic domains. Increasing NR concentrations resulted in probe molecules located in a more hydrophilic environment, i.e., at the nanodomain border, and favored dye–dye interactions and NR aggregation. These results correlate well with release experiments, indicating first NR release from more hydrophilic network locations. Overall, our findings demonstrate the importance to understand carrier–drug interactions for efficient loading and controlled release profiles in amphiphilic nanogels. KW - Particle KW - Energy transfer KW - Limit of detection KW - Polymer KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Dye KW - Probe KW - Sensor KW - Nile Red PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601603 DO - https://doi.org/10.1039/d4nr00051j SN - 2040-3364 IS - 16 SP - 9525 EP - 9535 PB - The Royal Society of Chemistry AN - OPUS4-60160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Lisec, Jan A1 - Koch, Matthias T1 - Changes in Black Truffle (Tuber melanosporum) Aroma during Storage under Different Conditions N2 - The enticing aroma of truffles is a key factor for their culinary value. Although all truffle species tend to be pricy, the most intensely aromatic species are the most sought after. Research into the aroma of truffles encompasses various disciplines including chemistry, biology, and sensory science. This study focusses on the chemical composition of the aroma of black truffles (Tuber melanosporum) and the changes occurring under different storage conditions. For this, truffle samples were stored under different treatments, at different temperatures, and measured over a total storage time of 12 days. Measurements of the truffle aroma profiles were taken with SPME/GC–MS at regular intervals. To handle the ample data collected, a systematic approach utilizing multivariate data analysis techniques was taken. This approach led to a vast amount of data which we made publicly available for future exploration. Results reveal the complexity of aroma changes, with 695 compounds identified, highlighting the need for a comprehensive understanding. Principal component analyses offer initial insights into truffle composition, while individual compounds may serve as markers for age (formic acid, 1-methylpropyl ester), freshness (2-Methyl-1-propanal; 1-(methylthio)-propane), freezing (tetrahydrofuran), salt treatment (1-chloropentane), or heat exposure (4-hydroxy-3-methyl-2-butanone). This research suggests that heat treatment or salt contact significantly affects truffle aroma, while freezing and cutting have less pronounced effects in comparison. The enrichment of compounds showing significant changes during storage was investigated with a metabolomic pathway analysis. The involvement of some of the enriched compounds on the pyruvate/glycolysis and sulfur pathways was shown. KW - Mass Spectrometry KW - Metabolomics KW - Tuber melanosporum KW - Truffle Aroma PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601731 DO - https://doi.org/10.3390/jof10050354 VL - 10 IS - 5 SP - 1 EP - 22 PB - MDPI AN - OPUS4-60173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Ramírez, A. A1 - Crasselt, C. A1 - Schmidt, W. A1 - Resch-Genger, Ute T1 - Utilizing optical spectroscopy and 2',7'-difluorofluorescein to characterize the early stages of cement hydration N2 - The increasingly sophisticated nature of modern, more environmentally friendly cementitious binders requires a better understanding and control particularly of the complex, dynamic processes involved in the early phase of cement hydration. In-situ monitoring of properties of a constantly changing system over a defined period of time calls for simple, sensitive, fast, and preferably also non-invasive methods like optical spectroscopy KW - Flourescence KW - Optical probe KW - Sensor KW - Dye KW - Flourescin KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurance KW - Mechanism KW - Cement KW - Concrete KW - Building material KW - Hydration KW - Process monitoring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537176 DO - https://doi.org/10.1088/2050-6120/ac2da0 SN - 2050-6120 VL - 10 IS - 1 SP - 2 EP - 13 PB - IOP Science AN - OPUS4-53717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raysyan, Anna A1 - Moerer, R. A1 - Coesfeld, Bianca A1 - Eremin, S. A1 - Schneider, Rudolf T1 - Fluorescence polarization immunoassay for the determination of diclofenac in wastewater N2 - Pharmacologically active compounds are often detected in wastewater and surface waters. The nonsteroidal anti-inflammatory drug diclofenac (DCF) was included in the European watch list of substances that requires its environmental monitoring in the member states. DCF may harmfully influence the ecosystem already at concentrations ≤ 1 μg L−1. The fast and easy quantification of DCF is becoming a subject of global importance. Fluorescence polarization immunoassay (FPIA) is a homogeneous mix-and-read method which does not require the immobilization of reagents. FPIA can be performed in one phase within 20–30 min, making it possible to analyse wastewater without any complicated pre-treatment. In this study, new tracermolecules with different structures, linking fluorophores to derivatives of the analyte, were synthesized, three homologous tracers based on DCF, two including a C6 spacer, and one heterologous tracer derived from 5-hydroxy-DCF. The tracer molecules were thoroughly assessed for performance. Regarding sensitivity of the FPIA, the lowest limit of detection reached was 2.0 μg L−1 with a working range up to 870 μg L−1. The method was validated for real wastewater samples against LC-MS/MS as reference method with good agreement of both methods. KW - Abwasser KW - Umweltschadstoffe KW - Antikörper KW - Antibody PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518398 DO - https://doi.org/10.1007/s00216-020-03058-w SN - 1618-2642 VL - 413 IS - 4 SP - 999 EP - 107 PB - Springer CY - Heidelberg AN - OPUS4-51839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ecke, Alexander A1 - Bell, Jérémy A1 - Schneider, Rudolf T1 - A three-dimensional microfluidic flow cell and system integration for improved electrochemical substrate detection in HRP/TMB-based immunoassays N2 - Immunoassays, based on the recognition and capture of analytes by highly selective antibodies, are now used extensively in all areas of diagnostics, but the challenge is to further integrate them into online sensors. To improve the transition from laboratory immunoassays to immunosensors, we have developed a complete flow system, based on a microfluidic core flow cell to enable automated detection of one of the most commonly used immunoassay substrates, TMB, by chronoamperometry. The architecture and fluidic optimisation of the system showed that a specially designed 3D flow cell allows higher flow rates (500 μL min−1) than a standard enlarged microfluidic channel (50 μL min−1) resulting in a significantly shorter detection time of 30 seconds per sample and making the system more robust against interferences due to bubble formation in the chip. The electrochemical measurements showed an improved signal-to-noise ratio (SNR) and thus higher sensitivity for a model immunoassay for diclofenac (SNR = 59), compared to the analytical performance of a conventional laboratory microplate-based assay with optical detection (SNR = 19). In general, this system facilitates the conversion of any conventional immunoassay into an immunosensor with automatic and continuous detection. KW - Microfluidic KW - Immunoassay KW - Electrochemical KW - Mikrofluidik KW - Immunassay KW - Elektrochemie PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580159 DO - https://doi.org/10.1039/d3sd00095h VL - 2 SP - 887 EP - 892 PB - Royal Society of Chemistry CY - London, United Kingdom AN - OPUS4-58015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ecke, Alexander A1 - Westphalen, Tanja A1 - Hornung, J. A1 - Voetz, M. A1 - Schneider, Rudolf T1 - A rapid magnetic bead-based immunoassay for sensitive determination of diclofenac N2 - Increasing contamination of environmental waters with pharmaceuticals represents an emerging threat for the drinking water quality and safety. In this regard, fast and reliable analytical methods are required to allow quick countermeasures in case of contamination. Here, we report the development of a magnetic bead-based immunoassay (MBBA) for the fast and cost-effective determination of the analgesic diclofenac (DCF) in water samples, based on diclofenac-coupled magnetic beads and a robust monoclonal anti-DCF antibody. A novel synthetic strategy for preparation of the beads resulted in an assay that enabled for the determination of diclofenac with a significantly lower limit of detection (400 ng/L) than the respective enzyme-linked immunosorbent assay (ELISA). With shorter incubation times and only one manual washing step required, the assay demands for remarkably shorter time to result (< 45 min) and less equipment than ELISA. Evaluation of assay precision and accuracy with a series of spiked water samples yielded results with low to moderate intra- and inter-assay variations and in good agreement with LC–MS/MS reference analysis. The assay principle can be transferred to other, e.g., microfluidic, formats, as well as applied to other analytes and may replace ELISA as the standard immunochemical method. KW - Immunoassay KW - Magnetic beads KW - Diclofenac KW - Water analysis KW - LC-MS/MS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542346 DO - https://doi.org/10.1007/s00216-021-03778-7 SN - 1618-2650 VL - 414 SP - 1563 EP - 1573 PB - Springer CY - Heidelberg AN - OPUS4-54234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raysyan, Anna A1 - Zwigart, S. A1 - Eremin, S. A. A1 - Schneider, Rudolf T1 - BPA Endocrine Disruptor Detection at the Cutting Edge: FPIA and ELISA Immunoassays N2 - BPA is a chemical commonly used in the production of polymer-based materials that can have detrimental effects on the thyroid gland and impact human reproductive health. Various expensive methods, such as liquid and gas chromatography, have been suggested for detecting BPA. The fluorescence polarization immunoassay (FPIA) is an inexpensive and efficient homogeneous mix-and-read method that allows for high-throughput screening. FPIA offers high specificity and sensitivity and can be carried out in a single phase within a timeframe of 20–30 min. In this study, new tracer molecules were designed that linked the fluorescein fluorophore with and without a spacer to the bisphenol A moiety. To assess the influence of the C6 spacer on the sensitivity of an assay based on the respective antibody, hapten–protein conjugates were synthesized and assessed for performance in an ELISA setup, and this resulted in a highly sensitive assay with a detection limit of 0.05 µg/L. The lowest limit of detection was reached by employing the spacer derivate in the FPIA and was 1.0 µg/L, working range from 2 to 155 µg/L. The validation of the methods was conducted using actual samples compared to LC–MS/MS, which served as the reference method. The FPIA and ELISA both demonstrated satisfactory concordance. KW - Fluorescence Polarization KW - Enzyme-Linked Immunosorbent Assay KW - Endokriner Disruptor KW - Bisphenol A KW - Freisetzung PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579497 DO - https://doi.org/10.3390/bios13060664 VL - 13 IS - 6 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-57949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Filimonova, S. M. A1 - Melnikov, E. S. A1 - Kaufmann, Jan Ole A1 - Shchepochkina, O. Y. A1 - Eremin, S. A. A1 - Gravel, I. V. A1 - Raysyan, Anna T1 - Exploring the anti‐α‐amylase activity of flavonoid aglycones in fabaceae plant extracts: a combined MALDI‐TOF‐MS and LC–MS/MS approach N2 - A combination of TLC-bioautography, MALDI-TOF-MS and LC–MS/MS methods was used to identify flavonoids with anti-α-amylase activity in extracts of Lathyrus pratensis L. (herb), L. polyphillus L. (fruits), Thermopsis lanceolata R. Br. (herb) and S. japonica L. (buds). After the TLC-autobiography assay, substances with anti-amylase activity were identified by MALDI-TOF-MS followed by confirmation of the result by LC–MS/MS. Results of the study revealed that the flavonoids apigenin, luteolin, formononetin, genistein and kaempferol display marked anti-α-amylase activity. Formononetin showed the largest activity. Compared with LC–MS/MS, MALDI-TOF-MS is a quick and convenient method; results can be obtained within minutes; and only minor sample amounts are required which allows us to analyse mixtures of substances without preliminary separation. However, the inability to distinguish between isomers is the main limitation of the method. KW - Enzyme KW - MALDI-TOF-MS KW - LC-MS/MS KW - Massenspektrometrie PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577128 DO - https://doi.org/https://doi.org/10.1111/ijfs.16491 SN - 0950-5423 VL - 58 IS - 7 SP - 3902 EP - 3911 PB - Wiley & Sons CY - Hoboken, NJ, USA AN - OPUS4-57712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Carl, Peter A1 - Ramos, Inês I. A1 - Segundo, Marcela A. A1 - Schneider, Rudolf T1 - Antibody conjugation to carboxyl-modified microspheres through N-hydroxysuccinimide chemistry for automated immunoassay applications: A general procedure N2 - Immunochemical techniques are the workhorse for sample enrichment and detection of a large variety of analytes. In contrast to classical microtiter plate-based assays, microparticles are a next generation solid support, as they promote automation of immunoassays using flow-based techniques. Antibody immobilization is a crucial step, as these reagentsmare expensive, and inefficient coupling can result in low sensitivities. This paper proposes a general procedure for efficient immobilization of antibodies onto TentaGel particles, via Nhydroxysuccinimide chemistry. The goal was the preparation of solid supports with optimum immunorecognition, while increasing the sustainability of the process. The influence of buffer composition, activation and coupling time, as well as the amount of antibody on the immobilization efficiency was investigated, resorting to fluorophore-labeled proteins and fluorescence imaging. Buffer pH and activation time are the most important parameters for efficient coupling. It is demonstrated, that the hydrolysis of N-hydroxysuccinimide esters occurs at similar rates as in solution, limiting the utilizable time for coupling. Finally, applicability of the generated material for automated affinity extraction is demonstrated on the mesofluidic platform lab-on-valve. KW - Mesofluidics KW - Bead injections KW - ELISA KW - Carbamazepine KW - Biomarkers PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483919 DO - https://doi.org/10.1371/journal.pone.0218686 SN - 1932-6203 VL - 14 IS - 6 SP - e0218686, 1 EP - 18 PB - Public Library of Science CY - San Francisco, California, USA AN - OPUS4-48391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Soraya A1 - Jaut, Valerie A1 - Schneider, Rudolf T1 - Ergometrine sensing in rye flour by a magnetic bead-based immunoassay followed by flow injection analysis with amperometric detection N2 - A certain group of mycotoxins, the ergot alkaloids, has caused countless deaths throughout human history. They are found in rye and other cereals and ingesting contaminated foods can cause serious health problems. To identify contaminated food exceeding the legal limits for ergot alkaloids, a portable and cost-effective test system is of great interest to the food industry. Rapid analysis can be achieved by screening for a marker compound, for which we chose ergometrine. We developed a magnetic bead-based immunoassay for ergometrine with amperometric detection in a flow injection system using a handheld potentiostat and a smartphone. With this assay a limit of detection of 3 nM (1 μg/L) was achieved. In spiked rye flour, ergometrine levels from 25 to 250 μg/kg could be quantified. All results could be verified by optical detection. The developed assay offers great promise to meet the demand for on-site ergometrine detection in the food industry. KW - Ergot alkaloids KW - Amperometry KW - Magnetic beads KW - Immunoassay KW - Food analysis KW - Fow injection analysis KW - Mycotoxins PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565906 DO - https://doi.org/10.1016/j.talanta.2022.124172 SN - 0039-9140 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. VL - 254 IS - 124172 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-56590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raysyan, Anna A1 - Schneider, Rudolf T1 - Development of a Lateral Flow Immunoassay (LFIA) to Screen for the Release of the Endocrine Disruptor Bisphenol A from Polymer Materials and Products N2 - One of the most important chemicals used in the production of polymer plastics and coatings is bisphenol A. However, despite the large number of studies on the toxicity and hormonal activity of BPA, there are still open questions and thus considerable media attention regarding BPA toxicity. Hence, it is necessary to develop a sensitive, simple, cost-efficient, specific, portable, and rapid method for monitoring bisphenol A and for high sample throughput and on-site screening analysis. Lateral flow immunoassays have potential as rapid tests for on-site screening. To meet sensitivity criteria, they must be carefully optimized. A latex microparticle-based LFIA for detection of BPA was developed. The sensitivity of the assay was improved by non-contact printing of spot grids as the control and test lines with careful parameter optimization. Results of the test could be visually evaluated within 10 min with a visual cut-off of 10 µg/L (vLOD). Alternatively, photographs were taken, and image analysis performed to set up a calibration, which allowed for a calculated limit of detection (cLOD) of 0.14 µg/L. The method was validated for thermal paper samples against ELISA and LC–MS/MS as reference methods, showing good agreement with both methods KW - Endokrine Disruptoren KW - Polymere KW - Schnelltest KW - Endocrine disruptor KW - Bisphenol A KW - LFIA KW - Immunoassay PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540492 DO - https://doi.org/10.3390/bios11070231 VL - 11 IS - 7 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-54049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ecke, Alexander A1 - Schneider, Rudolf T1 - Pitfalls in the Immunochemical Determination of β-Lactam Antibiotics in Water N2 - Contamination of waters with pharmaceuticals is an alarming problem as it may support the evolution of antimicrobial resistance. Therefore, fast and cost-effective analytical methods for potential on-site analysis are desired in order to control the water quality and assure the safety of its use as a source of drinking water. Antibody-based methods, such as the enzyme-linked immunosorbent assay (ELISA), can be helpful in this regard but can also have certain pitfalls in store, depending on the analyte. As shown here for the class of β-lactam antibiotics, hydrolysis of the β-lactam ring is a key factor in the immunochemical analysis as it influences antibody recognition. With the antibody used in this study, the limit of detection (LOD) in the immunoassay could be significantly reduced by hydrolysis for the five tested penicillins, with the lowest LOD for carbenicillin (0.2 nmol/L) and the greatest impact on penicillins G and V (reduction by 85%). In addition to enhanced quantification, our strategy also provides access to information about the degree of hydrolysis in water samples as shown for the most abundant penicillin amoxicillin. KW - ELISA KW - Immunoassay KW - β-Lactam KW - Amoxicillin KW - Hydrolysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522832 DO - https://doi.org/10.3390/antibiotics10030298 SN - 2079-6382 VL - 10 IS - 3 SP - 298 PB - MDPI CY - Basel, CH AN - OPUS4-52283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Rashid, R. A1 - Munir, R. A1 - Zaidi, N. T1 - Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia N2 - Background: Cancer cells modify the balance between fatty acid (FA) synthesis and uptake under metabolic stress, induced by oxygen/nutrient deprivation. These modifications were shown to alter the levels of individual triglyceride (TG) or phospholipid sub-species. To attain a holistic overview of the lipidomic profiles of cancer cells under stress we performed a broad lipidomic assay, comprising 244 lipids from six major classes. This assay allowed us to perform robust analyses and assess the changes in averages of broader lipid-classes, stratified on the basis of saturation index of their fatty-acyl side chains. Methods: Global lipidomic profiling using Liquid Chromatography-Mass Spectrometry was performed to assess lipidomic profiles of biologically diverse cancer cell lines cultivated under metabolically stressed conditions. Results: Neutral lipid compositions were markedly modified under serum-deprived conditions and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast and unexpectedly, no robust changes were observed in lipidomic profiles of hypoxic (2% O2) cancer cells despite concurrent changes in proliferation rates and metabolic gene expression. Conclusions: Serum-deprivation significantly affects lipidomic profiles of cancer cells. Although, the levels of individual lipid moieties alter under hypoxia (2% O2), the robust averages of broader lipid classes remain unchanged. KW - Tumor metabolism KW - Fatty acid metabolism KW - Lipidomic profile KW - Metabolic stress PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483186 DO - https://doi.org/10.1186/s12885-019-5733-y SN - 1471-2407 VL - 19 SP - 501 PB - Springer Nature CY - Berlin AN - OPUS4-48318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ecke, Alexander A1 - Bohm, Konrad A1 - Schneider, Rudolf T1 - Magnetpartikelbasierte Immunoassays als vielseitiges Werkzeug für die Umweltanalytik N2 - Der Bedarf nach schnellen und kostengünstigen Analysemethoden in der (Trink-)Wasseranalytik steigt mit dem zunehmenden Eintrag pharmazeutisch aktiver Substanzen in die Umwelt. Insbesondere die Kontamination mit Antibiotika erscheint neben ökotoxikologischen Effekten vor allem in Hinblick auf die Evolution resistenter Keime im Wasser besorgniserregend. Wir berichten hier über die Entwicklung eines magnetpartikelbasierten Immunoassays (MBBA) zur Detektion des Breitbandantibiotikums Amoxicillin (AMX) in Wasserproben, der im Vergleich zum entsprechenden Enzyme-linked Immunosorbent Assay (ELISA) eine wesentlich kürzere Analysendauer sowie einen breiteren Messbereich mit niedrigerer Nachweisgrenze aufweist. Das angewendete Assayprinzip ist dabei leicht auf weitere Analyten übertragbar und ermöglicht die Implementierung in einen Immunosensor. KW - Magnetpartikel KW - Amoxicillin KW - Immunoassay KW - Wasser KW - Antikörper PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527366 UR - https://www.gdch.de/netzwerk-strukturen/fachstrukturen/umweltchemie-und-oekotoxikologie/publikationen/mitteilungen/archiv/2021.html SN - 1618-3258 VL - 27 IS - 2 SP - 48 EP - 51 PB - Gesellschaft Deutscher Chemiker (GDCh) CY - Frankfurt/Main AN - OPUS4-52736 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chapartegui-Arias, Ander A1 - Raysyan, A. A1 - Belenguer, A. M. A1 - Jaeger, Carsten A1 - Tchipilov, Teodor A1 - Prinz, Carsten A1 - Abad Andrade, Carlos Enrique A1 - Beyer, S. A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Tailored mobility in a zeolite imidazolate framework (ZIF) antibody conjugate N2 - Zeolitic imidazolate framework (ZIF) hybrid fluorescent nanoparticles and ZIF antibody conjugates have been synthesized, characterized, and employed in lateral-flow immunoassay (LFIA). The bright fluorescence of the conjugates and the possibility to tailor their mobility gives a huge potential for diagnostic assays. An enzyme-linked immunosorbent assay (ELISA) with horseradish peroxidase (HRP) as label, proved the integrity, stability, and dispersibility of the antibody conjugates, LC-MS/MS provided evidence that a covalent link was established between these metal-organic frameworks and lysine residues in IgG antibodies. KW - ZIF KW - ELISA PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532096 DO - https://doi.org/10.1002/chem.202100803 SN - 0947-6539 SN - 1521-3765 VL - 27 IS - 36 SP - 9414 EP - 9421 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abbas, Ioana M. A1 - Vranic, M. A1 - Hoffmann, Holger A1 - El-Khatib, Ahmed H. A1 - Montes-Bayón, M. A1 - Möller, H. M. A1 - Weller, Michael G. T1 - Investigations of the copper peptide hepcidin-25 by LC-MS/MS and NMR (+) N2 - Hepcidin-25 was identified as the main iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II)-binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandem mass spectrometry (MS/MS), high-resolution mass spectrometry HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or reference material comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others. KW - Metalloprotein KW - Peptide KW - Chromatography KW - High pH KW - Mobile phase KW - Metrology KW - Purity KW - Reference material KW - ATCUN KW - Copper KW - Nickel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457796 UR - http://www.mdpi.com/1422-0067/19/8/2271 DO - https://doi.org/10.3390/ijms19082271 SN - 1422-0067 VL - 19 IS - 8 SP - 2271, 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-45779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Weller, Michael G. T1 - Antibody Screening by Microarray Technology - Direct Identification of Selective High-Affinity Clones N2 - The primary screening of hybridoma cells is a time-critical and laborious step during the development of monoclonal antibodies. Often, critical errors occur in this phase, which supports the notion that the generation of monoclonal antibodies with hybridoma technology is difficult to control and hence, a risky venture. We think that it is crucial to improve the screening process to eliminate most of the critical deficits of the conventional approach. With this new microarray-based procedure, several advances could be achieved: Selectivity for excellent binders, high-throughput, reproducible signals, avoidance of misleading avidity (multivalency) effects, and performance of simultaneous competition experiments. The latter can also be used to select clones of desired cross-reactivity properties. In this paper, a model system with two excellent clones against carbamazepine, two weak clones, and blank supernatant containing fetal bovine serum was designed to examine the effectiveness of the new system. The excellent clones could be detected largely independent of the immunoglobulin G (IgG) concentration, which is usually unknown during the clone screening since the determination and subsequent adjustment of the antibody concentration are not feasible in most cases. Furthermore, in this approach, the enrichment, isolation, and purification of IgG for characterization is not necessary. Raw cell culture supernatant can be used directly, even when fetal calf serum (FCS) or other complex media is used. In addition, an improved method for the oriented antibody-immobilization on epoxy-silanized slides is presented. Based on the results of this model system with simulated hybridoma supernatants, we conclude that this approach should be preferable to most other protocols leading to many false positives, causing expensive and lengthy elimination steps to weed out the poor clones. KW - ELISA KW - Immunoassay KW - Microarray KW - Lab-on-a-chip KW - Miniaturization KW - Aautomatisation KW - HTS KW - High-throughput KW - Screening KW - Fluorescence KW - Label KW - Hybridoma KW - Inhibition PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503361 DO - https://doi.org/10.3390/antib9010001 SN - 2073-4468 VL - 9 IS - 1 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-50336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - The mystery of homochirality on earth N2 - Homochirality is an obvious feature of life on Earth. On the other hand, extraterrestrial samples contain largely racemic compounds. The same is true for any common organic synthesis. Therefore, it has been a perplexing puzzle for decades how these racemates could have formed enantiomerically enriched fractions as a basis for the origin of homochiral life forms. Numerous hypotheses have been put forward as to how preferentially homochiral molecules could have formed and accumulated on Earth. In this article, it is shown that homochirality of the abiotic organic pool at the time of formation of the first self-replicating molecules is not necessary and not even probable. It is proposed to abandon the notion of a molecular ensemble and to focus on the level of individual molecules. Although the formation of the first self-replicating, most likely homochiral molecule, is a seemingly improbable event, on a closer look, it is almost inevitable that some homochiral molecules have formed simply on a statistical basis. In this case, the non-selective leap to homochirality would be one of the first steps in chemical evolution directly out of a racemic “ocean”. Moreover, most studies focus on the chirality of the primordial monomers with respect to an asymmetric carbon atom. However, any polymer with a minimal size that allows folding to a secondary structure would spontaneously lead to asymmetric higher structures (conformations). Most of the functions of these polymers would be influenced by this inherently asymmetric folding. Furthermore, a concept of physical compartmentalization based on rock nanopores in analogy to nanocavities of digital immunoassays is introduced to suggest that complex cell walls or membranes were also not required for the first steps of chemical evolution. To summarize, simple and universal mechanisms may have led to homochiral self-replicating systems in the context of chemical evolution. A homochiral monomer pool is deemed unnecessary and probably never existed on primordial Earth. N2 - Homochiralität ist ein offensichtliches Merkmal des Lebens auf der Erde. Andererseits enthalten extraterrestrische Proben überwiegend racemische Verbindungen. Dasselbe gilt für jede gängige organische Synthese. Daher war es jahrzehntelang ein Rätsel, wie diese Racemate enantiomeren-angereicherte Fraktionen als Grundlage für den Ursprung homochiraler Lebensformen bilden konnten. Zahlreiche Hypothesen wurden aufgestellt, wie sich bevorzugt homochirale Moleküle auf der Erde gebildet und angereichert haben könnten. In diesem Artikel wird gezeigt, dass Homochiralität des abiotischen organischen Pools zum Zeitpunkt der Bildung der ersten selbstreplizierenden Moleküle nicht notwendig und nicht einmal wahrscheinlich ist. Es wird vorgeschlagen, die Vorstellung eines molekularen Ensembles aufzugeben und sich auf die Ebene der einzelnen Moleküle zu konzentrieren. Obwohl die Bildung des ersten selbstreplizierenden, höchstwahrscheinlich homochiralen Moleküls ein scheinbar unwahrscheinliches Ereignis ist, ist es bei näherer Betrachtung fast unvermeidlich, dass sich einige homochirale Moleküle einfach auf statistischer Basis gebildet haben. In diesem Fall wäre der nichtselektive Sprung zur Homochiralität einer der ersten Schritte der chemischen Evolution direkt aus einem racemischen "Ozean". Darüber hinaus konzentrieren sich die meisten Studien auf die Chiralität der ursprünglichen Monomere in Bezug auf ein asymmetrisches Kohlenstoffatom. Jedes Polymer mit einer Mindestgröße, die eine Faltung zu einer Sekundärstruktur erlaubt, würde jedoch spontan zu asymmetrischen höheren Strukturen (Konformationen) führen. Die meisten Funktionen dieser Polymere würden durch diese inhärent asymmetrische Faltung beeinflusst. Darüber hinaus wird ein Konzept der physikalischen Kompartimentierung auf der Basis von Gesteinsnanoporen in Analogie zu den Nanokavitäten digitaler Immunoassays vorgestellt, das darauf hindeutet, dass auch für die ersten Schritte der chemischen Evolution keine komplexen Zellwände oder Membranen notwendig waren. Zusammenfassend lässt sich sagen, dass einfache und universelle Mechanismen zu homochiralen selbstreplizierenden Systemen im Rahmen der chemischen Evolution geführt haben könnten. Ein homochiraler Monomerpool wird als unnötig angesehen, welcher auf der Urerde wahrscheinlich nie existiert hat. KW - Chemical evolution KW - Enantiomeric excess ee KW - Chirality KW - Racemate KW - Folding chirality KW - Self-assembly KW - self-replication KW - Single molecule KW - Prebiotic chemistry KW - Protein folding KW - Peptide folding KW - Proteinoid KW - Conformation KW - Segregation KW - Compartmentalization KW - Digital immunoassay KW - Porous rock KW - Miller and Urey KW - Primordial soup KW - Murchison meteorite KW - Micrometeorites KW - Tholins PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598349 DO - https://doi.org/10.3390/life14030341 SN - 2075-1729 VL - 14 IS - 3 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-59834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation Crosslinking - An Efficient Method for the Oriented Immobilization of Antibodies N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein A KW - Protein G KW - Immunoprecipitation KW - Immunocapture KW - Regeneration KW - Biosensor KW - Immunosensor KW - Affinity chromatography KW - Immunoaffinity extraction KW - Oriented immobilization KW - Immunoassay KW - Bioconjugation PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479786 UR - https://www.mdpi.com/2409-9279/2/2/35 DO - https://doi.org/10.3390/mps2020035 SN - 2409-9279 VL - 2 IS - 2 SP - 1 EP - 14 PB - MDPI CY - Basel, Switzerland AN - OPUS4-47978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation crosslinking – An efficient method for the oriented immobilization of antibodies N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein G KW - Protein A KW - Immunoprecipitation KW - Immunocapture KW - Stabilization KW - Biosensor KW - Biochip KW - Microarray KW - ELISA KW - Immunoassay KW - Immunosensor KW - Crosslinker KW - Nanoparticles KW - Click chemistry KW - Herceptin KW - Trastuzumab PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478797 DO - https://doi.org/10.20944/preprints201904.0205.v1 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reimann, C. A1 - Brangsch, J. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. C. A1 - Thöne-Reineke, C. A1 - Robinson, S. P. A1 - Hamm, B. A1 - Botnar, R. M. A1 - Makowski, M. R. T1 - Dual-probe molecular MRI for the in vivo characterization of atherosclerosis in a mouse model: Simultaneous assessment of plaque inflammation and extracellular matrix remodeling N2 - Molecular MRI is a promising in-vivo modality to detect and quantify morphological and molecular vessel-wall changes in atherosclerosis. The combination of different molecular biomarkers may improve the risk stratification of patients. This study aimed to investigate the feasibility of simultaneous visualization and quantification of plaque-burden and inflammatory activity by dual-probe molecular MRI in a mouse-model of progressive atherosclerosis and in response-to-therapy. Homozygous apolipoprotein E knockout mice (ApoE−/−) were fed a high-fat-diet (HFD) for up to four-months prior to MRI of the brachiocephalic-artery. To assess response-to-therapy, a statin was administered for the same duration. MR imaging was performed before and after administration of an elastin-specific gadolinium-based and a macrophage-specific iron-oxide-based probe. Following in-vivo MRI, samples were analyzed using histology, immunohistochemistry, inductively-coupled-mass-spectrometry and laser-inductively-coupled-mass-spectrometry. In atherosclerotic-plaques, intraplaque expression of elastic-fibers and inflammatory activity were not directly linked. While the elastin-specific probe demonstrated the highest accumulation in advanced atherosclerotic-plaques after four-months of HFD, the iron-oxide-based probe showed highest accumulation in early atherosclerotic-plaques after two months of HFD. In-vivo measurements for the elastin and iron-oxide-probe were in good agreement with ex-vivo histopathology (Elastica-van-Giesson stain: y = 298.2 + 5.8, R2 = 0.83, p < 0.05; Perls‘ Prussian-blue-stain: y = 834.1 + 0.67, R2 = 0.88, p < 0.05). Contrast-to-noise-ratio (CNR) measurements of the elastin probe were in good agreement with ICP-MS (y = 0.11x-11.3, R² = 0.73, p < 0.05). Late stage atherosclerotic-plaques displayed the strongest increase in both CNR and gadolinium concentration (p < 0.05). The gadolinium probe did not affect the visualization of the iron-oxide-probe and vice versa. This study demonstrates the feasibility of simultaneous assessment of plaque-burden. KW - Gadolinium KW - Elastin KW - Probe KW - Iron oxide KW - Ferumoxytol PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497066 DO - https://doi.org/10.1038/s41598-019-50100-8 VL - 9 SP - 13827 PB - Springer Nature AN - OPUS4-49706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernevic, Bogdan A1 - El-Khatib, Ahmed H. A1 - Jakubowski, Norbert A1 - Weller, Michael G. T1 - Online immunocapture ICP‑MS for the determination of the metalloprotein ceruloplasmin in human serum N2 - The human copper-protein ceruloplasmin (Cp) is the major copper-containing protein in the human body. The accurate determination of Cp is mandatory for the reliable diagnosis of several diseases. However, the analysis of Cp has proven to be difficult. The aim of our work was a proof of concept for the determination of a metalloprotein-based on online immunocapture ICP-MS. The immuno-affinity step is responsible for the enrichment and isolation of the analyte from serum, whereas the compound-independent quantitation with ICP-MS delivers the sensitivity, precision, and large dynamic range. Off-line ELISA (enzyme-linked immunosorbent assay) was used in parallel to confirm the elution profile of the analyte with a structure-selective method. The total protein elution was observed with the 32S mass trace. The ICP-MS signals were normalized on a 59Co signal. The human copper-protein Cp could be selectively determined. This was shown with pure Cp and with a sample of human serum. The good correlation with off-line ELISA shows that Cp could be captured and eluted selectively from the anti-Cp affinity column and subsequently determined by the copper signal of ICP-MS. KW - ELISA KW - Affinity chromatography KW - Affinity extraction KW - IgY KW - Chicken antibodies KW - Immunoaffinity extraction KW - Copper KW - Diagnostics PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446157 UR - https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-018-3324-7 UR - https://static-content.springer.com/esm/art%3A10.1186%2Fs13104-018-3324-7/MediaObjects/13104_2018_3324_MOESM1_ESM.pdf UR - https://static-content.springer.com/esm/art%3A10.1186%2Fs13104-018-3324-7/MediaObjects/13104_2018_3324_MOESM2_ESM.pdf DO - https://doi.org/10.1186/s13104-018-3324-7 SN - 1756-0500 VL - 11 IS - 1 SP - Article 213, 1 EP - 5 PB - Springer Nature CY - Heidelberg AN - OPUS4-44615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Marco A1 - Weller, Michael G. T1 - Affinitätschromatografie - Neues Trägermaterial aus Borosilikatglas N2 - Therapeutische Antikörper sind innerhalb weniger Jahre zur wichtigsten pharmazeutischen Produktklasse aufgestiegen. Für 2023 werden weltweite Umsätze von über 200 Milliarden USD erwartet. Auch diagnostische Antikörper sind mittlerweile unverzichtbare Produkte, auf deren Basis zahllose Immunoassays und andere Schnelltests entwickelt wurden. Neben der bereits sehr aufwendigen Herstellung von Antikörpern ist deren Aufreinigung aus komplexen Zellkulturmedien oder Blutseren und -plasmen zu einem Engpass in der Produktion und Nutzung dieser komplexen Proteine geworden. Schnelle und einfache Reinigungsmethoden für Antikörper sind daher sehr gefragt. KW - Affinitätschromatographie KW - Affinitätsextraktion KW - Antikörper KW - Glasmonolith KW - Additive Fertigung KW - IgG KW - Immunglobulin KW - HPLC KW - FPLC KW - biokompatibel KW - Borosilikatglas KW - gesintert KW - Titan-Halterung KW - Druckstabilität PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477490 UR - https://www.chemiextra.com/ IS - 4 SP - 16 EP - 17 PB - Sigwerb CY - Zug AN - OPUS4-47749 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Tscheuschner, Georg A1 - Herrmann, Stefan A1 - Weller, Michael G. T1 - Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor N2 - The illegal use of explosives by terrorists and other criminals is an increasing issue in public spaces, such as airports, railway stations, highways, sports venues, theaters, and other large buildings. Security in these environments can be achieved by different means, including the installation of scanners and other analytical devices to detect ultra-small traces of explosives in a very short time-frame to be able to take action as early as possible to prevent the detonation of such devices. Unfortunately, an ideal explosive detection system still does not exist, which means that a compromise is needed in practice. Most detection devices lack the extreme analytical sensitivity, which is nevertheless necessary due to the low vapor pressure of nearly all explosives. In addition, the rate of false positives needs to be virtually zero, which is also very difficult to achieve. Here we present an immunosensor system based on kinetic competition, which is known to be very fast and may even overcome affinity limitation, which impairs the performance of many traditional competitive assays. This immunosensor consists of a monolithic glass column with a vast excess of immobilized hapten, which traps the fluorescently labeled antibody as long as no explosive is present. In the case of the explosive 2,4,6-trinitrotoluene (TNT), some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and chip-based mixing-devices and flow-cells. The system achieved limits of detection of 1 pM (1 ppt) of the fluorescent label and around 100 pM (20 ppt) of TNT. The total assay time is less than 8 min. A cross-reactivity test with 5000 pM solutions showed no signal by pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). This immunosensor belongs to the most sensitive and fastest detectors for TNT with no significant cross-reactivity by non-related compounds. The consumption of the labeled antibody is surprisingly low: 1 mg of the reagent would be sufficient for more than one year of continuous biosensor operation. KW - Airport KW - Aviation KW - Bombs KW - Terrorism KW - Biosensing KW - Continuous Sensor KW - High-Speed KW - Ultrasensitive PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511245 DO - https://doi.org/10.3390/bios10080089 VL - 10 IS - 8 SP - 89 PB - MDPI CY - Basel AN - OPUS4-51124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Schwaar, Timm A1 - Weller, Michael G. T1 - Fast Confirmation of Antibody Identity by MALDI-TOF MS Fingerprints N2 - Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Nearly all commercial antibody suppliers also may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that, in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies, as well as to assign a specific reagent to a datasheet of a commercial supplier, public database record, or antibody ID. KW - Reproducibility KW - Quality Control KW - Traceability KW - Diagnostics KW - Hybridoma KW - Monoclonal Antibody KW - Recombinant Antibody PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506611 DO - https://doi.org/10.3390/antib9020008 SN - 2310-287X VL - 9 IS - 2 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. A1 - Thöne-Reineke, C. A1 - Robinson, S. A1 - Wilke, Marco A1 - Weller, Michael G. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Molecular MR-Imaging for Noninvasive Quantification of the Anti-Inflammatory Effect of Targeting Interleukin-1β in a Mouse Model of Aortic Aneurysm N2 - Background: Molecular-MRI is a promising imaging modality for the assessment of abdominal aortic aneurysms (AAAs). Interleukin-1β (IL-1β) represents a new therapeutic tool for AAA-treatment, since pro-inflammatory cytokines are key-mediators of inflammation. This study investigates the potential of molecular-MRI to evaluate therapeutic effects of an anti-IL-1β-therapy on AAA-formation in a mouse-model. Methods: Osmotic-minipumps were implanted in apolipoprotein-deficient-mice (N = 27). One group (Ang-II+01BSUR group, n = 9) was infused with angiotensin-II (Ang-II) for 4 weeks and received an anti-murine IL-1β-antibody (01BSUR) 3 times. One group (Ang-II-group, n = 9) was infused with Ang-II for 4 weeks but received no treatment. Control-group (n = 9) was infused with saline and received no treatment. MR-imaging was performed using an elastin-specific gadolinium-based-probe (0.2 mmol/kg). Results: Mice of the Ang-II+01BSUR-group showed a lower aortic-diameter compared to mice of the Ang-II-group and control mice (p < 0.05). Using the elastin-specific-probe, a significant decrease in elastin-destruction was observed in mice of the Ang-II+01BSUR-group. In vivo MR-measurements correlated well with histopathology (y = 0.34x-13.81, R2 = 0.84, p < 0.05), ICP-MS (y = 0.02x+2.39; R2 = 0.81, p < 0.05) and LA-ICP-MS. Immunofluorescence and western-blotting confirmed a reduced IL-1β-expression. Conclusions: Molecular-MRI enables the early visualization and quantification of the anti-inflammatory-effects of an IL-1β-inhibitor in a mouse-model of AAAs. Responders and non-responders could be identified early after the initiation of the therapy using molecular-MRI. KW - Cardiovascular KW - Molecular-MRI KW - Magnetic resonance imaging KW - Gadolinium-based contrast agent KW - Elastin-specific contrast agent ESMA KW - Gadovist KW - Gadofosveset KW - MR Angiography KW - Inductively Coupled Mass Spectroscopy KW - Element Specific Bioimaging Using Laser Ablation KW - Visualization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517150 DO - https://doi.org/10.1177/1536012120961875 VL - 19 SP - 61875 PB - SAGE AN - OPUS4-51715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Paul, Martin A1 - Weller, Michael G. T1 - Antibody Screening by Microarray Technology – Direct Identification of Selective High-Affinity Clones N2 - The primary screening of hybridoma cells is a time-critical and laborious step during the development of monoclonal antibodies. Often critical errors occur in this phase, which supports the notion that the generation of monoclonal antibodies with hybridoma technology is difficult to control and hence a risky venture. We think that it is crucial to improve the screening process to eliminate most of the immanent deficits of the conventional approach. With this new microarray-based procedure, several advances could be achieved: Selectivity for excellent binders, high throughput, reproducible signals, avoidance of misleading avidity (multivalency) effects, and simultaneous performance of competition experiments. The latter can directly be used to select clones of desired cross-reactivity properties. In this paper, a model system with two excellent clones against carbamazepine, two weak clones and blank supernatant has been designed to examine the effectiveness of the new system. The excellent clones could be detected largely independent of the IgG concentration, which is unknown during the clone screening since the determination and subsequent adjustment of the antibody concentration is not possible in most cases. Furthermore, in this approach, the enrichment, isolation, and purification of IgG for characterization is not necessary. Raw cell culture supernatant can be used directly, even when fetal calf serum (FCS) or other complex media had been used. In addition, an improved method for the oriented antibody-immobilization on epoxy-silanized slides is presented. Based on the results of this model system, we conclude that this approach should be preferable to most other protocols leading to many of false positives, causing expensive and lengthy confirmation steps to weed out the poor clones. KW - Hybridoma KW - Monoclonal Antibodies KW - Clones KW - Competitive Immunoassay KW - Hapten Immunoassay KW - False Positives PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506621 DO - https://doi.org/10.20944/preprints201911.0023.v1 SN - 2310-287X SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tscheuschner, Georg A1 - Schwaar, Timm A1 - Weller, Michael G. T1 - Fast Confirmation of Antibody Identity by MALDI-TOF-MS Fingerprints N2 - Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Also, nearly all commercial antibody suppliers may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De-novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF-MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies and to assign a specific reagent to a datasheet of a commercial supplier, a public database record or an antibody ID. KW - Reproducibility KW - Quality Control KW - Traceability KW - Diagnostics KW - ELISA KW - Immunoassay PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506590 DO - https://doi.org/10.20944/preprints202002.0207.v1 SN - 2310-287X SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, P. A1 - Bondarenko, S. A1 - Mai, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, A. T1 - CMOS-Compatible Silicon Photonic Sensor for Refractive Index Sensing Using Local Back-Side Release N2 - Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. The sensor is based on a micro-ring resonator and is fabricated on wafer-level using a CMOS technology. We revealed a ring resonator sensitivity for homogeneous sensing of 106 nm/RIU. KW - Photonic biosensor KW - Lab-on-a-chip KW - Ring resonator KW - Resonance wavelength shift KW - PIC technology KW - Back-side integration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517139 DO - https://doi.org/10.1109/LPT.2020.3019114 VL - 32 IS - 19 SP - 1241 EP - 1244 PB - IEEE AN - OPUS4-51713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Simultaneous molecular MRI of extracellular matrix collagen and inflammatory activity to predict abdominal aortic aneurysm rupture N2 - Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease with an up to 80% mortality in case of rupture. Current biomarkers fail to account for size-independent risk of rupture. By combining the information of different molecular probes, multi-target molecular MRI holds the potential to enable individual characterization of AAA. In this experimental study, we aimed to examine the feasibility of simultaneous imaging of extracellular collagen and inflammation for size-independent prediction of risk of rupture in murine AAA. The study design consisted of: (1) A outcome-based longitudinal study with imaging performed once after one week with follow-up and death as the end-point for assessment of rupture risk. (2) A week-by-week study for the characterization of AAA development with imaging after 1, 2, 3 and 4 weeks. For both studies, the animals were administered a type 1 collagen-targeted gadolinium-based probe (surrogate marker for extracellular matrix (ECM) remodeling) and an iron oxide-based probe (surrogate marker for inflammatory activity), in one imaging session. In vivo measurements of collagen and iron oxide probes showed a significant correlation with ex vivo histology (p < 0.001) and also corresponded well to inductively-coupled plasma-mass spectrometry and laser-ablation inductively-coupled plasma mass spectrometry. Combined evaluation of collagen-related ECM remodeling and inflammatory activity was the most accurate predictor for AAA rupture (sensitivity 80%, specificity 100%, area under the curve 0.85), being superior to information from the individual probes alone. Our study supports the feasibility of a simultaneous assessment of collagen-related extracellular matrix remodeling and inflammatory activity in a murine model of AAA. KW - Atherosclerosis KW - Specific probe KW - Magnetic resonance imaging KW - Gadolinium KW - Iron oxide KW - Ferumoxytol KW - Inductively‑coupled mass spectrometry KW - ICP-MS KW - LA-ICP-MS KW - Laser ablation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525864 UR - https://www.nature.com/articles/s41598-020-71817-x DO - https://doi.org/10.1038/s41598-020-71817-x VL - 10 IS - 1 SP - 15206 PB - Springer Nature Limited CY - London, New York, Berlin, Shanghai and Tokyo AN - OPUS4-52586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Nowak, K. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Noninvasive imaging of vascular permeability to predict the risk of rupture in abdominal aortic aneurysms using an albumin binding probe N2 - Abdominal aortic aneurysm (AAA) remains a fatal disease. Its development encompasses a complex interplay between hemodynamic stimuli on and changes in the arterial wall. Currently available biomarkers fail to predict the risk of AAA rupture independent of aneurysm size. Therefore, novel biomarkers for AAA characterization are needed. In this study, we used a mouse model of AAA to investigate the potential of magnetic resonance imaging (MRI) with an albumin-binding probe to assess changes in vascular permeability at different stages of aneurysm growth. Two imaging studies were performed: a longitudinal study with follow-up and death as endpoint to predict rupture risk and a week-by-week study to characterize AAA development. AAAs, which eventually ruptured, demonstrated a significantly higher in vivo MR signal enhancement from the albumin-binding probe (p = 0.047) and a smaller non-enhancing thrombus area compared to intact AAAs (p = 0.001). The ratio of albumin-binding-probe enhancement of the aneurysm wall to size of non-enhancing-thrombus-area predicted AAA rupture with high sensitivity/specificity (100%/86%). More advanced aneurysms with higher vascular permeability demonstrated an increased uptake of the albumin-binding-probe. These results indicate that MRI with an albumin-binding probe may enable noninvasive assessment of vascular permeability in murine AAAs and prediction of rupture risk. KW - Magnetic resonance imaging KW - Imaging KW - Tomography KW - Gadolinium KW - Contrast agent KW - Atherosclerosis KW - ICP-MS KW - Gadofosveset KW - Angiography KW - LA-ICP-MS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525541 DO - https://doi.org/10.1038/s41598-020-59842-2 VL - 10 SP - Article number: 3231 PB - Springer Nature Limited CY - London, New York, Berlin, Shanghai and Tokyo AN - OPUS4-52554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Kaiser, Melanie N. A1 - Lisec, Jan A1 - Beslic, D. A1 - Muth, Thilo A1 - Krüger, M. A1 - Mages, H. W. A1 - Dorner, B. G. A1 - Knospe, J. A1 - Schenk, J. A. A1 - Sellrie, F. A1 - Weller, Michael G. T1 - MALDI-TOF-MS-Based Identification of Monoclonal Murine Anti-SARS-CoV-2 Antibodies within One Hour N2 - During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 degrees C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context. KW - Reproducibility KW - Quality control KW - Traceability KW - Peptides KW - Peptide mass fingerprinting KW - Monoclonal antibody KW - Recombinant antibody KW - Identity KW - Antibody identification KW - Sequencing KW - Light chain KW - Mass spectrometry KW - Software KW - Open science KW - Library KW - COVID-19 KW - Corona virus KW - Sequence coverage KW - NIST-mAb 8671 KW - Reference material KW - RBD KW - Spike protein KW - Nucleocapsid KW - Cleavage KW - Tryptic digest KW - MALDI KW - DHAP KW - 2,5-dihydroxyacetophenone KW - Github KW - Zenodo KW - ABID PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547347 DO - https://doi.org/10.3390/antib11020027 VL - 11 IS - 2 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-54734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scherz, Franziska A1 - Krop, U. A1 - Monks, K. A1 - Weller, Michael G. T1 - Antikörperreinigung mit Glasmonolithen - Vereinfachung von Affinitätstrennungen mit HPLC-Systemen N2 - Druckstabile Glasmonolithen ermöglichen eine schnelle und unkomplizierte Reinigung von Antikörpern, z.B. aus Serum oder Zellkulturüberständen. Die sehr gute Regenerierbarkeit lässt eine lange Lebensdauer der Säulen erwarten, was die Kosten pro Probe niedrig hält. KW - Borosilicatglas KW - Immunglobuline KW - IgG KW - Serum KW - Plasma KW - Protein A KW - Protein G KW - Affinitätschromatographie KW - Agarose KW - Carrier-Material KW - Stationäre Phase KW - Immobilisierung KW - Highspeed KW - Trennung KW - Reinigung KW - Downstream Processing PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-445330 UR - http://www.git-labor.de/forschung/materialien/antikoerperreinigung-mit-glasmonolithen SN - 0016-3538 VL - 62 IS - 3 SP - 24 EP - 25 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-44533 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Tannenberg, Robert A1 - Tscheuschner, Georg A1 - Ponader, Marco A1 - Weller, Michael G. T1 - Cocaine Detection by a Laser-Induced Immunofluorometric Biosensor N2 - The trafficking of illegal drugs by criminal networks at borders, harbors, or airports is an increasing issue for public health as these routes ensure the main supply of illegal drugs. The prevention of drug smuggling, including the installation of scanners and other analytical devices to detect small traces of drugs within a reasonable time frame, remains a challenge. The presented immunosensor is based on a monolithic affinity column with a large excess of immobilized hapten, which traps fluorescently labeled antibodies as long as the analyte cocaine is absent. In the presence of the drug, some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and microfluidic chip-based mixing devices and flow cells. The biosensor achieved limits of detection of 7 ppt (23 pM) of cocaine with a response time of 90 s and a total assay time below 3 min. With surface wipe sampling, the biosensor was able to detect 300 pg of cocaine. This immunosensor belongs to the most sensitive and fastest detectors for cocaine and offers near-continuous analyte measurement. KW - Online detection KW - Security KW - Monoclonal antibody KW - Microfluidic mixing KW - Microfluidics KW - Lab-on-a-chip KW - Monolithic column KW - Affinity chromatography KW - Laser-induced fluorescence KW - LIF KW - ELISA KW - Wipe test KW - Low-cost PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534487 DO - https://doi.org/10.3390/bios11090313 VL - 11 IS - 9 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-53448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Backes, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Ziegler, K. A1 - Krevert, C. S. A1 - Tscheuschner, Georg A1 - Lucas, K. A1 - Weller, Michael G. A1 - Berkemeier, T. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. T1 - Oligomerization and Nitration of the Grass Pollen Allergen Phl p 5 by Ozone, Nitrogen Dioxide, and Peroxynitrite: Reaction Products, Kinetics, and Health Effects N2 - The allergenic and inflammatory potential of proteins can be enhanced by chemical modification upon exposure to atmospheric or physiological oxidants. The molecular mechanisms and kinetics of such modifications, however, have not yet been fully resolved. We investigated the oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone (O3), nitrogen dioxide (NO2), and peroxynitrite (ONOO–). Within several hours of exposure to atmospherically relevant concentration levels of O3 and NO2, up to 50% of Phl p 5 were converted into protein oligomers, likely by formation of dityrosine cross-links. Assuming that tyrosine residues are the preferential site of nitration, up to 10% of the 12 tyrosine residues per protein monomer were nitrated. For the reaction with peroxynitrite, the largest oligomer mass fractions (up to 50%) were found for equimolar concentrations of peroxynitrite over tyrosine residues. With excess peroxynitrite, the nitration degrees increased up to 40% whereas the oligomer mass fractions decreased to 20%. Our results suggest that protein oligomerization and nitration are competing processes, which is consistent with a two-step mechanism involving a reactive oxygen intermediate (ROI), as observed for other proteins. The modified proteins can promote pro-inflammatory cellular signaling that may contribute to chronic inflammation and allergies in response to air pollution. KW - Protein KW - Nitrotyrosine KW - Dityrosine KW - Allergy KW - Hay fever KW - Diesel exhaust KW - Combustion KW - Exhaust PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529729 DO - https://doi.org/10.3390/ijms22147616 VL - 22 IS - 14 PB - MDPI CY - Basel AN - OPUS4-52972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Paul, Martin A1 - Tannenberg, Robert A1 - Tscheuschner, Georg A1 - Wilke, Marco A1 - Weller, Michael G. T1 - Cocaine Detection by a Laser-induced Immunofluorometric Biosensor N2 - The trafficking of illegal drugs by criminal networks at borders, harbors, or airports is an increasing issue in public health as these routes ensure the main supply of illegal drugs. The prevention of drug smuggling, including the installation of scanners and other analytical devices to detect ultra-small traces of drugs within a reasonable time frame, remains a challenge. The presented immunosensor is based on a monolithic affinity column with a large excess of immobilized hapten, which traps fluorescently labeled antibodies as long as the analyte cocaine is absent. In the presence of the drug, some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and microfluidic chip-based mixing devices and flow cells. The biosensor achieved limits of detection of 23 pM (7 ppt) of cocaine with a response time of 90 seconds and a total assay time below 3 minutes. With surface wipe sampling, the biosensor was able to detect 300 pg of cocaine. This immunosensor belongs to the most sensitive and fastest detectors for cocaine and offers near-continuous analyte measurement. KW - Drug search KW - Customs KW - Confiscation KW - Border surveillance KW - Narcotics KW - International drug trade KW - Drug trafficking KW - Illicit drug KW - Immunosensor KW - Antibodies KW - Detection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529951 DO - https://doi.org/10.20944/preprints202107.0521.v1 SP - 1 PB - MDPI CY - Basel AN - OPUS4-52995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Bellinghausen, I. A1 - Leifke, A. L. A1 - Backes, A. T. A1 - Bothen, N. A1 - Ziegler, K. A1 - Weller, Michael G. A1 - Saloga, J. A1 - Schuppan, D. A1 - Lucas, K. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. T1 - Chemical modification by peroxynitrite enhances TLR4 activation of the grass pollen allergen Phl p 5 N2 - The chemical modification of aeroallergens by reactive oxygen and nitrogen species (ROS/RNS) may contribute to the growing prevalence of respiratory allergies in industrialized countries. Post-translational modifications can alter the immunological properties of proteins, but the underlying mechanisms and effects are not well understood. In this study, we investigate the Toll-like receptor 4 (TLR4) activation of the major birch and grass pollen allergens Bet v 1 and Phl p 5, and how the physiological oxidant peroxynitrite (ONOO–) changes the TLR4 activation through protein nitration and the formation of protein dimers and higher oligomers. Of the two allergens, Bet v 1 exhibited no TLR4 activation, but we found TLR4 activation of Phl p 5, which increased after modification with ONOO– and may play a role in the sensitization against this grass pollen allergen. We attribute the TLR4 activation mainly to the two-domain structure of Phl p 5 which may promote TLR4 dimerization and activation. The enhanced TLR4 signaling of the modified allergen indicates that the ONOO–-induced modifications affect relevant protein-receptor interactions. This may lead to increased sensitization to the grass pollen allergen and thus contribute to the increasing prevalence of allergies in the Anthropocene, the present era of globally pervasive anthropogenic influence on the environment. KW - Bet v 1 KW - Birch pollen allergen KW - Phl p 5 KW - Grass pollen KW - Phleum pratense KW - Betula pendula KW - Nitration KW - Nitrotyrosine KW - Protein nitration KW - Toll-like receptor 4 KW - Allergy KW - Enhancement KW - Oligomerization KW - Dimerization KW - TLR4 activation KW - Air pollution KW - Nitrogen oxides KW - Inflammation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570298 DO - https://doi.org/10.3389/falgy.2023.1066392 VL - 4 SP - 1 EP - 7 PB - Frontiers Media SA CY - Lausanne, Switzerland AN - OPUS4-57029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, S. A1 - Borde, T. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kader, A. A1 - Schulze, D. A1 - Buchholz, R. A1 - Kaufmann, Jan Ole A1 - Karst, U. A1 - Schellenberger, E. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Assessment of the hepatic tumor extracellular matrix using elastin‑specific molecular magnetic resonance imaging in an experimental rabbit cancer model N2 - To investigate the imaging performance of an elastin-specific molecular magnetic resonance imaging (MRI) probe with respect to the extracellular matrix (ECM) in an experimental hepatic cancer model. Twelve rabbits with hepatic VX2 tumors were examined using 3 T MRI 14, 21, and 28 days after tumor implantation for two subsequent days (gadobutrol, day 1; elastin-specific probe, day 2). The relative enhancement (RE) of segmented tumor regions (central and margin) and the peritumoral matrix was calculated using pre-contrast and delayed-phase T1w sequences. MRI measurements were correlated to histopathology and element-specific and spatially resolved mass spectrometry (MS). Mixed-model analysis was performed to assess the performance of the elastin-specific probe. In comparison to gadobutrol, the elastin probe showed significantly stronger RE, which was pronounced in the tumor margin (day 14–28: P ≤ 0.007). In addition, the elastin probe was superior in discriminating between tumor regions (χ2(4) = 65.87; P < 0.001). MRI-based measurements of the elastin probe significantly correlated with the ex vivo elastinstain (R = .84; P <0 .001) and absolute gadolinium concentrations (ICP-MS: R = .73, P <0 .01). LA-ICP-MS imaging confirmed the colocalization of the elastin-specific probe with elastic fibers. Elastin-specific molecular MRI is superior to non-specific gadolinium-based contrast agents in imaging the ECM of hepatic tumors and the peritumoral tissue. KW - Elastin-specific molecular agent KW - Extracellular matrix KW - Hepatocellular carcinoma KW - Inductively coupled plasma mass spectroscopy KW - Laser ablation-inductively coupled plasma-mass spectrometry KW - Magnetic resonance imaging KW - MR imaging KW - ESMA KW - Gadolinium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517360 DO - https://doi.org/10.1038/s41598-020-77624-8 VL - 10 IS - 1 SP - 20785 PB - Nature AN - OPUS4-51736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Kader, A. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. A1 - Keller, S. T1 - Effect of Doxycycline on Survival in Abdominal Aortic Aneurysms in a Mouse Model N2 - Background. Currently, there is no reliable nonsurgical treatment for abdominal aortic aneurysm (AAA). This study, therefore, investigates if doxycycline reduces AAA growth and the number of rupture-related deaths in a murine ApoE−/− model of AAA and whether gadofosveset trisodium-based MRI differs between animals with and without doxycycline treatment. Methods. Nine ApoE−/− mice were implanted with osmotic minipumps continuously releasing angiotensin II and treated with doxycycline (30 mg/kg/d) in parallel. After four weeks, MRI was performed at 3T with a clinical dose of the albumin-binding probe gadofosveset (0.03 mmol/kg). Results were compared with previously published wild-type control animals and with previously studied ApoE−/− animals without doxycycline treatment. Differences in mortality were also investigated between these groups. Results. In a previous study, we found that approximately 25% of angiotensin II-infused ApoE−/− mice died, whereas in the present study, only one out of 9 angiotensin II-infused and doxycycline-treated ApoE−/− mice (11.1%) died within 4 weeks. Furthermore, doxycycline-treated ApoE−/− mice showed significantly lower contrast-to-noise (CNR) values in MRI compared to ApoE−/− mice without doxycycline treatment. In vivo measurements of relative signal enhancement (CNR) correlated significantly with ex vivo measurements of albumin staining (R2 = 0.58). In addition, a strong visual colocalization of albumin-positive areas in the fluorescence albumin staining with gadolinium distribution in LA-ICP-MS was shown. However, no significant difference in aneurysm size was observed after doxycycline treatment. Conclusion. The present experimental in vivo study suggests that doxycycline treatment may reduce rupture-related deaths in AAA by slowing endothelial damage without reversing aneurysm growth. KW - Ggadolinium KW - MRI KW - Magnetic resonance imaging KW - Osmotic minipumps KW - Tetracyclin KW - Antibiotics KW - Angiotensin II KW - LA-ICP-MS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527015 DO - https://doi.org/10.1155/2021/9999847 SP - 9999847 PB - Hindawi CY - London AN - OPUS4-52701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gröninger, Delia A1 - Weller, Michael G. A1 - Martínez Mánez, R. A1 - Rurack, Knut ED - Climent Terol, Estela T1 - Multiplexed Detection of Analytes on Single Test Strips with Antibody-Gated Indicator-Releasing Mesoporous Nanoparticles N2 - Rapid testing methods for the use directly at apointof need are expected to unfold their true potential especiallywhen offering adequate capabilities for the simultaneousmeasurement of multiple analytes of interest. Considering theunique modularity,high sensitivity,and selectivity of antibody-gated indicator delivery (gAID) systems,amultiplexed assayfor three small-molecule explosives (TATP, TNT,PETN) wasthus developed, allowing to detect the analytes simultaneouslywith asingle test strip at lower ppb concentrations in the liquidphase in < 5min using afluorescence reader or asmartphonefor readout. While the TNT and PETN systems were newlydeveloped here,all the three systems also tolerated harshermatrices than buffered aqueous model solutions.Besidesasingle-track strip,the outstanding modularity of the hybridbiosensor materials in combination with strip-patterningtechnologies allowed us to obtain amultichannel strip inastraightforwardmanner,offering comparable analyticalperformance while allowing to be tailored even more to theusersneed. KW - Multiplexing KW - Explosives detection KW - Gated materials KW - Fluorescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518424 DO - https://doi.org/10.1002/anie.202009000 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 52 SP - 23862 EP - 23869 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - The Protocol Gap N2 - Although peer review is considered one of the main pillars of modern science, experimental methods and protocols seem to be not a rigorous subject of this process in many papers. Commercial equipment, test kits, labeling kits, previously published concepts, and standard protocols are often considered to be not worth a detailed description or validation. Even more disturbing is the extremely biased citation behavior in this context, which sometimes leads to surrogate citations to avoid low-impact journals, preprints, or to indicate traditional practices. This article describes some of these surprising habits and suggests some measures to avoid the most unpleasant effects, which in the long term may undermine the credibility of science as a whole. KW - Validation KW - Peer review KW - Experiment KW - Documentation KW - Scientific publication KW - Reproducibility crisis KW - Replication crisis KW - Trust KW - Citation KW - References KW - Surrogate citations KW - Impact PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521440 DO - https://doi.org/10.3390/mps4010012 SN - 2409-9279 VL - 4 IS - 1 SP - 1 EP - 5 PB - MDPI CY - Basel AN - OPUS4-52144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Brangsch, J. A1 - Kaufmann, Jan Ole A1 - Zhao, J. A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Adams, L. C. A1 - Sack, I. A1 - Taupitz, M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Molecular MR Imaging of Prostate Cancer N2 - This review summarizes recent developments regarding molecular imaging markers for magnetic resonance imaging (MRI) of prostate cancer (PCa). Currently, the clinical standard includes MR imaging using unspecific gadolinium-based contrast agents. Specific molecular probes for the diagnosis of PCa could improve the molecular characterization of the tumor in a non-invasive examination. Furthermore, molecular probes could enable targeted therapies to suppress tumor growth or reduce the tumor size. KW - Prostate cancer KW - Magnetic resonance imaging KW - Molecular imaging KW - Imaging KW - Molecular marker KW - Screening KW - MRI KW - Diagnosis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519503 DO - https://doi.org/10.3390/biomedicines9010001 VL - 9 IS - 1 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-51950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, K. A1 - Kunert, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Widera, D. A1 - Weller, Michael G. A1 - Schuppan, D. A1 - Fröhlich-Nowoisky, J. A1 - Lucas, K. A1 - Pöschl, U. T1 - Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress N2 - Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. KW - Protein nitration KW - Protein oligomerization KW - Damage-associated molecular patterns (DAMPs) KW - Pattern recognition receptor KW - Anthropocene KW - Environmental pollutants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517128 DO - https://doi.org/10.1016/j.redox.2020.101581 VL - 37 SP - 101581 PB - Elsevier B.V. AN - OPUS4-51712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Tchipilov, Teodor A1 - Backes, A. T. A1 - Tscheuschner, Georg A1 - Tang, K. A1 - Ziegler, K. A1 - Lucas, K. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. A1 - Weller, Michael G. T1 - Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry N2 - Fast and accurate determination of the protein content of a sample is an important and non-trivial task of many biochemical, biomedical, food chemical, pharmaceutical, and environmental research activities. Different methods of total protein determination are used for a wide range of proteins with highly variable properties in complex matrices. These methods usually work reasonably well for proteins under controlled conditions, but the results for non-standard and complex samples are often questionable. Here, we compare new and well-established methods, including traditional amino acid analysis (AAA), aromatic amino acid analysis (AAAA) based on the amino acids phenylalanine and tyrosine, reversed-phase liquid chromatography of intact proteins with UV absorbance measurements at 220 and 280 nm (LC-220, LC-280), and colorimetric assays like Coomassie Blue G-250 dye-binding assay (Bradford) and bicinchoninic acid (BCA) assay. We investigated different samples, including proteins with challenging properties, chemical modifications, mixtures, and complex matrices like air particulate matter and pollen extracts. All methods yielded accurate and precise results for the protein and matrix used for calibration. AAA, AAAA with fluorescence detection, and the LC-220 method yielded robust results even under more challenging conditions (variable analytes and matrices). These methods turned out to be well-suited for reliable determination of the protein content in a wide range of samples, such as air particulate matter and pollen. KW - Air particulate matter KW - Aromatic amino acid analysis KW - Atmospheric aerosol KW - Chemical protein modification KW - Derivatization KW - Nitration KW - Nitrotyrosine KW - LC-UV absorbance KW - Pollen extract KW - Protein quantification KW - Protein test KW - Kjeldahl KW - Tyrosine KW - Phenylalanine KW - Hydrolysis KW - Bradford KW - BCA test KW - 280 nm KW - Air filter samples KW - Fluorescence KW - HPLC KW - Chromatography KW - Protein content KW - 150th anniversary of BAM KW - Topical collection: Analytical Methods and Applications in the Materials and Life Sciences PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545924 UR - https://pubmed.ncbi.nlm.nih.gov/35320366/ DO - https://doi.org/10.1007/s00216-022-03910-1 SP - 1 EP - 14 PB - Springer Nature Limited CY - New York, Heidelberg AN - OPUS4-54592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Adams, L. C. A1 - Zhao, J. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Buchholz, R. A1 - Karst, U. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Visualization and Quantification of the Extracellular Matrix in Prostate Cancer Using an Elastin Specific Molecular Probe N2 - One of the most commonly diagnosed cancers in men is prostate cancer (PCa). Understanding tumor progression can help diagnose and treat the disease at an early stage. Components of the extracellular matrix (ECM) play a key role in the development and progression of PCa. Elastin is an essential component of the ECM and constantly changes during tumor development. This article visualizes and quantifies elastin in magnetic resonance imaging (MRI) using a small molecule probe. Results were correlated with histological examinations. Using an elastin-specific molecular probe, we were able to make predictions about the cellular structure in relation to elastin and thus draw conclusions about the size of the tumor, with smaller tumors having a higher elastin content than larger tumors. Human prostate cancer (PCa) is a type of malignancy and one of the most frequently diagnosed cancers in men. Elastin is an important component of the extracellular matrix and is involved in the structure and organization of prostate tissue. The present study examined prostate cancer in a xenograft mouse model using an elastin-specific molecular probe for magnetic resonance molecular imaging. Two different tumor sizes (500 mm3 and 1000 mm3) were compared and analyzed by MRI in vivo and histologically and analytically ex vivo. The T1-weighted sequence was used in a clinical 3-T scanner to calculate the relative contrast enhancement before and after probe administration. Our results show that the use of an elastin-specific probe enables better discrimination between tumors and surrounding healthy tissue. Furthermore, specific binding of the probe to elastin fibers was confirmed by histological examination and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS). Smaller tumors showed significantly higher signal intensity (p > 0.001), which correlates with the higher proportion of elastin fibers in the histological evaluation than in larger tumors. A strong correlation was seen between relative enhancement (RE) and Elastica–van Gieson staining (R2 = 0.88). RE was related to inductively coupled plasma–mass spectrometry data for Gd and showed a correlation (R2 = 0.78). Thus, molecular MRI could become a novel quantitative tool for the early evaluation and detection of PCa. KW - Magnetic resonance imaging KW - MRI KW - Molecular imaging KW - Cancer KW - LA-ICP-MS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538410 DO - https://doi.org/10.3390/biology10111217 VL - 10 IS - 11 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-53841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -