TY - JOUR A1 - Kotthoff, Lisa A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Prediction of transformation products of monensin by electrochemistry compared to microsomal assay and hydrolysis N2 - The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation. KW - Transformation products KW - Monensin KW - Veterinary drugs KW - Electrochemistry KW - Hydrolysis KW - LC/HRMS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485689 DO - https://doi.org/10.3390/molecules24152732 SN - 1420-3049 VL - 24 IS - 15 SP - 2732, 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-48568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Brunet, G. A1 - Marin, R. A1 - Monk, Melissa-Jane A1 - Galico, D. A. A1 - Sigoli, F. A. A1 - Suturina, E. A. A1 - Hemmer, E. A1 - Murugesu, M. T1 - Exploring the dual functionality of an Ytterbium complex for luminescence thermometry and slow magnetic relaxation† N2 - We present a comprehensive investigation of the magnetic and optical properties of an ytterbium complex, which combines two desirable and practical features into a single molecular system. Based upon YbIII Ions that promote near-infrared optical activity and a chemical backbone that is ideal for an in-depth understanding of the magnetic behaviour, we have designed a multifunctional opto-magnetic species that operates as a luminescent thermometer and as a single-molecule magnet (SMM). Our magnetic investigations, in conjunction with ab initio calculations, reveal one of the highest energy barriers reported for an YbIII-based complex. Moreover, we correlate this anisotropic barrier with the Emission spectrum of the compound, wherein we provide a complete assignment of the energetic profile of the complex. Such studies lay the foundation for the design of exciting multi-faceted materials that are able to retain information at the single-molecule level and possess built-in thermal self-monitoring capabilities. KW - Magnetic KW - Fluorescence KW - NIR KW - Temperature KW - Dual sensing KW - Sensor KW - Yb(III) complex KW - Lanthanide KW - Quantum yield KW - Quality assurance PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486659 DO - https://doi.org/10.1039/c9sc00343f VL - 10 IS - 28 SP - 6799 EP - 6808 PB - Royal Society of Chemistry AN - OPUS4-48665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Raman Microspectroscopic Imaging of Binder Remnants in Historical Mortars Reveals Processing Conditions N2 - Binder remnants in historical mortars represent a record of the connection between the raw materials that enter the kiln, the process parameters, and the end product of the calcination. Raman microspectroscopy combines high structural sensitivity with micrometre to sub-micrometre spatial resolution and compatibility with conventional thin-sectional samples in an almost unique fashion, making it an interesting complementary extension of the existing methodological arsenal for mortar analysis. Raman spectra are vibrational fingerprints of crystalline and amorphous compounds, and contain marker bands that are specific for minerals and their polymorphic forms. Relative intensities of bands that are related to the same crystalline species change according to crystal orientations, and band shifts can be caused by the incorporation of foreign ions into crystal lattices, as well as stoichiometric changes within solid solution series. Finally, variations in crystallinity affect band widths. These effects are demonstrated based on the analysis of three historical mortar samples: micrometric distribution maps of phases and polymorphs, crystal orientations, and compositional variations of solid solution series of unreacted clinker grains in the Portland cement mortars of two 19th century castings, and the crystallinities of thermal anhydrite clusters in a high-fired medieval gypsum mortar as a measure for the applied burning temperature were successfully acquired. KW - Cement clinker remnants KW - High-fired gypsum KW - Thermal anhydrite KW - Spectroscopic imaging KW - Raman microscopy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515038 DO - https://doi.org/10.3390/heritage2020102 VL - 2 IS - 2 SP - 1662 EP - 1683 PB - MDPI CY - Basel AN - OPUS4-51503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treiling, S. A1 - Wang, Cui A1 - Förster, C. A1 - Reichenauer, F. A1 - Kalmbach, J. A1 - Boden, P. A1 - Harris, J. P. A1 - Carrella, L. M. A1 - Rentschler, E. A1 - Resch-Genger, Ute A1 - Reber, C. A1 - Seitz, M. A1 - Gerhards, M. A1 - Heinze, K. T1 - Luminescence and Light-Driven Energy and Electron Transfer from an Exceptionally Long-Lived Excited State of a Non-Innocent Chromium(III) Complex N2 - Photoactive metal complexes employing Earth‐abundant metal ions are a key to sustainable photophysical and photochemical applications. We exploit the effects of an inversion center and ligand non‐innocence to tune the luminescence and photochemistry of the excited state of the [CrN6] chromophore [Cr(tpe)2]3+ with close to octahedral symmetry (tpe=1,1,1‐tris(pyrid‐2‐yl)ethane). [Cr(tpe)2]3+ exhibits the longest luminescence lifetime (τ=4500 μs) reported up to date for a molecular polypyridyl chromium(III) complex together with a very high luminescence quantum yield of Φ=8.2 % at room temperature in fluid solution. Furthermore, the tpe ligands in [Cr(tpe)2]3+ are redox non‐innocent, leading to reversible reductive chemistry. The excited state redox potential and lifetime of [Cr(tpe)2]3+ surpass those of the classical photosensitizer [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine) enabling energy transfer (to oxygen) and photoredox processes (with azulene and tri(n‐butyl)amine). KW - Quantum yield KW - Cr(III) complex KW - Longst luminescence lifetime KW - Electron transfer PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494870 DO - https://doi.org/10.1002/anie.201909325 VL - 58 SP - 2 EP - 13 PB - Wiley-VCH AN - OPUS4-49487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nirmalananthan-Budau, Nithiya A1 - Rühle, Bastian A1 - Geißler, Daniel A1 - Moser, Marko A1 - Kläber, Christopher A1 - Schäfer, A. A1 - Resch-Genger, Ute T1 - Multimodal cleavable reporters for quantifying carboxy and amino groups on organic and inorganic nanoparticles N2 - Organic and inorganic nanoparticles (NPs) are increasingly used as drug carriers, fluorescent sensors, and multimodal labels in the life and material sciences. These applications require knowledge of the chemical nature, total number of surface groups, and the number of groups accessible for subsequent coupling of e.g., antifouling ligands, targeting bioligands, or sensor molecules. To establish the concept of catch-and-release assays, cleavable probes were rationally designed from a quantitatively cleavable disulfide moiety and the optically detectable reporter 2-thiopyridone (2-TP). For quantifying surface groups on nanomaterials, first, a set of monodisperse carboxy-and amino-functionalized, 100 nm-sized polymer and silica NPs with different surface group densities was synthesized. Subsequently, the accessible functional groups (FGs) were quantified via optical spectroscopy of the cleaved off reporter after its release in solution. Method validation was done with inductively coupled plasma optical emission spectroscopy (ICP-OES) utilizing the sulfur atom of the cleavable probe. This comparison underlined the reliability and versatility of our probes, which can be used for surface group quantification on all types of transparent, scattering, absorbing and/or fluorescent particles. The correlation between the total and accessible number of FGs quantified by conductometric titration, qNMR, and with our cleavable probes, together with the comparison to results of conjugation studies with differently sized biomolecules reveal the potential of catch-and-release reporters for surface analysis. Our findings also underline the importance of quantifying particularly the accessible amount of FGs for many applications of NPs in the life sciences. KW - Advanced Materials KW - Surface Chemistry KW - Organic–inorganic nanostructures KW - Funtional Groups KW - Quantitative Analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-499081 DO - https://doi.org/10.1038/s41598-019-53773-3 VL - 9 SP - 17577-1 EP - 17577-11 PB - Springer Nature CY - London AN - OPUS4-49908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büchele, Dominique A1 - Chao, Madlen A1 - Ostermann, Markus A1 - Leenen, M. A1 - Bald, Ilko T1 - Multivariate chemometrics as a key tool for prediction of K and Fe in a diverse German agricultural soil-set using EDXRF N2 - Within the framework of precision agriculture, the determination of various soil properties is moving into focus, especially the demand for sensors suitable for in-situ measurements. Energy-dispersive X-ray fluorescence (EDXRF) can be a powerful tool for this purpose. In this study a huge diverse soil set (n = 598) from 12 different study sites in Germany was analysed with EDXRF. First, a principal component analysis (PCA) was performed to identify possible similarities among the sample set. Clustering was observed within the four texture classes clay, loam, silt and sand, as clay samples contain high and sandy soils low iron mass fractions. Furthermore, the potential of uni- and multivariate data evaluation with partial least squares regression (PLSR) was assessed for accurate Determination of nutrients in German agricultural samples using two calibration sample sets. Potassium and iron were chosen for testing the performance of both models. Prediction of these nutrients in 598 German soil samples with EDXRF was more accurate using PLSR which is confirmed by a better overall averaged deviation and PLSR should therefore be preferred. KW - XRF KW - Chemometrics KW - Soil KW - Agriculture KW - Multivariate PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498671 DO - https://doi.org/10.1038/s41598-019-53426-5 VL - 9 SP - 17588 PB - Nature AN - OPUS4-49867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, H. A1 - Song, W. A1 - Gröninger, Delia A1 - Zhang, L. A1 - Lu, Y. A1 - Chan, K. S. A1 - Zhou, Z. A1 - Rurack, Knut A1 - Shen, Z. T1 - Real-time monitoring of newly acidified organelles during autophagy enabled by reaction-based BODIPY dyes N2 - Real-time monitoring of newly acidified organelles during autophagy in living cells is highly desirable for a better understanding of intracellular degradative processes. Herein, we describe a reaction-based boron dipyrromethene (BODIPY) dye containing strongly electron-withdrawing diethyl 2-cyanoacrylate groups at the α-positions. The probe exhibits intense red fluorescence in acidic organelles or the acidified cytosol while negligible fluorescence in other regions of the cell. The underlying mechanism is a nucleophilic reaction at the central meso-carbon of the indacene core, resulting in the loss of π-conjugation entailed by dramatic spectroscopic changes of more than 200 nm between its colorless, non-fluorescent leuco-BODIPY form and its red and brightly emitting form. The reversible transformation between red fluorescent BODIPY and leuco-BODIPY along with negligible cytotoxicity qualifies such dyes for rapid and direct intracellular lysosome imaging and cytosolic acidosis detection simultaneously without any washing step, enabling the real-time monitoring of newly acidified organelles during autophagy. KW - Autophagy KW - BODIPY KW - Fluorescence KW - Lysosome KW - Real-time imaging PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498358 UR - https://www.nature.com/articles/s42003-019-0682-1 DO - https://doi.org/10.1038/s42003-019-0682-1 SN - 23993642 VL - 2 SP - 442 PB - Nature Research CY - London AN - OPUS4-49835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Silke A1 - Roethke, A. A1 - Rienitz, O. A1 - Matschat, Ralf A1 - Schiel, D. A1 - Jaehrling, R. A1 - Goerlitz, V. A1 - Kipphardt, Heinrich T1 - SI-traceable monoelemental solutions on the highest level of accuracy: 25 years from the foundation of CCQM to recent advances in the development of measurement methods N2 - Within the Working Group on Inorganic Analysis (IAWG) of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM) international key comparisons and pilot studies related to inorganic analysis are carried to ensure consistency in this field at the highest level. Some of these comparisons deal directly with the preparation and characterization of monoelemental solutions or with topics, closely related. The importance of monoelemental solutions lies in the fact that almost every measurement in inorganic analysis relies on the comparison with either a reference material, or references in form of solutions, usually (mono)elemental solutions. All quantitative measurement approaches, e.g. isotope dilution or standard addition, need an accurate reference solution made from a well characterized reference material, prepared under full gravimetric control. These primary (monoelemental) solutions do not only serve as arbitrary references/calibration solutions, but they also link up measurement results to the International System of units (SI), this way establishing the so-called metrological traceability to a measurement unit of the SI. Without such solutions on the highest possible level of accuracy and with the smallest possible associated uncertainties (for e.g. element content and/or impurities), an analysis itself can never be as good as it could be with appropriate reference solutions. This article highlights select key comparisons and pilot studies dealing with monoelemental solution related topics within the IAWG from the foundation of CCQM – 25 years ago – up to latest achievements in the field of inorganic analysis. KW - Metrology KW - SI Traceability KW - CCQM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-496080 DO - https://doi.org/10.1088/1681-7575/ab5636 SN - 0026-1394 SN - 1681-7575 SP - 1 EP - 23 PB - IOP CY - Bristol AN - OPUS4-49608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, Thomas A1 - Dariz, P. ED - Ziemann, M. T1 - Raman band widths of anhydrite II reveal the burning history of high-fired medieval gypsum mortars N2 - The use of high-fired gypsum as binder for masonry and joint mortars or stuccowork in Central Europe in the Early and High Middle Ages was a regional specific as it depended on local gypsum deposits. The calcination technology possible at the time resulted in an assemblage of calcium sulphate phases dehydrated to different degrees and partly thermally damaged accessory minerals of the raw gypsum. Because of the absence of medieval textbooks, the observation of high-temperature, low-pressure mineral transformations and the correlation of phases coexisting in not hydrated binder relicts in the gypsum matrix to the mineralogy of the raw material and the burning conditions constitute the only source to the historical technological know-how. The CaSO4–H2O system consists of five crystalline phases, which can be discriminated by structural analysis methods, such as Raman spectroscopy, due to obvious differences in their spectroscopic data: gypsum (CaSO4 ⋅ 2 H2O), bassanite (hemihydrate, CaSO4 ⋅ ½ H2O), anhydrite III (CaSO4), anhydrite II (CaSO4), and anhydrite I (CaSO4). Only recently, it was possible to demonstrate that small spectroscopic variations exist also within the relatively large stability range of anhydrite II from approx. 180°C to 1180°C: all Raman bands narrow with increasing burning temperature applied in the synthesis from gypsum powder. The determination of band widths of down to 3 cm-1 and differences between them of a few tenths of a wavenumber is not a trivial task. Thus, this contribution discusses peak fitting and strategies for correction of instrument-dependent band broadening. Raman maps of polished thin sections of gypsum mortars provide access to the burning histories of individual remnant thermal anhydrite grains and enable the discrimination of natural anhydrite originating from the gypsum deposit. This novel analytical method was applied to samples from medieval South Tyrolean stucco decorations and sculptures. Beyond that, Raman microspectroscopy was employed for following pyrometamorphic reactions in natural impurities of the raw material. In the presented examples mineral thermometry indicates process temperatures above 800°C: the breakdown of magnesium-rich chlorite led to the formation of forsterite Mg2SiO4, while the thermal decomposition of dolomite CaMg(CO3)2 yielded – after hydration and carbonation – magnesite MgCO3, CaCO3 polymorphs and magnesian calcite. Lower burning temperatures, which leave the accessory minerals in their pristine form, can be traced by measuring the spectra of anhydrite crystalites in grains of firing products and evaluating Raman band widths. Throughout the applications of this analytical method so far, calcination temperatures ranging from approx. 600°C to 900°C were determined. T2 - 10th International Congress on the Application of Raman Spectroscopy in Art and Archaeology CY - Potsdam, Germany DA - 03.09.2019 KW - Raman microspectroscopy KW - High-fired medieval gypsum mortars KW - Raman band width KW - Gypsum dehydration KW - Thermal anhydrite PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-496204 SP - 36 EP - 37 PB - University of Potsdam CY - Potsdam AN - OPUS4-49620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Descalzo, Ana B. A1 - Ashokkumar, Pichandi A1 - Shen, Z. A1 - Rurack, Knut T1 - On the Aggregation Behaviour and Spectroscopic Properties of Alkylated and Annelated BoronDipyrromethene (BODIPY) Dyes in Aqueous Solution N2 - The tendency of boron-dipyrromethene (BODIPY) dyes to associate in water is well known, and usually a cause for inferior fluorescence properties. Synthetic efforts to chemically improve BODIPYs’ water solubility and minimize this problem have been numerous in the past. However, a deeper understanding of the phenomena responsible for fluorescence quenching is still required. Commonly, the spectroscopic behaviour in aqueous media has been attributed to aggregate or excimer formation, with such works often centring on a single BODIPY family. Herein, we provide an integrating discussion including very diverse types of BODIPY dyes. Our studies revealed that even subtle structural changes can distinctly affect the association behaviour of the fluorophores in water, involving different photophysical processes. The palette of behaviour found ranges from unperturbed emission, to the formation of H or J aggregates and excimers, to the involvement of tightly bound, preformed excimers. These results are a first step to a more generalized understanding of spectroscopic properties vs. structure, facilitating future molecular design of BODIPYs, especially as probes for biological applications. KW - Aggregates KW - BODIPY KW - Excimers KW - Fluorescence KW - Photophysics PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497771 DO - https://doi.org/10.1002/cptc.201900235 SN - 2367-0932 VL - 4 IS - 2 SP - 120 EP - 131 PB - WILEY-VCH CY - Weinheim AN - OPUS4-49777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kembuan, C. A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Graf, C. T1 - Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness N2 - A concept for the growth of silica shells with a thickness of 5–250 nm onto oleate-coated NaYF4:Yb3+/Er3+ upconversion nanoparticles (UCNP) is presented. The concept enables the precise adjustment of shell thicknesses for the preparation of thick-shelled nanoparticles for applications in plasmonics and sensing. First, an initial 5–11 nm thick shell is grown onto the UCNPs in a reverse microemulsion. This is followed by a stepwise growth of these particles without a purification step, where in each step equal volumes of tetraethyl orthosilicate and ammonia water are added, while the volumes of cyclohexane and the surfactant Igepal® CO-520 are increased so that the ammonia water and surfactant concentrations remain constant. Hence, the number of micelles stays constant, and their size is increased to accommodate the growing core–shell particles. Consequently, the formation of core-free silica particles is suppressed. When the negative zeta potential of the particles, which continuously decreased during the stepwise growth, falls below −40 mV, the particles can be dispersed in an ammoniacal ethanol solution and grown further by the continuous addition of tetraethyl orthosilicate to a diameter larger than 500 nm. Due to the high colloidal stability, a coalescence of the particles can be suppressed, and single-core particles are obtained. This strategy can be easily transferred to other nanomaterials for the design of plasmonic nanoconstructs and sensor systems. KW - Reverse microemulsion KW - Silica coating KW - Stepwise growth KW - Thick shells KW - Upconversion nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502769 DO - https://doi.org/10.3762/bjnano.10.231 SN - 2190-4286 VL - 10 SP - 2410 EP - 2421 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-50276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Khatib, A. H. A1 - Radbruch, H. A1 - Trog, S. A1 - Neumann, B. A1 - Paul, F. A1 - Koch, A. A1 - Linscheid, M. W. A1 - Jakubowski, Norbert A1 - Schellenberger, E. T1 - Gadolinium in human brain sections and colocalization with other elements N2 - Recent recommendations by the Food and Drug Administration1 and the European Medicines Agency2 are to limit the clinical use of linear gadolinium-based contrast agents (GBCAs) due to convincing evidence of deposition in tissues. Macrocyclic GBCA continued to be considered safe, provided that patients have normal renal function. To date, given the low sensitivity of conventional MRI, there has been a debate about the signal increase following the injections of a macrocyclic GBCA. KW - Gadolinium PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471309 DO - https://doi.org/10.1212/NXI.0000000000000515 SN - 2332-7812 VL - 6 IS - 1 SP - e515, 1 EP - 3 PB - American Academy of Neurology AN - OPUS4-47130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duewer, D. L. A1 - Murray, J. A. A1 - Wood, L. J. A1 - Wise, S. A. A1 - Hein, Sebastian A1 - Koch, Matthias A1 - Philipp, Rosemarie A1 - Werneburg, Martina A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Gui, E. M. A1 - Lu, T. A1 - Teo, T. L. A1 - Hua, T. A1 - Dazhou, C. A1 - Chunxin, L. A1 - Changjun, Y. A1 - Hongmei, L. A1 - Nammoonnoy, J. A1 - Sander, L. C. A1 - Lippa, K. A1 - Quinn, L. A1 - Swiegelaar, C. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. T1 - CCQM-K95.1 Low-polarity analytes in a botanical matrix: Polycyclic aromatic hydrocarbons (PAHs) in tea N2 - Extraction, chromatographic separation, and quantification of low-concentration organic compounds in complex matrices are core challenges for reference material producers and providers of calibration services. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2014 the Organic Analysis Working Group (OAWG) initiated CCQM-K95.1 "Low-Polarity Analytes in a Botanical Matrix: Polycyclic Aromatic Hydrocarbons (PAHs) in Tea". This was a follow-on comparison from CCQM-K95 which was completed in 2014. The polycyclic aromatic hydrocarbons (PAHs) benz[a]anthracene (BaA) and benzo[a]pyrene (BaP) are considered priority pollutants by U.S. Environmental Protection Agency and are regulated contaminants in food, pose chromatographic separation challenges, and for which exist well-characterized measurement procedures and standard materials. BaA and BaP in a smoked tea were therefore selected as representative target measurands for CCQM-K95.1. Ten NMIs participated in CCQM-K95.1. The consensus summary mass fractions for the two PAHs are in the range of (50 to 70) ng/g with relative standard deviations of (6 to 10) %. Successful participation in CCQM K95.1 demonstrates the following measurement capabilities in determining mass fraction of organic compounds, with molar mass of 100 g/mol to 500 g/mol and having polarity pKow −2, in a botanical matrix ranging in mass fraction from 10 ng/g to 1000 ng/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, (3) extraction of analytes of interest from the matrix, (4) cleanup and separation of analytes of interest from interfering matrix or extract components, and (5) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Polycyclic aromatic hydrocarbon (PAH) KW - Yerba mate tea PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471430 DO - https://doi.org/10.1088/0026-1394/56/1A/08002 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1 A SP - 08002, 1 EP - 89 PB - IOP Science AN - OPUS4-47143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duewer, D. L. A1 - Sander, L. C. A1 - Wise, S. A. A1 - Philipp, Rosemarie A1 - Hein, Sebastian A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Chan, P. A1 - Lee, H. A1 - Tang, H. A1 - Tang, P. A1 - Yip, Y. A1 - Lu, T. A1 - Cheow, P. S. A1 - Teo, T. L. A1 - Sega, M. A1 - Rolle, F. A1 - Baek, S. A1 - Kim, B. A1 - Lee, S. A1 - Cabillic, J. A1 - Fallot, C. A1 - Hua, T. A1 - Dazhou, C. A1 - Changjun, Y. A1 - Chunxin, L. A1 - Hongmei, L. A1 - Lippa, K. A1 - Itoh, N. A1 - Quinn, L. A1 - Prevoo-Franzsen, D. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. A1 - Gündüz, S. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Baldan, A. A1 - van der Hout, J. W. A1 - van der Veen, A. M. H. T1 - CCQM-K131 Low-polarity analytes in a multicomponent organic solution: Polycyclic aromatic hydrocarbons (PAHs) in acetonitrile N2 - Solutions of organic analytes of known mass fraction are typically used to calibrate the measurement processes used to determine these compounds in matrix samples. Appropriate value assignments and uncertainty calculations for calibration solutions are critical for accurate measurements. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2015 the Organic Analysis Working Group (OAWG) sponsored CCQM-K131 "Low-Polarity Analytes in a Multicomponent Organic Solution: Polycyclic Aromatic Hydrocarbons (PAHs) in Acetonitrile". Polycyclic aromatic hydrocarbons (PAHs) result from combustion sources and are ubiquitous in environmental samples. The PAH congeners, benz[a]anthracene (BaA), benzo[a]pyrene (BaP), and naphthalene (Nap) were selected as the target analytes for CCQM-K131. These targets span the volatility range of PAHs found in environmental samples and include potentially problematic chromatographic separations. Nineteen NMIs participated in CCQM-K131. The consensus summary mass fractions for the three PAHs are in the range of (5 to 25) μg/g with relative standard deviations of (2.5 to 3.5) %. Successful participation in CCQM-K131 demonstrates the following measurement capabilities in determining mass fraction of organic compounds of moderate to insignificant volatility, molar mass of 100 g/mol up to 500 g/mol, and polarity pKow < −2 in a multicomponent organic solution ranging in mass fraction from 100 ng/g to 100 μg/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, and (3) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Naphthalene (Nap) KW - Organic calibration solution KW - Polycyclic aromatic hydrocarbon (PAH) PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471442 DO - https://doi.org/10.1088/0026-1394/56/1A/08003 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1A SP - 08003, 1 EP - 102 PB - IOP Science AN - OPUS4-47144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ren, J. A1 - Weigert, Florian A1 - Weber, F. A1 - Wang, Y. A1 - Choudhury, S. A1 - Xiao, J. A1 - Lauermann, I. A1 - Resch-Genger, Ute A1 - Bande, A. A1 - Petit, T. ED - Petit, Tristan T1 - Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots N2 - Carbon dots have attracted much attention due to their unique optical, chemical and electronic properties enabling a wide range of applications. The properties of carbon dots can be effectively adjusted through modifying their chemical composition. However, a major challenge remains in understanding the core and surface contributions to optical and electronic transitions. Here, three blue luminescent carbon dots with carboxyl, amino and hydroxyl groups were comprehensively characterized by UV-vis absorption and emission spectroscopy, synchrotron-based X-ray spectroscopy, and infrared spectroscopy. The influence of the surface functionality on their fluorescence was probed by pH-dependent photoluminescence measurements. Moreover, the hydrogen bonding interactions between water and the surface groups of carbon dots were characterized by infrared spectroscopy. Our results show that both core and surface electronic states of blue luminescent carbon dots contribute to electronic acceptor levels while the chemical nature of the surface groups determines the hydrogen bonding behavior of the carbon dots. This comprehensive spectroscopic study demonstrates that the surface chemistry has a profound influence on the electronic configuration and surface–water interaction of carbon dots, thus affecting their photoluminescence properties. KW - Quantum dots KW - Spectroscopy KW - UV Vis KW - Fluorescence KW - Surface chemistry PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472325 DO - https://doi.org/10.1039/c8nr08595a SN - 2040-3372 VL - 11 IS - 4 SP - 2056 EP - 2064 PB - RSC AN - OPUS4-47232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saleh, Maysoon I. A1 - Panas, I. A1 - Frenzel, Florian A1 - Würth, Christian A1 - Rühle, Bastian A1 - Slominskii, Y. A1 - Demchenko, A. A1 - Resch-Genger, Ute T1 - Sensitization of upconverting nanoparticles with a NIR-emissive cyanine dye using a micellar encapsulation approach N2 - Photon upconversion nanomaterials have a wide range of applications, including biosensing and deep-tissue imaging. Their typically very weak and narrow absorption bands together with their size dependent luminescence efficiency can limit their application potential. This has been addressed by increasingly sophisticated core-shell particle architectures including the sensitization with organic dyes that strongly absorb in the near infrared (NIR). In this work, we present a simple water-dispersible micellar system that features energy transfer from the novel NIR excitable dye, 1859 SL with a high molar absorption coefficient and a moderate fluorescence quantum yield to oleate-capped NaYF4:20%Yb(III), 2%Er(III) upconversion nanoparticles (UCNP) upon 808 nm excitation. The micelles were formed using the surfactants Pluronic F-127 and Tween 80 to produce a hydrophilic dye-UCNP system. Successful energy transfer from the dye to the UCNP could be confirmed by emission measurements that revealed the occurrence of upconversion emission upon excitation at 808 nm and an enhancement of the green Er(III) emission compared to direct Er(III) excitation at 808 nm. KW - Upconversion nanoparticles KW - Sensitization KW - NIR dyes KW - Energy transfer PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472300 DO - https://doi.org/10.1088/2050-6120/aafe1f SN - 2050-6120 VL - 7 IS - 1 (Special issue: Upconversion Methods, Applications and Materials) SP - 014003-1 EP - 014003-9 PB - IOP AN - OPUS4-47230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yadav, Anur A1 - Iost, R. M. A1 - Neubert, T. J. A1 - Baylan, S. A1 - Schmid, Thomas A1 - Balasubramanian, Kannan T1 - Selective electrochemical functionalization of the graphene edge N2 - We present a versatile and simple method using electrochemistry for the exclusive functionalization of the edge of a graphene monolayer with metal nanoparticles or polymeric amino groups. The attachment of metal nanoparticles allows us to exploit surface-enhanced Raman scattering to characterize the chemistry of both the pristine and the functionalized graphene edge. For the pristine patterned graphene edge, we observe the typical edge-related modes, while for the functionalized graphene edge we identify the chemical structure of the functional layer by vibrational fingerprinting. The ability to obtain single selectively functionalized graphene edges routinely on an insulating substrate opens an avenue for exploring the effect of edge chemistry on graphene properties systematically. KW - Graphene KW - Nanoparticles KW - Nanosciences KW - Surface-enhanced Raman scattering KW - Atomic force microscopy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474357 DO - https://doi.org/10.1039/C8SC04083D SN - 2041-6520 VL - 10 IS - 3 SP - 936 EP - 942 PB - Royal Society of Chemistry AN - OPUS4-47435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Keller, Julia A1 - Lörchner, Dominique A1 - Mekonnen, Tessema F. A1 - Koch, Matthias T1 - Transformation products of organic contaminants and residues - Overview of current simulation methods N2 - The formation of transformation products (TPs) from contaminants and residues is becoming an increasing focus of scientific community. All organic compounds can form different TPs, thus demonstrating the complexity and interdisciplinarity of this topic. The properties of TPs could stand in relation to the unchanged substance or be more harmful and persistent. To get important information about the generated TPs, methods are needed to simulate natural and manmade transformation processes. Current tools are based on metabolism studies, photochemical methods, electrochemical methods, and Fenton's reagent. Finally, most transformation processes are based on redox reactions. This review aims to compare these methods for structurally different compounds. The groups of pesticides, pharmaceuticals, brominated flame retardants, and mycotoxins were selected as important residues/contaminants relating to their worldwide occurrence and impact to health, food, and environmental safety issues. Thus, there is an increasing need for investigation of transformation processes and identification of TPs by fast and reliable methods. KW - Transformation product KW - Electrochemistry KW - Photochemistry KW - Fenton’s reagent PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474108 DO - https://doi.org/10.3390/molecules24040753 SN - 1420-3049 VL - 24 IS - 4 SP - 753, 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-47410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Choi, Youngeun A1 - Schmidt, Carsten A1 - Tinnefeld, Philip A1 - Bald, Ilko A1 - Roedinger, Stefan T1 - A new reporter design based on DNA origami nanostructures for quantification of short oligonucleotides using microbeads N2 - The DNA origami technique has great potential for the development of brighter and more sensitive reporters for fluorescence based detection schemes such as a microbead-based assay in diagnostic applications. The nanostructures can be programmed to include multiple dye molecules to enhance the measured signal as well as multiple probe strands to increase the binding strength of the target oligonucleotide to these nanostructures. Here we present a proof-of-concept study to quantify short oligonucleotides by developing a novel DNA origami based reporter system, combined with planar microbead assays. Analysis of the assays using the VideoScan digital imaging platform showed DNA origami to be a more suitable reporter candidate for quantification of the target oligonucleotides at lower concentrations than a conventional reporter that consists of one dye molecule attached to a single stranded DNA. Efforts have been made to conduct multiplexed analysis of different targets as well as to enhance fluorescence signals obtained from the reporters. We therefore believe that the quantification of short oligonucleotides that exist in low copy numbers is achieved in a better way with the DNA origami nanostructures as reporters. KW - Origami KW - Nanostructures KW - Microbeads KW - DNA origami KW - Oligonucleotides PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476443 DO - https://doi.org/10.1038/s41598-019-41136-x SN - 2045-2322 VL - 9 SP - 4769, 1 EP - 8 PB - Nature AN - OPUS4-47644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sarhan, R. M. A1 - Koopman, W. A1 - Schuetz, R. A1 - Schmid, Thomas A1 - Liebig, F. A1 - Koetz, J. A1 - Bargheer, M. T1 - The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol N2 - Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding. KW - Nanoparticles KW - Plasmonic heating KW - Raman spectroscopy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475140 DO - https://doi.org/10.1038/s41598-019-38627-2 SN - 2045-2322 VL - 9 IS - 1 SP - 3060, 1 EP - 8 PB - Nature Publishing Group AN - OPUS4-47514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gotor, Raúl A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Tailored fluorescent solvatochromic test strips for quantitative on-site detection of gasoline fuel adulteration N2 - Gasoline adulteration is a frequent problem world-wide, because of the chance of quick, maximized profits. However, addition of cheaper ethanol or hydrocarbons like kerosene does not only result in economic damage but also poses problems for vehicles and the environment. To enable law enforcement forces, customers or enterprises to uncover such a fraudulent activity directly upon suspicion and without the need to organize for sampling and laboratory analysis, we developed a simple strip-based chemical test. Key to the favorable performance was the dedicated materials tailoring, which led to test strips that consisted of a cellulose support coated with silica, passivated with hexamethyldisilazane and functionalized covalently with a molecular probe. The probe fluoresces brightly across a broad solvent polarity range, enabling reliable quantitative measurements and data analysis with a conventional smartphone. The assays showed high reproducibility and accuracy, allowing not only for the detection of gasoline adulteration but also for the on-site monitoring of the quality of commercial E10 gasoline. KW - Gasoline KW - Adulteration KW - Test strips KW - Benzin KW - Teststreifen KW - Fluorescence KW - Cellulose KW - Zellulose KW - Fluoreszenz PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479231 UR - https://pubs.rsc.org/en/content/articlelanding/2019/tc/c8tc04818e DO - https://doi.org/10.1039/C8TC04818E SN - 2050-7526 VL - 7 IS - 8 SP - 2250 EP - 2256 PB - Royal Society of Chemistry CY - London, UK AN - OPUS4-47923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, C. A1 - Hensen, C. A1 - Wallmann, K. A1 - Liebetrau, V. A1 - Tatzel, Michael A1 - Schurr, S. L. A1 - Kutterolf, S. A1 - Haffert, L. A1 - Geilert, Sonja A1 - Hübscher, C. A1 - Lebas, E. A1 - Heuser, A. A1 - Schmidt, M. A1 - Strauss, H. A1 - Vogl, Jochen A1 - Hansteen, T. T1 - Origin of High Mg and SO4 Fluids in Sediments of the Terceira Rift, Azores‐Indications for Caminite Dissolution in a Waning Hydrothermal System N2 - During R/V Meteor cruise 141/1, pore fluids of near surface sediments were investigated to find indications for hydrothermal activity in the Terceira Rift (TR), a hyperslow spreading center in the Central North Atlantic Ocean. To date, submarine hydrothermal fluid venting in the TR has only been reported for the D. João de Castro seamount, which presently seems to be inactive. Pore fluids sampled close to a volcanic cone at 2,800‐m water depth show an anomalous composition with Mg, SO4, and total alkalinity concentrations significantly higher than seawater and a nearby reference core. The most straightforward way of interpreting these deviations is the dissolution of the hydrothermally formed mineral caminite (MgSO4 0.25 Mg (OH)2 0.2H2O). This interpretation is corroborated by a thorough investigation of fluid isotope systems (δ26Mg, δ30Si, δ34S, δ44/42Ca, and 87Sr/86Sr). Caminite is known from mineral assemblages with anhydrite and forms in hydrothermal recharge zones only under specific conditions such as high fluid temperatures and in altered oceanic crust, which are conditions generally met at the TR. We hypothesize that caminite was formed during hydrothermal activity and is now dissolving during the waning state of the hydrothermal system, so that caminite mineralization is shifted out of its stability zone. Ongoing fluid circulation through the basement is transporting the geochemical signal via slow advection toward the seafloor. KW - Isotope ratio KW - Delta value KW - Pore fluids KW - Magnesium KW - Hydrothermal fluid PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503430 DO - https://doi.org/10.1029/2019GC008525 VL - 20 IS - 12 SP - 6078 EP - 6094 PB - Wiley AN - OPUS4-50343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Inês C.B. A1 - Al-Sabbagh, Dominik A1 - Meyer, Klas A1 - Maiwald, Michael A1 - Scholz, G. A1 - Emmerling, Franziska T1 - Insight into the Structure and Properties of Novel Imidazole-Based Salts of Salicylic Acid N2 - The preparation of new active pharmaceutical ingredient (API) multicomponent Crystal forms, especially co-crystals and salts, is being considered as a reliable strategy to improve API solubility and bioavailability. In this study, three novel imidazole-based salts of the poorly water-soluble salicylic acid (SA) are reported exhibiting a remarkable improvement in solubility and dissolution rate properties. All structures were solved by powder X-ray diffraction. Multiple complementary techniques were used to solve co-crystal/salt ambiguities: density functional Theory calculations, Raman and 1H/13C solid-state NMR spectroscopies. In all molecular salts, the Crystal packing interactions are based on a common charged assisted +N-H SA)...O-(co-former) hydrogen bond interaction. The presence of an extra methyl group in different positions of the co-former, induced different supramolecular arrangements, yielding salts with different physicochemical properties. All salts present much higher solubility and dissolution rate than pure SA. The most promising results were obtained for the salts with imidazole and 1-methylimidazole co-formers. KW - Salicylic acid KW - Imidazole KW - Salts KW - Powder X-ray diffraction KW - SsNMR KW - DFT PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502825 DO - https://doi.org/10.3390/molecules24224144 VL - 24 IS - 22 SP - 4144 PB - MDPI AN - OPUS4-50282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Wander, Lukas A1 - Meyer, Klas A1 - Guhl, Svetlana A1 - Gottu Mukkula, A. R. A1 - Holtkamp, M. A1 - Salge, M. A1 - Fleischer, C. A1 - Weber, N. A1 - Engell, S. A1 - Paul, Andrea A1 - Pereira Remelhe, M. A1 - Maiwald, Michael T1 - Flexible automation with compact NMR spectroscopy for continuous production of pharmaceuticals N2 - Modular plants using intensified continuous processes represent an appealing concept for the production of pharmaceuticals. It can improve quality, safety, sustainability, and profitability compared to batch processes; besides, it enables plug-and-produce reconfiguration for fast product changes. To facilitate this flexibility by real-time quality control, we developed a solution that can be adapted quickly to new processes and is based on a compact nuclear magnetic resonance (NMR) spectrometer. The NMR sensor is a benchtop device enhanced to the requirements of automated chemical production including robust evaluation of sensor data. Beyond monitoring the product quality, online NMR data was used in a new iterative optimization approach to maximize the plant profit and served as a reliable reference for the calibration of a near-infrared (NIR) spectrometer. The overall approach was demonstrated on a commercial-scale pilot plant using a metal-organic reaction with pharmaceutical relevance. KW - NMR Spectroscopy KW - NIR Spectroscopy KW - Real-time process monitoring KW - Real-time quality control KW - Continuous processes KW - CONSENS KW - Data Fusion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-480623 DO - https://doi.org/10.1007/s00216-019-01752-y SN - 1618-2642 SN - 1618-2650 VL - 411 IS - 14 SP - 3037 EP - 3046 PB - Springer Nature CY - Heidelberg AN - OPUS4-48062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tarantini, A. A1 - Wegner, Karl David A1 - Dussert, F. A1 - Sarret, G. A1 - Beal, D. A1 - Mattera, L. A1 - Lincheneau, C. A1 - Proux, O. A1 - Truffier-Boutry, D. A1 - Moriscot, C. A1 - Gallet, B. A1 - Jouneau, P.-H. A1 - Reiss, P. A1 - Carriere, M. T1 - Physicochemical alterations and toxicity of InP alloyed quantum dots aged in environmental conditions: A safer by design evaluation N2 - Due to their unique optical properties, quantum dots (QDs) are used in a number of optoelectronic devices and are forecasted to be used in the near future for biomedical applications. The most popular QD composition consists of cadmium selenide (CdSe) or cadmium telluride (CdTe), which has been shown to pose health risks due to the release of toxic cadmium (Cd) ions. Due to similar optical properties but lower intrinsic toxicity, indium phosphide (InP) QDs have been proposed as a safer alternative. Nevertheless, investigations regarding their safety and possible toxicological effects are still in their infancy. The fate and toxicity of seven different water-dispersible indium (In) based QDs, either pristine or after ageing in a climatic chamber, was evaluated. The core of these QDs was composed of indium, zinc and phosphorus (InZnP) or indium, zinc, phosphorus and sulfur (InZnPS). They were assessed either as core-only or as core-shell QDs, for which the core was capped with a shell of zinc, selenium and sulfur (Zn(Se,S)). Their Surface was functionalized using either penicillamine or glutathione. In their pristine form, these QDs showed essentially no cytotoxicity. The particular case of InZnPS QD showed that core-shell QDs were less cytotoxic than core-only QDs. Moreover, surface functionalization with either penicillamine or glutathione did not appreciably influence cytotoxicity but affected QD stability. These QDs did not lead to over-accumulation of reactive oxygen species in exposed cells, or to any oxidative damage to cellular DNA. However, accelerated weathering in a climatic chamber led to QD precipitation and degradation, together with significant cytotoxic effects. Ageing led to dissociation of IneP and ZneS bonds, and to complexation of In Zn ions with carboxylate and/or phosphate moieties. These results show that InZnP and InZnPS alloyed QDs are safer alternatives to CdSe QDs. They underline the necessity to preserve as much as possible the structural integrity of QDs, for instance by developing more robust shells, in order to ensure their safety for future applications. KW - Indium phosphide KW - Safe by design KW - Toxicity KW - EXAFS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483070 DO - https://doi.org/10.1016/j.impact.2019.100168 VL - 14 SP - 100168-1 EP - 100168-13 PB - Elsevier AN - OPUS4-48307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wegner, Karl David A1 - Dussert, F. A1 - Truffier-Boutry, D. A1 - Benayad, A. A1 - Beal, D. A1 - Mattera, L. A1 - Ling, W. L. A1 - Carrière, M. A1 - Reiss, P. T1 - Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity N2 - With the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSexS1−x shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence Quantum yields (PLQY) > 50%and similar PL decay times (64–67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber. The alumina coated core/shell system exhibits the highest stability in terms of PLQY Retention as well as the lowest shift of the PL maximum and lowest increase of the PL linewidth, followed by the CSS QDs and finally the gradient shell system. By means of XPS studies we identify the degradation of the ZnS outer layer and concomitant xidation of the emissive InZnP core as the main origins of degradation in the gradient structure. These modifications do not occur in the case of the alumina-capped sample, which exhibits excellent chemical stability. The gradient shell and CSS systems could be transferred to the aqueous phase using surface ligand exchange with penicillamine. Cytotoxicity studies on human primary keratinocytes revealed that exposure for 24 h to 6.25–100 nM of QDs did not affect cell viability. However, a trend toward reduced cell proliferation is observed for higher concentrations of gradient shell and CSS QDs with a thin ZnS shell, while CSS QDs with a thicker ZnS shell do not exhibit any impact. KW - Indium phosphide KW - Quantum dots KW - Cytotoxicity KW - Photostability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494249 DO - https://doi.org/10.3389/fchem.2019.00466 VL - 7 SP - Article Number: 466 PB - Frontiers Media SA AN - OPUS4-49424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Souza Machado, A. A. A1 - Lau, C. W. A1 - Kloas, W. A1 - Bergmann, J. A1 - Bachelier, J. B. A1 - Faltin, E. A1 - Becker, Roland A1 - Görlich, A. S. A1 - Rillig, M. C. T1 - Microplastics can change soil properties and affect plant performance N2 - Microplastics can affect biophysical properties of the soil. However, little is known about the cascade of events in fundamental levels of terrestrial ecosystems, i.e., starting with the changes in soil abiotic properties and propagating across the various components of soil−plant interactions, including soil microbial communities and plant traits. We investigated here the effects of six different microplastics (polyester fibers, polyamide beads, and four fragment types: polyethylene, polyester terephthalate, polypropylene, and polystyrene) on a broad suite of proxies for soil health and performance of spring onion (Allium fistulosum). Significant changes were observed in plant biomass, tissue elemental composition, root traits, and soil microbial activities. These plant and soil responses to microplastic exposure were used to propose a causal model for the mechanism of the effects. Impacts were dependent on particle type, i.e., microplastics with a shape similar to other natural soil particles elicited smaller differences from control. Changes in soil structure and water dynamics may explain the observed results in which polyester fibers and polyamide beads triggered the most pronounced impacts on plant traits and function. The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity. KW - Mikroplastik KW - Boden KW - Pflanzenwachstum PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484181 DO - https://doi.org/10.1021/acs.est.9b01339 SN - 0013-936X SN - 1520-5851 VL - 53 IS - 10 SP - 6044 EP - 6052 PB - ACS AN - OPUS4-48418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dorgerloh, Ute A1 - Becker, Roland A1 - Kaiser, M. T1 - Evidence for the formation of difluoroacetic acid in chlorofluorocarbon-contaminated ground water N2 - The concentrations of difluoroacetic acid (DFA) and trifluoroacetic acid (TFA) in rainwater and surface water from Berlin, Germany resembled those reported for similar urban areas, and the TFA/DFA ratio in rainwater of 10:1 was in accordance with the literature. In contrast, nearby ground water historically contaminated with 1,1,2-trichloro-1,2,2-trifluoroethane (R113) displayed a TFA/DFA ratio of 1:3. This observation is discussed versus the inventory of microbial Degradation products present in this ground water along with the parent R113 itself. A microbial Transformation of chlorotrifluoroethylene (R1113) to DFA so far has not been reported for environmental media, and is suggested based on well-established mammalian metabolic pathways. KW - Fluoroacetic acid KW - DFA KW - TFA KW - Rainwater KW - Ground water KW - Degradation of refrigerants PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475569 DO - https://doi.org/10.3390/molecules24061039 SN - 1420-3049 VL - 24 IS - 6 SP - 1039, 1 EP - 6 PB - MDPI CY - Basel AN - OPUS4-47556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Carl, Peter A1 - Ramos, Inês I. A1 - Segundo, Marcela A. A1 - Schneider, Rudolf T1 - Antibody conjugation to carboxyl-modified microspheres through N-hydroxysuccinimide chemistry for automated immunoassay applications: A general procedure N2 - Immunochemical techniques are the workhorse for sample enrichment and detection of a large variety of analytes. In contrast to classical microtiter plate-based assays, microparticles are a next generation solid support, as they promote automation of immunoassays using flow-based techniques. Antibody immobilization is a crucial step, as these reagentsmare expensive, and inefficient coupling can result in low sensitivities. This paper proposes a general procedure for efficient immobilization of antibodies onto TentaGel particles, via Nhydroxysuccinimide chemistry. The goal was the preparation of solid supports with optimum immunorecognition, while increasing the sustainability of the process. The influence of buffer composition, activation and coupling time, as well as the amount of antibody on the immobilization efficiency was investigated, resorting to fluorophore-labeled proteins and fluorescence imaging. Buffer pH and activation time are the most important parameters for efficient coupling. It is demonstrated, that the hydrolysis of N-hydroxysuccinimide esters occurs at similar rates as in solution, limiting the utilizable time for coupling. Finally, applicability of the generated material for automated affinity extraction is demonstrated on the mesofluidic platform lab-on-valve. KW - Mesofluidics KW - Bead injections KW - ELISA KW - Carbamazepine KW - Biomarkers PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483919 DO - https://doi.org/10.1371/journal.pone.0218686 SN - 1932-6203 VL - 14 IS - 6 SP - e0218686, 1 EP - 18 PB - Public Library of Science CY - San Francisco, California, USA AN - OPUS4-48391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Rashid, R. A1 - Munir, R. A1 - Zaidi, N. T1 - Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia N2 - Background: Cancer cells modify the balance between fatty acid (FA) synthesis and uptake under metabolic stress, induced by oxygen/nutrient deprivation. These modifications were shown to alter the levels of individual triglyceride (TG) or phospholipid sub-species. To attain a holistic overview of the lipidomic profiles of cancer cells under stress we performed a broad lipidomic assay, comprising 244 lipids from six major classes. This assay allowed us to perform robust analyses and assess the changes in averages of broader lipid-classes, stratified on the basis of saturation index of their fatty-acyl side chains. Methods: Global lipidomic profiling using Liquid Chromatography-Mass Spectrometry was performed to assess lipidomic profiles of biologically diverse cancer cell lines cultivated under metabolically stressed conditions. Results: Neutral lipid compositions were markedly modified under serum-deprived conditions and, strikingly, the cellular level of triglyceride subspecies decreased with increasing number of double bonds in their fatty acyl chains. In contrast and unexpectedly, no robust changes were observed in lipidomic profiles of hypoxic (2% O2) cancer cells despite concurrent changes in proliferation rates and metabolic gene expression. Conclusions: Serum-deprivation significantly affects lipidomic profiles of cancer cells. Although, the levels of individual lipid moieties alter under hypoxia (2% O2), the robust averages of broader lipid classes remain unchanged. KW - Tumor metabolism KW - Fatty acid metabolism KW - Lipidomic profile KW - Metabolic stress PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483186 DO - https://doi.org/10.1186/s12885-019-5733-y SN - 1471-2407 VL - 19 SP - 501 PB - Springer Nature CY - Berlin AN - OPUS4-48318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reimann, C. A1 - Brangsch, J. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. C. A1 - Thöne-Reineke, C. A1 - Robinson, S. P. A1 - Hamm, B. A1 - Botnar, R. M. A1 - Makowski, M. R. T1 - Dual-probe molecular MRI for the in vivo characterization of atherosclerosis in a mouse model: Simultaneous assessment of plaque inflammation and extracellular matrix remodeling N2 - Molecular MRI is a promising in-vivo modality to detect and quantify morphological and molecular vessel-wall changes in atherosclerosis. The combination of different molecular biomarkers may improve the risk stratification of patients. This study aimed to investigate the feasibility of simultaneous visualization and quantification of plaque-burden and inflammatory activity by dual-probe molecular MRI in a mouse-model of progressive atherosclerosis and in response-to-therapy. Homozygous apolipoprotein E knockout mice (ApoE−/−) were fed a high-fat-diet (HFD) for up to four-months prior to MRI of the brachiocephalic-artery. To assess response-to-therapy, a statin was administered for the same duration. MR imaging was performed before and after administration of an elastin-specific gadolinium-based and a macrophage-specific iron-oxide-based probe. Following in-vivo MRI, samples were analyzed using histology, immunohistochemistry, inductively-coupled-mass-spectrometry and laser-inductively-coupled-mass-spectrometry. In atherosclerotic-plaques, intraplaque expression of elastic-fibers and inflammatory activity were not directly linked. While the elastin-specific probe demonstrated the highest accumulation in advanced atherosclerotic-plaques after four-months of HFD, the iron-oxide-based probe showed highest accumulation in early atherosclerotic-plaques after two months of HFD. In-vivo measurements for the elastin and iron-oxide-probe were in good agreement with ex-vivo histopathology (Elastica-van-Giesson stain: y = 298.2 + 5.8, R2 = 0.83, p < 0.05; Perls‘ Prussian-blue-stain: y = 834.1 + 0.67, R2 = 0.88, p < 0.05). Contrast-to-noise-ratio (CNR) measurements of the elastin probe were in good agreement with ICP-MS (y = 0.11x-11.3, R² = 0.73, p < 0.05). Late stage atherosclerotic-plaques displayed the strongest increase in both CNR and gadolinium concentration (p < 0.05). The gadolinium probe did not affect the visualization of the iron-oxide-probe and vice versa. This study demonstrates the feasibility of simultaneous assessment of plaque-burden. KW - Gadolinium KW - Elastin KW - Probe KW - Iron oxide KW - Ferumoxytol PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497066 DO - https://doi.org/10.1038/s41598-019-50100-8 VL - 9 SP - 13827 PB - Springer Nature AN - OPUS4-49706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Marco A1 - Weller, Michael G. T1 - Affinitätschromatografie - Neues Trägermaterial aus Borosilikatglas N2 - Therapeutische Antikörper sind innerhalb weniger Jahre zur wichtigsten pharmazeutischen Produktklasse aufgestiegen. Für 2023 werden weltweite Umsätze von über 200 Milliarden USD erwartet. Auch diagnostische Antikörper sind mittlerweile unverzichtbare Produkte, auf deren Basis zahllose Immunoassays und andere Schnelltests entwickelt wurden. Neben der bereits sehr aufwendigen Herstellung von Antikörpern ist deren Aufreinigung aus komplexen Zellkulturmedien oder Blutseren und -plasmen zu einem Engpass in der Produktion und Nutzung dieser komplexen Proteine geworden. Schnelle und einfache Reinigungsmethoden für Antikörper sind daher sehr gefragt. KW - Affinitätschromatographie KW - Affinitätsextraktion KW - Antikörper KW - Glasmonolith KW - Additive Fertigung KW - IgG KW - Immunglobulin KW - HPLC KW - FPLC KW - biokompatibel KW - Borosilikatglas KW - gesintert KW - Titan-Halterung KW - Druckstabilität PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477490 UR - https://www.chemiextra.com/ IS - 4 SP - 16 EP - 17 PB - Sigwerb CY - Zug AN - OPUS4-47749 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Paul, Martin A1 - Weller, Michael G. T1 - Antibody Screening by Microarray Technology – Direct Identification of Selective High-Affinity Clones N2 - The primary screening of hybridoma cells is a time-critical and laborious step during the development of monoclonal antibodies. Often critical errors occur in this phase, which supports the notion that the generation of monoclonal antibodies with hybridoma technology is difficult to control and hence a risky venture. We think that it is crucial to improve the screening process to eliminate most of the immanent deficits of the conventional approach. With this new microarray-based procedure, several advances could be achieved: Selectivity for excellent binders, high throughput, reproducible signals, avoidance of misleading avidity (multivalency) effects, and simultaneous performance of competition experiments. The latter can directly be used to select clones of desired cross-reactivity properties. In this paper, a model system with two excellent clones against carbamazepine, two weak clones and blank supernatant has been designed to examine the effectiveness of the new system. The excellent clones could be detected largely independent of the IgG concentration, which is unknown during the clone screening since the determination and subsequent adjustment of the antibody concentration is not possible in most cases. Furthermore, in this approach, the enrichment, isolation, and purification of IgG for characterization is not necessary. Raw cell culture supernatant can be used directly, even when fetal calf serum (FCS) or other complex media had been used. In addition, an improved method for the oriented antibody-immobilization on epoxy-silanized slides is presented. Based on the results of this model system, we conclude that this approach should be preferable to most other protocols leading to many of false positives, causing expensive and lengthy confirmation steps to weed out the poor clones. KW - Hybridoma KW - Monoclonal Antibodies KW - Clones KW - Competitive Immunoassay KW - Hapten Immunoassay KW - False Positives PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506621 DO - https://doi.org/10.20944/preprints201911.0023.v1 SN - 2310-287X SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - Glucosylation and Glutathione Conjugation of Chlorpyrifos and Fluopyram Metabolites Using Electrochemistry/Mass Spectrometry N2 - Xenobiotics and their reactive metabolites are conjugated with native biomolecules such as glutathione and glucoside during phase II metabolism. Toxic metabolites are usually detoxified during this step. On the other hand, these reactive species have a potential health impact by disrupting many enzymatic functions. Thus, it is crucial to understand phase II conjugation reactions of xenobiotics in order to address their fate and possible toxicity mechanisms. Additionally, conventional methods (in vivo and in vitro) have limitation due to matrix complexity and time-consuming. Hence, developing fast and matrix-free alternative method is highly demandable. In this work, oxidative phase I metabolites and reactive species of chlorpyrifos (insecticide) and fluopyram (fungicide) were electrochemically produced by using a boron-doped diamond electrode coupled online to electrospray mass spectrometry (ESI-MS). Reactive species of the substrates were trapped by biomolecules (glutathione and glucoside) and phase II conjugative metabolites were identified using liquid chromatography (LC)-MS/MS, and/or Triple time of flight (TripleTOF)-MS. Glutathione conjugates and glucosylation of chlorpyrifos, trichloropyridinol, oxon, and monohydroxyl fluopyram were identified successfully. Glutathione and glucoside were conjugated with chlorpyrifos, trichloropyridinol, and oxon by losing a neutral HCl. In the case of fluopyram, its monohydroxyl metabolite was actively conjugated with both glutathione and glucoside. In summary, seven bioconjugates of CPF and its metabolites and two bioconjugates of fluopyram metabolites were identified using electrochemistry (EC)/MS for the first time in this work. The work could be used as an alternative approach to identify glutathione and glucosylation conjugation reactions of other organic compounds too. It is important, especially to predict phase II conjugation within a short time and matrix-free environment. KW - Pesticide KW - Bioconjugation KW - Oxidative metabolism KW - EC/MS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475932 DO - https://doi.org/10.3390/molecules24050898 VL - 24 IS - 5 SP - 898 EP - 910 PB - MDPI AN - OPUS4-47593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwaar, Timm A1 - Lettow, Maike A1 - Remmler, Dario A1 - Börner, H. G. A1 - Weller, Michael G. T1 - Efficient Screening of Combinatorial Peptide Libraries by Spatially Ordered Beads Immobilized on Conventional Glass Slides N2 - Screening of one-bead-one-compound (OBOC) libraries is a proven procedure for the identification of protein-binding ligands. The demand for binders with high affinity and specificity towards various targets has surged in the biomedical and pharmaceutical field in recent years. The traditional peptide screening involves tedious steps such as affinity selection, bead picking, sequencing, and characterization. Herein, we present a high-throughput “all-on-one chip” system to avoid slow and technically complex bead picking steps. On a traditional glass slide provided with an electrically conductive tape, beads of a combinatorial peptide library are aligned and immobilized by application of a precision sieve. Subsequently, the chip is incubated with a fluorophore-labeled target protein. In a fluorescence scan followed by matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectrometry, high-affinity binders are directly and unambiguously sequenced with high accuracy without picking of the positive beads. The use of an optimized ladder sequencing approach improved the accuracy of the de-novo sequencing step to nearly 100%. The new technique was validated by employing a FLAG-based model system, identifying new peptide binders for the monoclonal M2 anti-FLAG antibody, and was finally utilized to search for IgG-binding peptides. In the present format, more than 30,000 beads can be screened on one slide. KW - Peptide library KW - HTS KW - Target KW - MALDI KW - Mass spectrometry KW - Biochip KW - Lab-on-a-Chip KW - Array KW - Screening KW - Ladder sequencing KW - Binder KW - Pharmaceutical PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478973 UR - https://www.mdpi.com/2571-5135/8/2/11 DO - https://doi.org/10.3390/ht8020011 VL - 8 IS - 2 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-47897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sarma, Dominik A1 - Carl, Peter A1 - Climent Terol, Estela A1 - Schneider, Rudolf A1 - Rurack, Knut T1 - Multifunctional polystyrene core/silica shell microparticles with antifouling properties for bead-based multiplexed and quantitative analysis N2 - Commercial bead-based assays are commonly built upon polystyrene particles. The polymeric carrier can be encoded with organic dyes and has ideal material properties for cytometric applications such as low density and high refractive index. However, functional groups are conventionally integrated during polymerization and subsequent modification is limited to the reactivity of those groups. Additionally, polystyrene as the core material leads to many hydrophobic areas still being present on the beads’ surfaces even after functionalization, Rendering the particles prone to nonspecific adsorption during an application. The latter calls for several washing steps and the use of additives in (bio)analytical assays. In this contribution, we show how these limitations can be overcome by using monodisperse polystyrene (PS) core/silica (SiO2) shell particles (SiO2@PS). Two different hydrophobic BODIPY (boron−dipyrromethene) dyes were encapsulated inside a poly(vinylpyrrolidone) (PVP) -stabilized polystyrene core in different concentrations to create 5-plex arrays in two separate detection channels of a cytometer. A subsequent modification of the silica shell with an equimolar APTES/PEGS (aminopropyltriethoxysilane/polyethylene glycol silane) blend added multifunctional properties to the hybrid core/Shell microparticles in a single step: APTES provides amino groups for the attachment of a caffeine derivative (as a hapten) to create antigen-coupled microspheres; the PEG moiety effectively suppresses nonspecific binding of antibodies, endowing the surface with antifouling properties. The particles were applied in a competitive fluorescence immunoassay in suspension, and a highly selective wash-free assay for the detection of caffeine in beverages was developed as a proof of concept. KW - Core−shell particles KW - Bead-based assay KW - Multiplex KW - Antifouling surface KW - Mixed surface PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472931 UR - https://pubs.acs.org/doi/10.1021/acsami.8b10306 DO - https://doi.org/10.1021/acsami.8b10306 SN - 1944-8244 VL - 11 IS - 1 SP - 1321 EP - 1334 PB - American Chemical Society CY - Online Library AN - OPUS4-47293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation Crosslinking - An Efficient Method for the Oriented Immobilization of Antibodies N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein A KW - Protein G KW - Immunoprecipitation KW - Immunocapture KW - Regeneration KW - Biosensor KW - Immunosensor KW - Affinity chromatography KW - Immunoaffinity extraction KW - Oriented immobilization KW - Immunoassay KW - Bioconjugation PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479786 DO - https://doi.org/10.3390/mps2020035 SN - 2409-9279 VL - 2 IS - 2 SP - 1 EP - 14 PB - MDPI CY - Basel, Switzerland AN - OPUS4-47978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borzekowski, Antje A1 - Drewitz, T. A1 - Keller, Julia A1 - Pfeifer, Dietmar A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Rohn, S. A1 - Maul, R. T1 - Biosynthesis and characterization of zearalenone-14-sulfate, zearalenone-14-glucoside and zearalenone-16-glucoside using common fungal strains N2 - Zearalenone (ZEN) and its phase II sulfate and glucoside metabolites have been detected in food and feed commodities. After consumption, the conjugates can be hydrolyzed by the human intestinal microbiota leading to liberation of ZEN that implies an underestimation of the true ZEN exposure. To include ZEN conjugates in routine analysis, reliable standards are needed, which are currently not available. Thus, the aim of the present study was to develop a facilitated biosynthesis of ZEN-14-sulfate, ZEN-14-glucoside and ZEN-16-glucoside. A metabolite screening was conducted by adding ZEN to liquid fungi cultures of known ZEN conjugating Aspergillus and Rhizopus strains. Cultivation conditions and ZEN incubation time were varied. All media samples were analyzed for metabolite formation by HPLC-MS/MS. In addition, a consecutive biosynthesis was developed by using Fusarium graminearum for ZEN biosynthesis with subsequent conjugation of the toxin by utilizing Aspergillus and Rhizopus species. ZEN-14-sulfate (yield: 49%) is exclusively formed by Aspergillus oryzae. ZEN-14-glucoside (yield: 67%) and ZEN-16-glucoside (yield: 39%) are formed by Rhizopus oryzae and Rhizopus oligosporus, respectively. Purities of ≥73% ZEN-14-sulfate, ≥82% ZEN-14-glucoside and ≥50% ZEN-16-glucoside were obtained by 1H-NMR. In total, under optimized cultivation conditions, fungi can be easily utilized for a targeted and regioselective synthesis of ZEN conjugates. KW - Mycotoxin KW - Zearalenone KW - Conjugate KW - Biosynthesis KW - Fusarium KW - Aspergillus KW - Rhizopus PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444246 DO - https://doi.org/10.3390/toxins10030104 SN - 2072-6651 VL - 10 IS - 3 SP - Article 104, 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-44424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Die 3D-Mikrofluidik mit molekular geprägten Polymerpartikeln eröffnet neue Möglichkeiten der selektiven Pestizid-Bestimmung in Wasser N2 - 2,4-D ist ein in der Landwirtschaft weitverbreitetes Pflanzenschutzmittel, das Grundwasser kontaminiert, sich innerhalb der Nahrungskette anreichert und Umwelt- und Gesundheitsprobleme verursachen kann. Hier stellen die Autoren ein mikrofluidisches Nachweissystem für die Echtzeitdetektion von 2,4-D in Grund- oder Oberflächenwasser vor. Es basiert auf der Kombination 2,4-D-selektiver, fluoreszierender, molekular geprägter Polymer-(MIP-)Mikropartikel mit einem 3D-mikrofluidischen Extraktions- und Detektionssystem. Messungen vor Ort sollen damit künftig möglich sein. KW - 3D-Mikrofluidik KW - Sensorpartikel KW - MIP KW - Pestizid PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444781 UR - https://www.labo.de/epaper/LA0318/index.html SN - 0344-5208 IS - 3 SP - 10 EP - 13 PB - WEKA Business Medien GmbH AN - OPUS4-44478 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laux, P. A1 - Tentschert, J. A1 - Riebeling, Ch. A1 - Braeuning, A. A1 - Creutzenberg, O. A1 - Epp, A. A1 - Fessard, V. A1 - Haas, K.-H. A1 - Haase, A. A1 - Hund-Rinke, K. A1 - Jakubowski, Norbert A1 - Kearns, P. A1 - Lampen, A. A1 - Rauscher, H. A1 - Schoonjans, R. A1 - Störmer, A. A1 - Thielmann, A. A1 - Mühle, U. A1 - Luch, A. T1 - Nanomaterials: certain aspects of application, risk assessment and risk communication N2 - Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public. KW - Nanomaterials KW - Toxicity KW - Ecotoxicity KW - Standardization KW - Exposure PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-441096 DO - https://doi.org/10.1007/s00204-017-2144-1 VL - 92 IS - 1 SP - 121 EP - 141 PB - Springer AN - OPUS4-44109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meyer, S. A1 - López-Serrano, Ana A1 - Mitze, H. A1 - Jakubowski, Norbert A1 - Schwerdtle, T. T1 - Single-cell analysis by ICP-MS/MS as a fast tool for cellular bioavailability studies of arsenite N2 - Single-cell inductively coupled plasma mass spectrometry (SC-ICP-MS) has become a powerful and fast tool to evaluate the elemental composition at a single-cell level. In this study, the cellular bioavailability of arsenite (incubation of 25 and 50 μM for 0-48 h) has been successfully assessed by SC-ICP-MS/MS for the first time directly after re-suspending the cells in water. This procedure avoids the normally arising cell membrane permeabilization caused by cell fixation methods (e.g. methanol fixation). The reliability and feasibility of this SC-ICP-MS/MS approach with a limit of detection of 0.35 fg per cell was validated by conventional bulk ICP-MS/MS analysis after cell digestion and parallel measurement of sulfur and phosphorus. KW - Single-cell analysis KW - ICP-MS/MS KW - Arsenite PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-441105 DO - https://doi.org/10.1039/c7mt00285h SN - 1756-5901 VL - 10 IS - 1 SP - 73 EP - 76 PB - RSC Publ. CY - Cambridge AN - OPUS4-44110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Haase, H. A1 - Menzel, R. A1 - Rueß, L. A1 - Koch, Matthias T1 - Toxicity assay for citrinin, zearalenone and zearalenone-14-sulfate using the nematode Caenorhabditis elegans as model organism N2 - To keep pace with the rising number of detected mycotoxins, there is a growing need for fast and reliable toxicity tests to assess the potential threat to food safety. Toxicity tests with the bacterial-feeding nematode Caenorhabditis elegans as model organism are well established. In this study the C. elegans wildtype strain N2 (var. Bristol) was used to investigate the toxic effects of the food-relevant mycotoxins citrinin (CIT) and zearalenone-14-sulfate (ZEA-14-S) and zearalenone (ZEA) on different life cycle parameters including reproduction, thermal and oxidative stress resistance and lifespan. The metabolization of the mycotoxins by the nematodes in vivo was investigated using HPLC-MS/MS. ZEA was metabolized in vivo to the reduced isomers α-zearalenol (α-ZEL) and β-ZEL. ZEA 14-S was reduced to α-/β-ZEL 14-sulfate and CIT was metabolized to mono-hydroxylated CIT. All mycotoxins tested led to a significant decrease in the number of nematode offspring produced. ZEA and CIT displayed negative effects on stress tolerance levels and for CIT an additional shortening of the mean lifespan was observed. In the case of ZEA-14-S, however, the mean lifespan was prolonged. The presented study shows the applicability of C. elegans for toxicity testing of emerging food mycotoxins for the purpose of assigning potential health threats. KW - Mycotoxins KW - Metabolization KW - Toxicity testing KW - Biotests PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-455772 DO - https://doi.org/10.3390/toxins10070284 VL - 10 IS - 7 SP - 284, 1 EP - 12 PB - MDPI AN - OPUS4-45577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alnajjar, M. A. A1 - Bartelmeß, Jürgen A1 - Hein, R. A1 - Ashokkumar, Pichandi A1 - Nilam, M. A1 - Nau, W. M. A1 - Rurack, Knut A1 - Hennig, A. T1 - Rational design of boron-dipyrromethene (BODIPY) reporter dyes for cucurbit[7]uril N2 - We introduce herein boron-dipyrromethene (BODIPY) dyes as a new class of fluorophores for the design of reporter dyes for supramolecular host–guest complex formation with cucurbit[7]uril (CB7). The BODIPYs contain a protonatable aniline nitrogen in the meso-position of the BODIPY chromophore, which was functionalized with known binding motifs for CB7. The unprotonated dyes show low fluorescence due to photoinduced electron transfer (PET), whereas the protonated dyes are highly fluorescent. Encapsulation of the binding motif inside CB7 positions the aniline nitrogen at the carbonyl rim of CB7, which affects the pKa value, and leads to a host-induced protonation and thus to a fluorescence increase. The possibility to tune binding affinities and pKa values is demonstrated and it is shown that, in combination with the beneficial photophysical properties of BODIPYs, several new applications of host–dye reporter pairs can be implemented. This includes indicator displacement assays with favourable absorption and emission wavelengths in the visible spectral region, fluorescence correlation spectroscopy, and noncovalent surface functionalization with fluorophores. KW - BODIPY KW - Cucurbituril KW - Fluorescence KW - PH KW - Photoinduced Electron Transfer KW - Supramolecular Chemistry PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456361 UR - https://www.beilstein-journals.org/bjoc/content/pdf/1860-5397-14-171.pdf DO - https://doi.org/10.3762/bjoc.14.171 SN - 1860-5397 VL - 14 SP - 1961 EP - 1971 PB - Beilstein-Institut CY - Frankfurt a. M. AN - OPUS4-45636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wittkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding in time-domain flow cytometry N2 - Time-resolved flow cytometry represents an alternative to commonly applied spectral or intensity multiplexing in bioanalytics. At present, the vast majority of the reports on this topic focuses on phase-domain techniques and specific applications. In this report, we present a flow cytometry platform with time-resolved detection based on a compact setup and straightforward time-Domain measurements utilizing lifetime-encoded beads with lifetimes in the nanosecond range. We provide general assessment of time-domain flow cytometry and discuss the concept of this platform to address achievable resolution limits, data analysis, and requirements on suitable encoding dyes. Experimental data are complemented by numerical calculations on photon count numbers and impact of noise and measurement time on the obtained lifetime values. KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465765 DO - https://doi.org/10.1038/s41598-018-35137-5 SN - 2045-2322 VL - 8 IS - 1 SP - 16715, 1 EP - 11 PB - Nature CY - London AN - OPUS4-46576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Moldenhauer, Daniel A1 - Byrne, L. A1 - Haase, H. A1 - Resch-Genger, Ute A1 - Koch, Matthias T1 - Complexes of the mycotoxins citrinin and ochratoxin A with aluminum ions and their spectroscopic properties N2 - The sensitive detection of the mycotoxin citrinin (CIT) utilizing ist fluorescence requires approaches to enhance the emission. In this respect, we studied the complexation of CIT and ochratoxin A (OTA) with Al3+ in methanol using absorption and fluorescence spectroscopy. In this context, an isocratic high performance liquid chromatography (HPLC) method using a polymer column and a fluorescence detector was also developed that enables the separation of the metal ion complexes from the free ligands and non-complexed Al3+. CIT and OTA showed distinct changes in their absorption and fluorescence properties upon Al3+-coordination, and the fluorescence of CIT was considerably enhanced. Analysis of the photometrically assessed titration of CIT and OTA with Al3+ using the Job plot method revealed 1:2 and 1:1 stoichiometries for the Al3+ complexes of CIT (Al:CIT) and OTA (Al:OTA), respectively. In the case of CIT, only one -diketone moiety participates in Al3+ coordination. These findings can be elegantly exploited for signal amplification and provide the base to reduce the limit of detection for CIT quantification by about an order of magnitude, as revealed by HPLC measurements using a fluorescence detector. KW - Complexation KW - Aluminum KW - Fluorescence KW - Job plot KW - HPLC-DAD/FLD PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-470502 DO - https://doi.org/10.3390/toxins10120538 SN - 2072-6651 VL - 10 IS - 12 SP - 538, 1 EP - 8 PB - MDPI CY - Basel AN - OPUS4-47050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Hecht, Mandy A1 - Witthuhn, Heike A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Cover profile for the article "Mix‐&‐read determination of Mercury(II) at trace levels with hybrid mesoporous silica materials incorporating fluorescent probes by a simple mix‐&‐load technique" N2 - Invited for this month’s cover picture is the group of Dr. Knut Rurack at the Department of Analytical Chemistry; Reference Materials at the Bundesanstalt fuer Materialforschung und -pruefung (BAM) in Berlin (Germany). The cover picture shows how differences in color and fluorescence on a test strip can be easily read out with a mobile device. Two reference spots Frame the sensitive spot that indicates the presence of trace amounts of HgII below the threshold in a natural water sample. This dipstick contains a hybrid material that combines boron-dipyrromethene (BODIPY) probes sterically loaded into specifically tailored mesoporous silica particles, allowing for ultrasensitive HgII detection through enhanced fluorescence in a few seconds. The applicability in real water samples and fish extracts are also studied. KW - Mercury KW - Fluorescence KW - Dip-stick assay KW - Group profile PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471267 DO - https://doi.org/10.1002/open.201800231 SN - 2191-1363 VL - 7 IS - 12 SP - 932 EP - 933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-47126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeise, I. A1 - Heiner, Z. A1 - Holz, S. A1 - Joester, Maike A1 - Buttner, C. A1 - Kneipp, Janina T1 - Raman imaging of plant cell walls in sections of cucumis sativus N2 - Raman microspectra combine information on chemical composition of plant tissues with spatial information. The contributions from the building blocks of the cell walls in the Raman spectra of plant tissues can vary in the microscopic sub-structures of the tissue. Here, we discuss the analysis of 55 Raman maps of root, stem, and leaf tissues of Cucumis sativus, using different spectral contributions from cellulose and lignin in both univariate and multivariate imaging methods. Imaging based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) indicates different substructures in the xylem cell walls of the different tissues. Using specific signals from the cell wall spectra, analysis of the whole set of different tissue sections based on the Raman images reveals differences in xylem tissue morphology. Due to the specifics of excitation of the Raman spectra in the visible wavelength range (532 nm), which is, e.g., in resonance with carotenoid species, effects of photobleaching and the possibility of exploiting depletion difference spectra for molecular characterization in Raman imaging of plants are discussed. The reported results provide both, specific information on the molecular composition of cucumber tissue Raman spectra, and general directions for future imaging studies in plant tissues. KW - Raman KW - Imaging KW - Pants PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474610 DO - https://doi.org/10.3390/plants7010007 SN - 2223-7747 VL - 7 IS - 1 SP - 7, 1 EP - 16 PB - MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND AN - OPUS4-47461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Mit Tröpfchen Spielen N2 - Mikrofluidische Systeme sind leistungsstarke analytische Tools mit attraktiven Eigenschaften wie miniaturisierter Größe, geringem Reagenzien und Probenverbrauch, schneller Ansprech- und kurzer Messzeit. Der Bedarf solcher leistungsstarken, miniaturisierten und direkt vor Ort anwendbaren Sensorsysteme steigt kontinuierlich, hauptsächlich durch das Bedürfnis der Gesellschaft, schneller, besser und umfassender über kritische Faktoren im Lebens- und Arbeitsumfeld sowie der Umwelt informiert zu sein. KW - Mikrofluidik KW - Sensorpartikel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459120 UR - https://www.git-labor.de/forschung/umwelt/mit-troepfchen-spielen VL - 8 IS - 8 SP - 2 EP - 4 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim, Deutschland AN - OPUS4-45912 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Playing with Droplets N2 - Microfluidic devices are powerful analytical tools with appealing features such as miniaturized size, low reagent and sample consumption, rapid response and short measurement times. As society wants to be ever better, earlier and more comprehensively informed about critical factors in life, work, and the environment, the demand for powerful measurement devices for use outside of the laboratory constantly increases. KW - Microfluidics KW - Sensory particles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459131 UR - https://www.laboratory-journal.com/ VL - 4 SP - 2 EP - 4 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim, Deutschland AN - OPUS4-45913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Hantschke, Luisa A1 - Haase, H. A1 - Koch, Matthias T1 - Synthesis and Structural Identification of a Biaryl Ether-Linked Zearalenone Dimer N2 - A new dimer of the food-relevant mycotoxin zearalenone was isolated after electrochemical and chemical oxidation. The structure was determined as a 16-O-15'-biaryl ether-linked dimer based on spectroscopic analyses (1H- and 13C-NMR, COSY, HMBC, and HSQCAD) and high-Resolution mass spectrometry analysis (Q-TOF). KW - Mycotoxin KW - Dimerization KW - HRMS KW - NMR PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464940 DO - https://doi.org/10.3390/molecules23102624 SN - 1420-3049 VL - 23 IS - 10 SP - 2624 EP - 2628 PB - MDPI CY - Basel AN - OPUS4-46494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, Sabrina A1 - Zimmermann, B. A1 - Bagcioglu, M. A1 - Seifert, Stephan A1 - Kohler, A. A1 - Ohlson, M. A1 - Fjellheim, S. A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows adaption of grass pollen composition N2 - MALDI time-of-flight mass spectrometry (MALDI-TOF MS) has become a widely used tool for the classification of biological samples. The complex chemical composition of pollen grains leads to highly specific, fingerprint-like mass spectra, with respect to the pollen species. Beyond the species-specific composition, the variances in pollen chemistry can be hierarchically structured, including the level of different populations, of environmental conditions or different genotypes. We demonstrate here the sensitivity of MALDI-TOF MS regarding the adaption of the chemical composition of three Poaceae (grass) pollen for different populations of parent plants by analyzing the mass spectra with partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Thereby, variances in species, population and specific growth conditions of the plants were observed simultaneously. In particular, the chemical pattern revealed by the MALDI spectra enabled discrimination of the different populations of one species. Specifically, the role of environmental changes and their effect on the pollen chemistry of three different grass species is discussed. Analysis of the Group formation within the respective populations showed a varying influence of plant genotype on the classification, depending on the species, and permits conclusions regarding the respective rigidity or plasticity towards environmental changes. KW - Pollen KW - MALDI-TOF MS KW - Classification KW - Partial least square discriminant analysis (PLS-DA) KW - Principal component analysis (PCA) PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465294 DO - https://doi.org/10.1038/s41598-018-34800-1 SN - 2045-2322 VL - 8 IS - 1 SP - 16591, 1 EP - 11 PB - Nature AN - OPUS4-46529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Hecht, Mandy A1 - Witthuhn, Heike A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Mix‐&‐read determination of Mercury(II) at trace levels with hybrid mesoporous silica materials incorporating fluorescent probes by a simple mix‐&‐load technique N2 - The synthesis, characterization, and application of mesoporous materials containing boron–dipyrromethene (BODIPY) moieties that allow the sensitive and selective detection of HgII in aqueous environments by fluorescence enhancement is reported. For this purpose, BODIPY dye I containing a thia‐aza crown ether receptor as the fluorescent probe for the detection of HgII in aqueous environments is encapsulated into mesoporous materials to avoid self‐quenching or aggregation in water. Determination of HgII is accomplished within a few seconds with high selectivity and sensitivity, reaching a limit of detection of 12 ppt. The determination of trace amounts of HgII in natural waters and in fish extracts is demonstrated by using our sensing material. The incorporation of the material into several μ‐PAD strips yields a portable, cheap, quick, and easy‐to‐handle tool for trace HgII analysis in water. KW - Dyes/pigments KW - Test strips KW - Mesoporous materials KW - Mercury KW - Fluorescence PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-460138 DO - https://doi.org/10.1002/open.201800277 SN - 2191-1363 VL - 7 IS - 12 SP - 957 EP - 968 PB - Wiley-VCH CY - Weinheim AN - OPUS4-46013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Scharf, Holger A1 - Lkhagvasuren, B. A1 - Oyuntungalag, U. A1 - Rausch, J. T1 - Certified reference material for determination of total cyanide in soil [BAM-U116/CGL306] N2 - CRM (Certified Reference Material) BAM-U116/CGL306 “Cyanide in soil” was produced within a framework of cooperation between CGL (Central Geological Laboratory) of Mongolia and Federal Institute for Materials Research and Testing (BAM) of Germany in 2013-2017. The CRM BAM-U116/CGL306 represents a mixture of a sandy soil collected from a contaminated former gasworks area in the Berlin region (Germany) and an unpolluted sandy soil from Nalaikh region (Mongolia). The bulk candidate material for this reference material was prepared at CGL CRM Laboratory exclusively destined to the preparation of reference materials and equipped with modern technical equipment. Homogeneity, stability and shelf life were studied in full compliance with ISO Guide 35. The CRM was evaluated as sufficiently homogeneous. Statistical evaluation of certification analysis was software packages SoftCRM and ProLab Plus. Certified value of total cyanide of the CRM is 12.0 mg/kg and expanded uncertainty was assigned as 0.8 mg/kg. The intended purpose of this material is the verification of analytical results obtained for the mass fraction of total cyanide in soils and soil-like materials applying the standardized procedure ISO 11262:2011. As any reference material, it can also be used for routine performance checks (quality control charts) or validation studies. KW - CRM KW - Cyanide in soil KW - Total cyanide PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469694 DO - https://doi.org/10.17265/2162-5263/2018.04.004 SP - 149 EP - 161 PB - David Publishing AN - OPUS4-46969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Voll integrierte und vernetzte Systeme und Prozesse - Perspektive: Smarte Sensorik, Aktorik und Kommunikation T1 - Fully integrated distributed systems and processes – Perspective: Smart sensors, actuators, and communication N2 - Unternehmen der chemischen Industrie müssen neuen Pfade beschreiten, um in einem veränderten Umfeld erfolgreich bestehen zu können. Dazu gehört insbesondere, das Potenzial digitaler Technologien zu nutzen. Die volle Integration und intelligente Vernetzung von Systemen und Prozessen kommt allerdings nur zögerlich voran. Dieser Beitrag ist ein Loblied auf die Feldebene. Er möchte dazu ermutigen, die Digitalisierung der Prozessindustrie auf Basis smarter Sensorik, Aktorik und Kommunikation ganzheitlicher zu denken und informiert über aktuelle technische Perspektiven, wie das Ein-Netzwerk-Paradigma, Ad-hoc-Vernetzungen, Edge-Computing, FPGAs, virtuelle Maschinen oder Blockchain. Diese geben smarter Sensorik, Aktorik und Kommunikation eine völlig neue Perspektive. N2 - Chemical companies must find new paths to success in a changing environment. In particular, this will involve exploiting the potential of digital technologies. However, the full integration and intelligent interconnection of systems and processes is only making slow progress. This contribution aims to encourage the more comprehensive use of digitization in the process industry based on smart sensors, actuators, and communications, and informs about current technical possibilities such as the “one-network paradigm”, ad-hoc connections, edge computing, FPGAs, virtual machines and blockchain. These offer a new scope for smart sensors, actuators, and communications. KW - Smarte Sensoren KW - Smarte Aktoren KW - Digitalisierung der Prozessindustrie KW - Prouess-Sensoren 4.0 KW - Smart sensors KW - Smart actuators KW - Digitization of process industry KW - Process sensors 4.0 PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-466642 DO - https://doi.org/10.17560/atp.v60i10.2376 SN - 2364-3137 VL - 60 IS - 10 SP - 70 EP - 85 PB - Vulkan Verlag CY - Essen AN - OPUS4-46664 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abbas, Ioana M. A1 - Vranic, M. A1 - Hoffmann, Holger A1 - El-Khatib, Ahmed H. A1 - Montes-Bayón, M. A1 - Möller, H. M. A1 - Weller, Michael G. T1 - Investigations of the copper peptide hepcidin-25 by LC-MS/MS and NMR (+) N2 - Hepcidin-25 was identified as the main iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II)-binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandem mass spectrometry (MS/MS), high-resolution mass spectrometry HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or reference material comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others. KW - Metalloprotein KW - Peptide KW - Chromatography KW - High pH KW - Mobile phase KW - Metrology KW - Purity KW - Reference material KW - ATCUN KW - Copper KW - Nickel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457796 UR - http://www.mdpi.com/1422-0067/19/8/2271 DO - https://doi.org/10.3390/ijms19082271 SN - 1422-0067 VL - 19 IS - 8 SP - 2271, 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-45779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernevic, Bogdan A1 - El-Khatib, Ahmed H. A1 - Jakubowski, Norbert A1 - Weller, Michael G. T1 - Online immunocapture ICP‑MS for the determination of the metalloprotein ceruloplasmin in human serum N2 - The human copper-protein ceruloplasmin (Cp) is the major copper-containing protein in the human body. The accurate determination of Cp is mandatory for the reliable diagnosis of several diseases. However, the analysis of Cp has proven to be difficult. The aim of our work was a proof of concept for the determination of a metalloprotein-based on online immunocapture ICP-MS. The immuno-affinity step is responsible for the enrichment and isolation of the analyte from serum, whereas the compound-independent quantitation with ICP-MS delivers the sensitivity, precision, and large dynamic range. Off-line ELISA (enzyme-linked immunosorbent assay) was used in parallel to confirm the elution profile of the analyte with a structure-selective method. The total protein elution was observed with the 32S mass trace. The ICP-MS signals were normalized on a 59Co signal. The human copper-protein Cp could be selectively determined. This was shown with pure Cp and with a sample of human serum. The good correlation with off-line ELISA shows that Cp could be captured and eluted selectively from the anti-Cp affinity column and subsequently determined by the copper signal of ICP-MS. KW - ELISA KW - Affinity chromatography KW - Affinity extraction KW - IgY KW - Chicken antibodies KW - Immunoaffinity extraction KW - Copper KW - Diagnostics PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-446157 UR - https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-018-3324-7 UR - https://static-content.springer.com/esm/art%3A10.1186%2Fs13104-018-3324-7/MediaObjects/13104_2018_3324_MOESM1_ESM.pdf UR - https://static-content.springer.com/esm/art%3A10.1186%2Fs13104-018-3324-7/MediaObjects/13104_2018_3324_MOESM2_ESM.pdf DO - https://doi.org/10.1186/s13104-018-3324-7 SN - 1756-0500 VL - 11 IS - 1 SP - Article 213, 1 EP - 5 PB - Springer Nature CY - Heidelberg AN - OPUS4-44615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scherz, Franziska A1 - Krop, U. A1 - Monks, K. A1 - Weller, Michael G. T1 - Antikörperreinigung mit Glasmonolithen - Vereinfachung von Affinitätstrennungen mit HPLC-Systemen N2 - Druckstabile Glasmonolithen ermöglichen eine schnelle und unkomplizierte Reinigung von Antikörpern, z.B. aus Serum oder Zellkulturüberständen. Die sehr gute Regenerierbarkeit lässt eine lange Lebensdauer der Säulen erwarten, was die Kosten pro Probe niedrig hält. KW - Borosilicatglas KW - Immunglobuline KW - IgG KW - Serum KW - Plasma KW - Protein A KW - Protein G KW - Affinitätschromatographie KW - Agarose KW - Carrier-Material KW - Stationäre Phase KW - Immobilisierung KW - Highspeed KW - Trennung KW - Reinigung KW - Downstream Processing PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-445330 UR - http://www.git-labor.de/forschung/materialien/antikoerperreinigung-mit-glasmonolithen SN - 0016-3538 VL - 62 IS - 3 SP - 24 EP - 25 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-44533 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - Ten Basic Rules of Antibody Validation N2 - The quality of research antibodies is an issue for decades. Although several papers have been published to improve the situation, their impact seems to be limited. This publication makes the effort to simplify the description of validation criteria in a way that the occasional antibody user is able to assess the validation level of an immunochemical reagent. A simple, 1-page checklist is supplied for the practical application of these criteria. KW - Replication KW - Reproducibility KW - Documentation KW - Open Science KW - Quality Control KW - Biochemistry KW - Biotechnology KW - Bioanalysis PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444322 UR - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5813849/ DO - https://doi.org/10.1177/1177390118757462 SN - 11773901 VL - 13 SP - 1 EP - 5 PB - Sage CY - Los Angeles, USA AN - OPUS4-44432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, Sebastian A1 - Schürmann, Robin A1 - Feldmann, Ines A1 - Blocki, A. A1 - Bald, Ilko A1 - Schneider, Rudolf A1 - Emmerling, Franziska T1 - Maintaining Stable Zeolitic Imidazolate Framework (ZIF) Templates during Polyelectrolyte Multilayer Coating N2 - Equipping ZIF particles with a polyelectrolyte membrane provides functional groups at their interface, enabling further conjugations necessary for applications such as targeted drug delivery. Previous approaches to coat ZIF particles with polyelectrolytes led to surface corrosion of the template material. This work overcomes previous limitations by performing a Layer-by-Layer (LbL) polyelectrolyte coating onto ZIF-8 and ZIF-67 particles in nonaqueous environment. Using the 2-methylimidazolium salt of polystyrensulfonic acid instead of the acid itself and polyethyleneimine in methanol led to intact ZIF particles after polyelectrolyte coating. This was verified by electron microscopy. Further, zetapotential and atomic force microscopy measurements confirmed a continuous polyelectrolyte multilayer built up. The here reported adaption to the well-studied (LbL) polyelectrolyte selfassembly process provides a facile method to equip ZIF particles with a nanometer thin polyelectrolyte multilayer membrane. KW - Zeolithe KW - Molecular Organic Frameworks KW - MOF KW - ZIF KW - Layer-by-Layer KW - Beschichtung KW - Polyelektrolyt PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447729 DO - https://doi.org/10.1016/j.colcom.2017.11.004 SN - 2215-0382 VL - 22 SP - 14 EP - 17 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-44772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Verestiuc, L. A1 - Panne, Ulrich T1 - Functionalized magnetic nanoparticles: Synthesis, characterization, catalytic application and assessment of toxicity N2 - Cost-effective water cleaning approaches using improved Treatment technologies, for instance based on catalytic processes with high activity catalysts, are urgently needed. The aim of our study was to synthesize efficient Fenton-like photo-catalysts for rapid degradation of persistent organic micropollutants in aqueous medium. Iron-based nanomaterials were chemically synthesized through simple procedures by immobilization of either iron(II) oxalate (FeO) or iron(III) citrate (FeC) on magnetite (M) nanoparticles stabilized with polyethylene glycol (PEG). Various investigation techniques were performed in order to characterize the freshly prepared catalysts. By applying advanced oxidation processes, the effect of catalyst dosage, hydrogen peroxide concentration and UV-A light exposure were examined for Bisphenol A (BPA) conversion, at laboratory scale, in mild conditions. The obtained results revealed that BPA degradation was rapidly enhanced in the presence of low-concentration H2O2, as well as under UV-A light, and is highly dependent on the surface characteristics of the catalyst. Complete photo-degradation of BPA was achieved over the M/PEG/FeO catalyst in less than 15 minutes. Based on the catalytic performance, a hierarchy of the tested catalysts was established: M/PEG/FeO > M/PEG/FeC > M/PEG. The results of cytotoxicity assay using MCF-7 cells indicated that the aqueous samples after treatment are less cytotoxic. KW - Bisphenol A KW - Magnetic nanocatalyst KW - Endocrine disruptor KW - Nanoparticle KW - Photodegradation KW - Fenton PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448297 DO - https://doi.org/10.1038/s41598-018-24721-4 SN - 2045-2322 VL - 8 SP - Article 6278, 1 EP - 11 PB - Springer Nature CY - London AN - OPUS4-44829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - New photodegradation products of the fungicide fluopyram: Structural elucidation and mechanism identification N2 - Identifying the fate of agrochemicals is important to understand their potential risk for living organisms. We report here new photodegradation products (PPs) of the fungicide fluopyram. The PPs were produced by irradiating a fluopyram standard in 0.1% acetonitrile aqueous media by a 150-W medium pressure Hg-lamp that emits wavelengths between 200–280 nm. The structural elucidation of PPs was achieved by combining the retention time, isotopic pattern, targeted fragmentation, and accurate mass measurements using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high resolution-MS (HRMS). In addition to previously known PPs, seven new PPs of fluopyram were identified in this work: mainly dihydroxyl and hydroxylimide fluopyram as well as mono, di, and trihydroxyl lactam. Additionally, two PPs were found to be formed by rearrangement after the loss of H2C=CH2. Hence, the results of the work contribute to extending the current knowledge regarding the photoinduced fate of agrochemicals, and fluopyram in particular. KW - Photodegradation KW - Transformation products KW - LC-MS/MS KW - HRMS KW - Fungicide PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-466347 DO - https://doi.org/10.3390/molecules23112940 SN - 1420-3049 VL - 23 IS - 11 SP - 2940, 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-46634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -