TY - JOUR A1 - Jaenisch, Gerd-Rüdiger A1 - Ewert, Uwe A1 - Waske, Anja A1 - Funk, Alexander T1 - Radiographic Visibility Limit of Pores in Metal Powder for Additive Manufacturing N2 - The quality of additively manufactured (AM) parts is determined by the applied process parameters used and the properties of the feedstock powder. The influence of inner gas pores in feedstock particles on the final AM product is a phenomenon which is difficult to investigate since very few non-destructive measurement techniques are accurate enough to resolve the micropores. 3D X-ray computed tomography (XCT) is increasingly applied during the process chain of AM parts as a non-destructive monitoring and quality control tool and it is able to detect most of the pores. However, XCT is time-consuming and limited to small amounts of feedstock powder, typically a few milligrams. The aim of the presented approach is to investigate digital radiography of AM feedstock particles as a simple and fast quality check with high throughput. 2D digital radiographs were simulated in order to predict the visibility of pores inside metallic particles for different pore and particle diameters. An experimental validation was performed. It was demonstrated numerically and experimentally that typical gas pores above a certain size (here: 3 to 4.4 µm for the selected X-ray setup), which could be found in metallic microparticles, were reliably detected by digital radiography. KW - Additive manufacturing KW - Feedstock powder KW - Porosity KW - Digital radiography KW - Numerical simulation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517880 DO - https://doi.org/10.3390/met10121634 VL - 10 IS - 12 SP - 1634 PB - MDPI AN - OPUS4-51788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, K. A1 - Kunert, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Widera, D. A1 - Weller, Michael G. A1 - Schuppan, D. A1 - Fröhlich-Nowoisky, J. A1 - Lucas, K. A1 - Pöschl, U. T1 - Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress N2 - Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. KW - Protein nitration KW - Protein oligomerization KW - Damage-associated molecular patterns (DAMPs) KW - Pattern recognition receptor KW - Anthropocene KW - Environmental pollutants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517128 DO - https://doi.org/10.1016/j.redox.2020.101581 VL - 37 SP - 101581 PB - Elsevier B.V. AN - OPUS4-51712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, P. A1 - Bondarenko, S. A1 - Mai, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, A. T1 - CMOS-Compatible Silicon Photonic Sensor for Refractive Index Sensing Using Local Back-Side Release N2 - Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. The sensor is based on a micro-ring resonator and is fabricated on wafer-level using a CMOS technology. We revealed a ring resonator sensitivity for homogeneous sensing of 106 nm/RIU. KW - Photonic biosensor KW - Lab-on-a-chip KW - Ring resonator KW - Resonance wavelength shift KW - PIC technology KW - Back-side integration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517139 DO - https://doi.org/10.1109/LPT.2020.3019114 VL - 32 IS - 19 SP - 1241 EP - 1244 PB - IEEE AN - OPUS4-51713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. A1 - Thöne-Reineke, C. A1 - Robinson, S. A1 - Ponader, Marco A1 - Weller, Michael G. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Molecular MR-Imaging for Noninvasive Quantification of the Anti-Inflammatory Effect of Targeting Interleukin-1β in a Mouse Model of Aortic Aneurysm N2 - Background: Molecular-MRI is a promising imaging modality for the assessment of abdominal aortic aneurysms (AAAs). Interleukin-1β (IL-1β) represents a new therapeutic tool for AAA-treatment, since pro-inflammatory cytokines are key-mediators of inflammation. This study investigates the potential of molecular-MRI to evaluate therapeutic effects of an anti-IL-1β-therapy on AAA-formation in a mouse-model. Methods: Osmotic-minipumps were implanted in apolipoprotein-deficient-mice (N = 27). One group (Ang-II+01BSUR group, n = 9) was infused with angiotensin-II (Ang-II) for 4 weeks and received an anti-murine IL-1β-antibody (01BSUR) 3 times. One group (Ang-II-group, n = 9) was infused with Ang-II for 4 weeks but received no treatment. Control-group (n = 9) was infused with saline and received no treatment. MR-imaging was performed using an elastin-specific gadolinium-based-probe (0.2 mmol/kg). Results: Mice of the Ang-II+01BSUR-group showed a lower aortic-diameter compared to mice of the Ang-II-group and control mice (p < 0.05). Using the elastin-specific-probe, a significant decrease in elastin-destruction was observed in mice of the Ang-II+01BSUR-group. In vivo MR-measurements correlated well with histopathology (y = 0.34x-13.81, R2 = 0.84, p < 0.05), ICP-MS (y = 0.02x+2.39; R2 = 0.81, p < 0.05) and LA-ICP-MS. Immunofluorescence and western-blotting confirmed a reduced IL-1β-expression. Conclusions: Molecular-MRI enables the early visualization and quantification of the anti-inflammatory-effects of an IL-1β-inhibitor in a mouse-model of AAAs. Responders and non-responders could be identified early after the initiation of the therapy using molecular-MRI. KW - Cardiovascular KW - Molecular-MRI KW - Magnetic resonance imaging KW - Gadolinium-based contrast agent KW - Elastin-specific contrast agent ESMA KW - Gadovist KW - Gadofosveset KW - MR Angiography KW - Inductively Coupled Mass Spectroscopy KW - Element Specific Bioimaging Using Laser Ablation KW - Visualization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517150 DO - https://doi.org/10.1177/1536012120961875 N1 - Geburtsname von Ponader, Marco: Wilke, M. - Birth name of Ponader, Marco: Wilke, M. VL - 19 SP - 61875 PB - SAGE AN - OPUS4-51715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Bohling, Christian A1 - Wilsch, Gerd T1 - New possibilities for concrete analysis 4.0 with the Laser-Induced Breakdown Spectroscopy (LIBS) N2 - In civil engineering the damage assessment of concrete infrastructures is an important task to monitor and ensure the estimated life-time. The aging of concrete is caused by different damage processes like the chloride induced pitting corrosion of the reinforcement. The penetration depth and the concentration of harmful species are crucial factors in the damage assessment. As a highly cost and time-consuming standard procedure, the analysis of concrete drill cores or drilling by wet-chemistry is widely used. This method provides element concentration to the total mass as aggregates and binder are homogenized. In order to provide a method that is capable to detect the element concentration regarding the cement content only, the laser-induced breakdown spectroscopy (LIBS) will be presented. The LIBS method uses a focused pulsed laser on the sample surface to ablate material. The high-power density and the laser-material interaction causes a laser-induced plasma that emits elemental and molecular line emission due to energy transition of the excited species in the plasma during the cooling phase. As each element provides element-specific line emission, it is in principle possible to detect any element on the periodic table (spectroscopic fingerprint) with one laser shot. In combination with a translation stage the sample under investigation can be spatially resolved using a scan raster with a resolution up to 100 µm (element mapping). Due to the high spatial resolution, the element distribution and the heterogeneity of the concrete can be evaluated. By using chemometrics the non-relevant aggregates can be excluded from the data set and the element concentration can be quantified and referred to a specific solid phase like the binding matrix (cement) only. In order to analyze transport processes like diffusion and migration the twodimensional element distributions can provide deep insight into the transport through the pore space and local enrichments of elements. As LIBS is a multi-elemental method it is also possible to compare the ingress and transport process of different elements like Cl, Na, K, S, C, and Li simultaneously and evaluate cross-correlations between the different ions. Furthermore, the element mapping allows to visualize the transport along cracks. This work will show the state of the art in terms of hardware and software for an automated LIBS system as well as different application for a concrete analysis 4.0. Focus will be the application of LIBS for a fast concrete analysis. T2 - SMAR 2019 CY - Potsdam, Germany DA - 27.08.2019 KW - Damage KW - LIBS KW - Concrete KW - Mapping KW - Chlorine PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517282 UR - https://www.ndt.net/?id=24963 SN - 1435-4934 VL - 25 IS - 1 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-51728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, S. A1 - Borde, T. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kader, A. A1 - Schulze, D. A1 - Buchholz, R. A1 - Kaufmann, Jan Ole A1 - Karst, U. A1 - Schellenberger, E. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Assessment of the hepatic tumor extracellular matrix using elastin‑specific molecular magnetic resonance imaging in an experimental rabbit cancer model N2 - To investigate the imaging performance of an elastin-specific molecular magnetic resonance imaging (MRI) probe with respect to the extracellular matrix (ECM) in an experimental hepatic cancer model. Twelve rabbits with hepatic VX2 tumors were examined using 3 T MRI 14, 21, and 28 days after tumor implantation for two subsequent days (gadobutrol, day 1; elastin-specific probe, day 2). The relative enhancement (RE) of segmented tumor regions (central and margin) and the peritumoral matrix was calculated using pre-contrast and delayed-phase T1w sequences. MRI measurements were correlated to histopathology and element-specific and spatially resolved mass spectrometry (MS). Mixed-model analysis was performed to assess the performance of the elastin-specific probe. In comparison to gadobutrol, the elastin probe showed significantly stronger RE, which was pronounced in the tumor margin (day 14–28: P ≤ 0.007). In addition, the elastin probe was superior in discriminating between tumor regions (χ2(4) = 65.87; P < 0.001). MRI-based measurements of the elastin probe significantly correlated with the ex vivo elastinstain (R = .84; P <0 .001) and absolute gadolinium concentrations (ICP-MS: R = .73, P <0 .01). LA-ICP-MS imaging confirmed the colocalization of the elastin-specific probe with elastic fibers. Elastin-specific molecular MRI is superior to non-specific gadolinium-based contrast agents in imaging the ECM of hepatic tumors and the peritumoral tissue. KW - Elastin-specific molecular agent KW - Extracellular matrix KW - Hepatocellular carcinoma KW - Inductively coupled plasma mass spectroscopy KW - Laser ablation-inductively coupled plasma-mass spectrometry KW - Magnetic resonance imaging KW - MR imaging KW - ESMA KW - Gadolinium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517360 DO - https://doi.org/10.1038/s41598-020-77624-8 VL - 10 IS - 1 SP - 20785 PB - Nature AN - OPUS4-51736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Boehn, B. A1 - Scholtz, Lena A1 - Imbihl, R. T1 - Reactivity and Stability of Ultrathin VOx Films on Pt(111) in Catalytic Methanol Oxidation N2 - The growth of ultrathin layers of VOx (<12 monolayers) on Pt(111) and the activity of these layers in catalytic methanol oxidation at 10−4 mbar have been studied with low-energy electron difraction, Auger electron spectroscopy, rate measurements, and with photoemission electron microscopy. Reactive deposition of V in O2 at 670 K obeys a Stranski–Krastanov growth mode with a (√3 × √3)R30° structure representing the limiting case for epitaxial growth of 3D-VOx. The activity of VOx/Pt(111) in catalytic methanol oxidation is very low and no redistribution dynamics is observed lifting the initial spatial homogeneity of the VOx layer. Under reaction conditions, part of the surface vanadium difuses into the Pt subsurface region. Exposure to O2 causes part of the V to difuse back to the surface, but only up to one monolayer of VOx can be stabilized in this way at 10−4 mbar. KW - Vanadium oxide catalysts KW - Pt(111) KW - Supported catalyst KW - Methanol oxidation KW - Stranski–Krastanow growth PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517376 DO - https://doi.org/10.1007/s11244-020-01321-z SN - 1022-5528 VL - 63 IS - 15-18 SP - 1545 EP - 1556 PB - Springer AN - OPUS4-51737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raysyan, Anna A1 - Moerer, R. A1 - Coesfeld, Bianca A1 - Eremin, S. A1 - Schneider, Rudolf T1 - Fluorescence polarization immunoassay for the determination of diclofenac in wastewater N2 - Pharmacologically active compounds are often detected in wastewater and surface waters. The nonsteroidal anti-inflammatory drug diclofenac (DCF) was included in the European watch list of substances that requires its environmental monitoring in the member states. DCF may harmfully influence the ecosystem already at concentrations ≤ 1 μg L−1. The fast and easy quantification of DCF is becoming a subject of global importance. Fluorescence polarization immunoassay (FPIA) is a homogeneous mix-and-read method which does not require the immobilization of reagents. FPIA can be performed in one phase within 20–30 min, making it possible to analyse wastewater without any complicated pre-treatment. In this study, new tracermolecules with different structures, linking fluorophores to derivatives of the analyte, were synthesized, three homologous tracers based on DCF, two including a C6 spacer, and one heterologous tracer derived from 5-hydroxy-DCF. The tracer molecules were thoroughly assessed for performance. Regarding sensitivity of the FPIA, the lowest limit of detection reached was 2.0 μg L−1 with a working range up to 870 μg L−1. The method was validated for real wastewater samples against LC-MS/MS as reference method with good agreement of both methods. KW - Abwasser KW - Umweltschadstoffe KW - Antikörper KW - Antibody PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518398 DO - https://doi.org/10.1007/s00216-020-03058-w SN - 1618-2642 VL - 413 IS - 4 SP - 999 EP - 107 PB - Springer CY - Heidelberg AN - OPUS4-51839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liehr, Sascha A1 - Münzenberger, Sven A1 - Borchardt, Christopher T1 - Long-distance fiber optic vibration sensing using convolutional neural networks as real-time denoisers N2 - A long distance range over tens of kilometers is a prerequisite for a wide range of distributed fiber optic vibration sensing applications. We significantly extend the attenuation-limited distance range by making use of the multidimensionality of distributed Rayleigh backscatter data: Using the wavelength-scanning coherent optical time domain reflectometry (WS-COTDR) technique, backscatter data is measured along the distance and optical frequency dimensions. In this work, we develop, train, and test deep convolutional neural networks (CNNs) for fast denoising of these two-dimensional backscattering results. The very compact and efficient CNN denoiser “DnOTDR” outperforms state-of-the-art image denoising algorithms for this task and enables denoising data rates of 1.2 GB/s in real time. We demonstrate that, using the CNN denoiser, the quantitative strain measurement with nm/m resolution can be conducted with up to 100 km distance without the use of backscatter-enhanced fibers or distributed Raman or Brillouin amplification. KW - Neural networks KW - Fiber optic KW - Vibration sensing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518694 DO - https://doi.org/10.1364/OE.402789 VL - 28 IS - 26 SP - 39325 AN - OPUS4-51869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanabria, S. J. A1 - Baensch, Franziska A1 - Zauner, M. A1 - Niemz, P. T1 - In‑situ quantification of microscopic contributions of individual cells to macroscopic wood deformation with synchrotron computed tomography N2 - Wood-based composites hold the promise of sustainable construction. Understanding the influence on wood cellular microstructure in the macroscopic mechanical behavior is key for engineering highperformance composites. In this work, we report a novel Individual Cell Tracking (ICT) approach for in-situ quantification of nanometer-scale deformations of individual wood cells during mechanical loading of macroscopic millimeter-scale wood samples. Softwood samples containing > 104 cells were subjected to controlled radial tensile and longitudinal compressive load in a synchrotron radiation micro-computed tomography (SRμCT) setup. Tracheid and wood ray cells were automatically segmented, and their geometric variations were tracked during load. Finally, interactions between microstructure deformations (lumen geometry, cell wall thickness), cellular arrangement (annual growth rings, anisotropy, wood ray presence) with the macroscopic deformation response were investigated. The results provide cellular insight into macroscopic relations, such as anisotropic Poisson effects, and allow direct observation of previously suspected wood ray reinforcing effects. The method is also appropriate for investigation of non-linear deformation effects, such as buckling and deformation recovery after failure, and gives insight into less studied aspects, such as changes in lumen diameter and cell wall thickness during uniaxial load. ICT provides an experimental tool for direct validation of hierarchical mechanical models on real biological composites. KW - Wood materials KW - Micro-comuted tomography (µCT) KW - Individual cell tracking KW - Stress-strain behaviour PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518157 DO - https://doi.org/10.1038/S41598-020-78028-4 SN - 2045-2322 VL - 10 SP - 1 EP - 16 PB - Springer nature AN - OPUS4-51815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Laser excited super resolution thermal imaging for nondestructive inspection of internal defects N2 - A photothermal super resolution technique is proposed for an improved inspection of internal defects. To evaluate the potential of the laser-based thermographic technique, an additively manufactured stainless steel specimen with closely spaced internal cavities is used. Four different experimental configurations in transmission, reflection, stepwise and continuous scanning are investigated. The applied image post-processing method is based on compressed sensing and makes use of the block sparsity from multiple measurement events. This concerted approach of experimental measurement strategy and numerical optimization enables the resolution of internal defects and outperforms conventional thermographic inspection techniques. KW - Super Resolution KW - Laser Thermography KW - Non Destructive Testing KW - Comressed Sensing KW - Inverse Problem KW - Thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519016 DO - https://doi.org/10.1038/s41598-020-77979-y VL - 10 IS - 1 SP - 22357 PB - Springer Nature AN - OPUS4-51901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, C.-H. A1 - Peng, R. L. A1 - Luzin, V. A1 - Sprengel, Maximilian A1 - Calmunger, M. A1 - Lundgren, J.-E. A1 - Brodin, H. A1 - Kromm, Arne A1 - Moverare, J. T1 - Thin-wall effects and anisotropic deformation mechanisms of an additively manufactured Ni-based superalloy N2 - Laser powder bed fusion (LPBF) of Ni-based superalloys shows great potential for high temperature applications, for example, as a burner repair application for gas turbines where the thin-walled structure is important. It motivates this work to investigate the evolution of microstructure and the anisotropic mechanical behavior when plate-like specimens are built with a thickness from 4 mm down to 1 mm. By performing texture analysis using neutron diffraction, a clear transition in fiber texture from <011> to <001> is indicated when the specimen becomes thinner. The residual stress shows no thickness dependence, and at the subsurface the residual stress reaches the same level as the yield strength. Due to the rough as-built surface, a roughness compensation method for mechanical properties of thin-walled structures is outlined and demonstrated. Tensile tests from room temperature up to 700 ◦C have been carried out. Anisotropic mechanical behavior is found at all temperatures, which is strongly related to the anisotropic texture evolution. Stronger texture evolution and grain rotations are discovered when the tensile loading is applied along the building direction. The mechanical behavior has been compared to a wrought material, where the high dislocation density and the subgrain structure of the LPBF material result in a higher yield strength. Combining the statistical texture analysis by neutron diffraction with mechanical testing, EBSD grain orientation mapping and the investigation of dislocation structures using transmission electron microscopy, this work illustrates the significance of texture for the thin-wall effect and anisotropic mechanical behavior of LPBF materials. KW - Hastelloy X KW - Hot tensile test KW - Crystallographic texture KW - Roughness KW - Residual stress KW - Dislocation density PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518759 DO - https://doi.org/10.1016/j.addma.2020.101672 VL - 36 SP - 101672 PB - Elsevier B.V. AN - OPUS4-51875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heßmann, Jennifer A1 - Bachmann, Marcel A1 - Hilgenberg, Kai T1 - Numerical and experimental investigation of controlled weld pool displacement by electromagnetic forces for joining dissimilar materials N2 - In order to reduce CO2 emissions, an increasing interest in lightweight construction exists in the automotive industry, especially the multi-material-design approach. The main construction materials here are steels and aluminium alloys. Due to their different physical material properties and limited mutual solubility, these two materials cannot be joined thermally without difficulty. This paper presents a new joining approach for dissimilar materials. It uses electromagnetic displacement of a laser-generated melt pool to produce overlap joints between 1 mm steel (1.0330) and 2 mm aluminium alloy (EN AW 5754). Contactless induced Lorentz forces are generated by an alternating current (AC) magnet system. The controlled displacement of the aluminium alloy melt into the hole of the overlying steel sheet is investigated through numerical and experimental studies. The numerical results are compared with cross sections and thermocouple measurements. For the first time, it is possible to achieve a reproducible controlled melt pool displacement on thin sheets to produce overlap joints between dissimilar materials. KW - Displacement KW - Laser beam welding KW - Dissimilar materials KW - Joining technology KW - Electromagnetic field KW - Lorentz force KW - Numerical investigation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516640 DO - https://doi.org/10.3390/met10111447 VL - 10 IS - 11 SP - 1447 EP - 1462 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Anja A1 - Possling, A. A1 - Malysheva, N. A1 - Yousef, K. P. A1 - Herbst, S. A1 - von Kleist, M. A1 - Hengge, R. T1 - Local c-di-GMP signaling in the control of synthesis of the E. coli biofilm exopolysaccharide pEtN-cellulose N2 - In many bacteria, the biofilm-promoting second messenger c-di-GMP is produced and degraded by multiple diguanylate cyclases (DGC) and phosphodiesterases (PDE), respectively. High target specificity of some of these enzymes has led to theoretical concepts of "local" c-di-GMP signaling. In Escherichia coli K-12, which has 12 DGCs and 13 PDEs, a single DGC, DgcC, is specifically required for the biosynthesis of the biofilm exopolysaccharide pEtN-cellulose without affecting the cellular c-di-GMP pool, but the mechanistic basis of this target specificity has remained obscure. DGC activity of membrane-associated DgcC, which is demonstrated in vitro in nanodiscs, is shown to be necessary and sufficient to specifically activate cellulose biosynthesis in vivo. DgcC and a particular PDE, PdeK (encoded right next to the cellulose operon), directly interact with cellulose synthase subunit BcsB and with each other, thus establishing physical proximity between cellulose synthase and a local source and sink of c-di-GMP. This arrangement provides a localized, yet open source of c-di-GMP right next to cellulose synthase subunit BcsA, which needs allosteric activation by c-di-GMP. Through mathematical modeling and simulation, we demonstrate that BcsA binding from the low cytosolic c-di-GMP pool in E. coli is negligible, whereas a single c-di-GMP molecule that is produced and released in direct proximity to cellulose synthase increases the probability of c-di-GMP binding to BcsA several hundred-fold. This local c-di-GMP signaling could provide a blueprint for target-specific second messenger signaling also in other bacteria where multiple second messenger producing and degrading enzymes exist. KW - Biofilm KW - Cellulose synthase KW - Bacterial second messenger KW - C-di-GMP PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511214 DO - https://doi.org/10.1016/j.jmb.2020.06.006 SN - 0022-2836 VL - 432 IS - 16 SP - 4576 EP - 4595 PB - Elsevir Ltd. AN - OPUS4-51121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Tscheuschner, Georg A1 - Herrmann, Stefan A1 - Weller, Michael G. T1 - Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor N2 - The illegal use of explosives by terrorists and other criminals is an increasing issue in public spaces, such as airports, railway stations, highways, sports venues, theaters, and other large buildings. Security in these environments can be achieved by different means, including the installation of scanners and other analytical devices to detect ultra-small traces of explosives in a very short time-frame to be able to take action as early as possible to prevent the detonation of such devices. Unfortunately, an ideal explosive detection system still does not exist, which means that a compromise is needed in practice. Most detection devices lack the extreme analytical sensitivity, which is nevertheless necessary due to the low vapor pressure of nearly all explosives. In addition, the rate of false positives needs to be virtually zero, which is also very difficult to achieve. Here we present an immunosensor system based on kinetic competition, which is known to be very fast and may even overcome affinity limitation, which impairs the performance of many traditional competitive assays. This immunosensor consists of a monolithic glass column with a vast excess of immobilized hapten, which traps the fluorescently labeled antibody as long as no explosive is present. In the case of the explosive 2,4,6-trinitrotoluene (TNT), some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and chip-based mixing-devices and flow-cells. The system achieved limits of detection of 1 pM (1 ppt) of the fluorescent label and around 100 pM (20 ppt) of TNT. The total assay time is less than 8 min. A cross-reactivity test with 5000 pM solutions showed no signal by pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). This immunosensor belongs to the most sensitive and fastest detectors for TNT with no significant cross-reactivity by non-related compounds. The consumption of the labeled antibody is surprisingly low: 1 mg of the reagent would be sufficient for more than one year of continuous biosensor operation. KW - Airport KW - Aviation KW - Bombs KW - Terrorism KW - Biosensing KW - Continuous Sensor KW - High-Speed KW - Ultrasensitive PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511245 DO - https://doi.org/10.3390/bios10080089 VL - 10 IS - 8 SP - 89 PB - MDPI CY - Basel AN - OPUS4-51124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sajulga, R. A1 - Easterly, C. A1 - Riffle, M. A1 - Mesuere, B. A1 - Muth, Thilo A1 - Mehta, S. A1 - Kumar, P. A1 - Johnson, J. A1 - Gruening, B. A1 - Schiebenhoefer, H. A1 - Kolmeder, C. A1 - Fuchs, S. A1 - Nunn, B. A1 - Rudney, J. A1 - Griffin, T. A1 - Jagtap, P. T1 - Survey of metaproteomics software tools for functional microbiome analysis N2 - To gain a thorough appreciation of microbiome dynamics, researchers characterize the functional relevance of expressed microbial genes or proteins. This can be accomplished through metaproteomics, which characterizes the protein expression of microbiomes. Several software tools exist for analyzing microbiomes at the functional level by measuring their combined proteome-level response to environmental perturbations. In this survey, we explore the performance of six available tools, to enable researchers to make informed decisions regarding software choice based on their research goals. Tandem mass spectrometry-based proteomic data obtained from dental caries plaque samples grown with and without sucrose in paired biofilm reactors were used as representative data for this evaluation. Microbial peptides from one sample pair were identified by the X! tandem search algorithm via SearchGUI and subjected to functional analysis using software tools including eggNOG-mapper, MEGAN5, MetaGOmics, MetaProteomeAnalyzer (MPA), ProPHAnE, and Unipept to generate functional annotation through Gene Ontology (GO) terms. Among these software tools, notable differences in functional annotation were detected after comparing differentially expressed protein functional groups. Based on the generated GO terms of these tools we performed a peptide-level comparison to evaluate the quality of their functional annotations. A BLAST analysis against the NCBI non-redundant database revealed that the sensitivity and specificity of functional annotation varied between tools. For example, eggNOG-mapper mapped to the most number of GO terms, while Unipept generated more accurate GO terms. Based on our evaluation, metaproteomics researchers can choose the software according to their analytical needs and developers can use the resulting feedback to further optimize their algorithms. To make more of these tools accessible via scalable metaproteomics workflows, eggNOG-mapper and Unipept 4.0 were incorporated into the Galaxy platform. KW - Bioinformatics KW - Metaproteomics KW - Mass spectrometry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516358 DO - https://doi.org/10.1371/journal.pone.0241503 SP - e0241503 AN - OPUS4-51635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen T1 - The triple-isotope calibration approach: a universal and standard-free calibration approach for obtaining absolute isotope ratios of multi-isotopic elements N2 - The theory of a new calibration approach for obtaining absolute isotope ratios of multi-isotopic elements without the use of any standard has been developed. The calibration approach basically uses the difference in the instrumental isotope fractionation of two different types of mass spectrometers, leading to two different fractionation lines in a three-isotope diagram. When measuring the same sample with both mass spectrometers, the different fractionation lines have one point in common: this is the ‘true’ logarithmized isotope ratio pair of the sample. Thus, the intersection of both fractionation lines provides us with the absolute isotope ratios of the sample. This theory has been tested in practice by measuring Cd and of Pb isotope ratios in the certified reference materials BAM-I012 and NIST SRM981 by thermal ionization mass spectrometry and by inductively coupled plasma mass spectrometry while varying the ionization conditions for both mass spectrometers. With this experiment, the theory could be verified, and absolute isotope ratios were obtained, which were metrologically compatible with the certified isotope ratios. The so-obtained absolute isotope ratios are biased by − 0.5% in average, which should be improved with further developments of the method. This calibration approach is universal, as it can be applied to all elements with three or more isotopes and it is not limited to the type of mass spectrometers applied; it can be applied as well to secondary ion mass spectrometry or others. Additionally, this approach provides information on the fractionation process itself via the triple-isotope fractionation exponent θ. KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Mass spectrometry KW - Calibration KW - Uncertainty PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516364 DO - https://doi.org/10.1007/s00216-020-03050-4 VL - 413 IS - 3 SP - 821 EP - 826 PB - Springer Verlag AN - OPUS4-51636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichel, V. E. A1 - Matuszak, J. A1 - Bente, Klaas A1 - Heil, T. A1 - Kraupner, A. A1 - Dutz, S. A1 - Cicha, I. A1 - Faivre, D. T1 - Magnetite-Arginine Nanoparticles as a Multifunctional Biomedical Tool N2 - Iron oxide nanoparticles are a promising platform for biomedical applications, both in terms of diagnostics and therapeutics. In addition, arginine-rich polypeptides are known to penetrate across cell membranes. Here, we thus introduce a system based on magnetite nanoparticles and the polypeptide poly-l-arginine (polyR-Fe3O4). We show that the hybrid nanoparticles exhibit a low cytotoxicity that is comparable to Resovist®, a commercially available drug. PolyR-Fe3O4 particles perform very well in diagnostic applications, such as magnetic particle imaging (1.7 and 1.35 higher signal respectively for the 3rd and 11th harmonic when compared to Resovist®), or as contrast agents for magnetic resonance imaging (R2/R1 ratio of 17 as compared to 11 at 0.94 T for Resovist®). Moreover, these novel particles can also be used for therapeutic purposes such as hyperthermia, achieving a specific heating power ratio of 208 W/g as compared to 83 W/g for Feridex®, another commercially available product. Therefore, we envision such materials to play a role in the future theranostic applications, where the arginine ability to deliver cargo into the cell can be coupled to the magnetite imaging properties and cancer fighting activity. KW - Iron oxide KW - Nanoparticle KW - Theranostics KW - MRI KW - Hyperthermia PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515993 DO - https://doi.org/10.3390/nano10102014 VL - 10 IS - 10 SP - 2014 PB - MDPI AN - OPUS4-51599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, Caroline A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Wiesner, Yosri A1 - Schartel, Bernhard A1 - Klack, Patrick A1 - Braun, Ulrike T1 - Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples N2 - Microplastic particles are currently detected in almost all environmental compartments. The results of detection vary widely, as a multitude of very different methods are used with very different requirements for analytical validity. In this work four thermoanalytical methods are compared and their advantages and limitations are discussed. One of them is thermal extraction-desorption gas chromatography mass spectrometry (TED-GC/MS), an analysis method for microplastic detection that has become established in recent years. In addition, thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS) were applied, two methods that are less common in this field but are still used in other research areas. Finally, microscale combustion calorimeter (MCC) was applied, a method not yet used for microplastic detection. The presented results are taken from a recently published interlaboratory comparison test by Becker et al. (2020). Here a reference material consisting of suspended matter and specified added polymer masses was examined, and only the results of the recoveries were presented. In the present paper, however, the results for the individual polymers are discussed in detail and individual perspectives for all instruments are shown. It was found that TED-GC/MS is the most suitable method for samples with unknown matrix and unknown, variable kinds and contents of microplastic. TGA-FTIR is a robust method for samples with known matrix and with defined kinds of microplastic. TGA-MS may offer a solution for the detection of PVC particles in the future. MCC can be used as a very fast and simple screening method for the identification of a potential microplastic load of standard polymers in unknown samples. KW - Microplastic KW - TED-GC/MS KW - TGA-MS KW - TGA-FTIR KW - MCC KW - Thermal analysis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516687 DO - https://doi.org/10.1016/j.jaap.2020.104961 VL - 152 SP - 104961 PB - Elsevier B.V. AN - OPUS4-51668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Xin A1 - Krebber, Katerina T1 - Direct detection based φOTDR using the Kramers-Kronig receiver N2 - A Kramers-Kronig (KK) receiver is applied to a phase-sensitive optical time domain reflectometry based on direct detection. An imbalanced Mach-Zehnder interferometer with a 2× 2 coupler is used in sensing system to encode the phase information into optical intensity. The directly obtained signal is treated as the in-phase component, and the KK receiver provides the quadrature component by Hilbert transform of the obtained signal, so that the optical phase can be retrieved by IQ demodulation. The working principle is well explained, and the obtained phase variance is theoretically analyzed. The experiment demonstrates the functionality of the sensor and validates the theoretical analysis. KW - Kramers-Kronig detector KW - Distributed fiber sensing KW - Acoustic sensing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516803 UR - https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-28-24-37058&id=442839 DO - https://doi.org/10.1364/OE.405723 VL - 28 IS - 24 SP - 37058 EP - 37068 PB - Optical Society of America AN - OPUS4-51680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abis, M. A1 - Bruno, M. A1 - Kuchta, K. A1 - Simon, Franz-Georg A1 - Grönholm, R. A1 - Hoppe, M. A1 - Fiore, S. T1 - Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe N2 - In 2018, the production of Municipal SolidWaste (MSW) in EU-28 reached 250.6 Mt, with the adoption of different management strategies, involving recycling (48 wt %), incineration and thermal valorization (29 wt %) and landfilling (23 wt %). This work was based on the analysis of the baseline situation of MSW management in EU-28 in 2018, considering its progress in 2008–2018, and discussed the possible improvement perspectives based on a framework involving incineration and recycling as the only possible alternatives, specifically evaluating the capability of already-existing incineration plants to fulfill the EU needs in the proposed framework. The results of the assessment showed two main crucial issues that could play a pivotal role in the achievement of Circular Economy action plan targets: the need to increase the recycling quotas for specific MSW fractions through the separate collection, and therefore the improvement of definite treatment process chains; the optimization of the recovery of secondary raw materials from incineration bottom ash, involving the Recycling of ferrous and nonferrous metals and the mineral fraction. Both issues need to find an extensive application across all member states to decrease the actual differences in the adoption of sustainable MSW management options. KW - Bottom ash KW - Circular economy KW - Waste treatment KW - Recycling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520285 DO - https://doi.org/10.3390/en13236412 SN - 1996-1073 VL - 13 IS - 23 SP - 6412 EP - 6412 PB - MDPI CY - Basel AN - OPUS4-52028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, A. M. A1 - von der Au, Marcus A1 - Regnery, J. A1 - Schmid, M. A1 - Meermann, Björn A1 - Reifferscheid, G. A1 - Ternes, T. A1 - Buchinger, S. T1 - Does galvanic cathodic protection by aluminum anodes impact marine organisms? N2 - Background: Cathodic protection by sacrifcial anodes composed of aluminum-zinc-indium alloys is often applied to protect ofshore support structures of wind turbines from corrosion. Given the considerable growth of renewable energies and thus ofshore wind farms in Germany over the last decade, increasing levels of aluminum, Indium and zinc are released to the marine environment. Although these metals are ecotoxicologically well-studied, data regarding their impact on marine organisms, especially sediment-dwelling species, as well as possible ecotoxicological efects of galvanic anodes are scarce. To investigate possible ecotoxicological efects to the marine environment, the diatom Phaedactylum tricornutum, the bacterium Aliivibrio fscheri and the amphipod Corophium volutator were exposed to dissolved galvanic anodes and solutions of aluminum and zinc, respectively, in standardized laboratory tests using natural seawater. In addition to acute toxicological efects, the uptake of these elements by C. volutator was investigated. Results: The investigated anode material caused no acute toxicity to the tested bacteria and only weak but signifcant efects on algal growth. In case of the amphipods, the single elements Al and Zn showed signifcant efects only at the highest tested concentrations. Moreover, an accumulation of Al and In was observed in the crustacea species. Conclusions: Overall, the fndings of this study indicated no direct environmental impact on the tested marine organisms by the use of galvanic anodes for cathodic protection. However, the accumulation of metals in, e.g., crustaceans might enhance their trophic transfer within the marine food web. KW - Galvanic anodes KW - Metal toxicity KW - Metal uptake KW - Corophium volutator KW - Seawater PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520769 DO - https://doi.org/10.1186/s12302-020-00441-3 VL - 32 IS - 1 SP - Article number 157 AN - OPUS4-52076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Esparza Mora, Margy Alejandra A1 - Davis, H. E. A1 - Meconcelli, Stefania A1 - McMahon, Dino Peter A1 - Plarre, Rüdiger T1 - Inhibition of a secreted immune molecule interferes with termite social immunity N2 - Social immune behaviors are described in a great variety of insect societies and their role in preventing emerging infectious diseases has become a major topic in insect research. The social immune system consists of multiple layers, ranging from the synthesis of external immune molecules to the coordination of individual behaviors into sophisticated collective defensive tasks. But our understanding of how complex group-level behavioral defenses are orchestrated has remained limited. We sought to address this gap in knowledge by investigating the relationship between the external activity of an important immune effector molecule in termites, Gram negative binding protein 2 (GNBP-2) and collective grooming and cannibalism. We reasoned that as an external enzyme capable of degrading entomopathogenic fungi, GNBP-2 can facilitate the spread of pathogenic molecules in the colony, and thus serve to trigger collective defenses in a manner analogous to pathogen-associated molecular signatures (PAMPs) of the individual immune system. To test whether GNBP-2 could play a role in regulating social immune behavior, we experimentally inhibited its fungicidal activity using the glycomimetic molecule, D-d-gluconolactone (GDL) and recorded collective behavioral responses to an infected nestmate. Contrary to expectations, GNBP-2 inhibition did not influence the rate or intensity of grooming of either control or fungus-infected nestmates. By contrast, we found that the probability of being harmed through defensive cannibalistic behaviors was significantly reduced by the inhibition of GNBP-2. Our findings indicate that the regulation of collective immune behaviors may depend in part on the external secretion of an enzyme originating from the individual immune system, but that other cues are also necessary. KW - Entomopathogen KW - Termite KW - Social immunity KW - Cannibalism KW - GNBP-2 KW - Hygienic behavior KW - GDL KW - Metarhizium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520037 DO - https://doi.org/10.3389/fevo.2020.00075 SN - 2296-701X VL - 8 SP - 1 EP - 10 PB - Frontiers Media CY - Lausanne AN - OPUS4-52003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, A. T1 - About the reliability of EBSD measurements: Data enhancement N2 - An extensive set of information about the diffracting volume is carried by EBSD patterns: the crystal lattice, the reciprocal lattice, the crystal structure, the crystal symmetry, the mean periodic number of the diffracting phase, the source point from where it has been projected (projection centre), the crystal orientation, the sample topography (local tilt), the (preparation) quality of defect density of the crystal, and possible pattern overlaps. Some of this information is used regularly in conventional EBSD analyses software while others are still waiting for a more widespread application. Despite the wealth of information available, the accuracy and precision of the data that are presently extracted from conventional EBSD patterns are often well below the actual physical limits. Using a selection of example applications, we will demonstrate the gain in angular resolution possible using relatively low-resolution patterns of approximately 20k pixels in combination with pattern matching (PM) approaches. In this way, fine details in a microstructure can be revealed which would otherwise be hidden in the orientation noise. KW - EBSD KW - Orientation precision KW - Disorientation KW - Grain boundary KW - Phase transformation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521618 DO - https://doi.org/10.1088/1757-899X/891/1/012018 VL - 891 SP - 012018 PB - IOP Science AN - OPUS4-52161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Xu, W. A1 - Kemnitz, E. A1 - Emmerling, Franziska T1 - Structure and properties of fluorinated and non-fluorinated Ba-coordination polymers - the position of fluorine makes the difference N2 - As the most electronegative element, fluorine has a strong influence on material properties such as absorption behaviour or chemical and thermal stability. Fluorine can be easily integrated into coordination polymers (CPs) via a fluorinated acetate, here trifluoroacetate in Ba(CF3COO)2, or directly via a metal fluorine bond (BaF(CH3COO)). In the present study both possibilities of fluorine integration were tested and their effect on structure and properties of barium coordination polymers was investigated in comparison with the non-fluorinated barium acetate (Ba(CH3COO)2). In addition to the study of their thermal behaviour and their decomposition temperature, the CPs structures were tested for their application as possible anode materials in lithium ion batteries and for their sorption of water and ammonia. The properties of the CPs can be traced back to the individual structural motifs and could thus trigger new design ideas for CPs in LIBs and/or catalysis. KW - Alkaline earth metal coordination polymers KW - Lithium-ion battery KW - Water stability KW - Fluorine coordination PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524041 DO - https://doi.org/10.1002/zaac.202000360 SN - 0044-2313 VL - 647 IS - 9 SP - 1014 EP - 1024 PB - Wiley-VCH GmbH AN - OPUS4-52404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zosef, M. A1 - Fahmy, Alaa A1 - El Hotaby, W. A1 - Hassan, A. A1 - Khalil, A. A1 - Anis, B. T1 - High performance graphene-based PVF foam for lead removal from water N2 - The synthesis and optimization of superior and eco-friendly sorbents for Pb(II) pose a great challenge in the field of water treatment. The sorbent was developed by introducing graphene oxide (GO) into the matrix of polyvinyl formaldehyde (PVF) foam. The immobilization of GO in PVF results in significant increase in the maximum adsorption capacity (Qt) of GO powder for Pb(II), from ≈800 to ≈1730 mg g−1 in the case of GO/PVF foam. As compared with GO powder in Pb(II) aqueous solutions, PVF matrix keeps GO sheets stable without any agglomeration. The large surface area of GO sheet allows the abundant oxygenated functional groups on its surface to participate effectively in the Pb(II) adsorption process, leading to the huge increase of the Qt. Adsorption isotherms and kinetic studies indicated that the sorption process of Pb(II) on GO/PVF was done on heterogenous surface by ion-exchange reaction. The GO/PVF foam showed an excellent reusability for more than 10 cycles with almost the same efficiency and without any significant change in its physical properties. KW - Water treatment KW - Graphene oxide KW - Lead ions KW - Polyvinyl formaldehyde foam KW - Superior sorbent PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523013 DO - https://doi.org/10.1016/j.jmrt.2020.08.011 VL - 9 IS - 5 SP - 11861 EP - 11875 PB - Elsevier B.V. AN - OPUS4-52301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Nowak, K. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Noninvasive imaging of vascular permeability to predict the risk of rupture in abdominal aortic aneurysms using an albumin binding probe N2 - Abdominal aortic aneurysm (AAA) remains a fatal disease. Its development encompasses a complex interplay between hemodynamic stimuli on and changes in the arterial wall. Currently available biomarkers fail to predict the risk of AAA rupture independent of aneurysm size. Therefore, novel biomarkers for AAA characterization are needed. In this study, we used a mouse model of AAA to investigate the potential of magnetic resonance imaging (MRI) with an albumin-binding probe to assess changes in vascular permeability at different stages of aneurysm growth. Two imaging studies were performed: a longitudinal study with follow-up and death as endpoint to predict rupture risk and a week-by-week study to characterize AAA development. AAAs, which eventually ruptured, demonstrated a significantly higher in vivo MR signal enhancement from the albumin-binding probe (p = 0.047) and a smaller non-enhancing thrombus area compared to intact AAAs (p = 0.001). The ratio of albumin-binding-probe enhancement of the aneurysm wall to size of non-enhancing-thrombus-area predicted AAA rupture with high sensitivity/specificity (100%/86%). More advanced aneurysms with higher vascular permeability demonstrated an increased uptake of the albumin-binding-probe. These results indicate that MRI with an albumin-binding probe may enable noninvasive assessment of vascular permeability in murine AAAs and prediction of rupture risk. KW - Magnetic resonance imaging KW - Imaging KW - Tomography KW - Gadolinium KW - Contrast agent KW - Atherosclerosis KW - ICP-MS KW - Gadofosveset KW - Angiography KW - LA-ICP-MS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525541 DO - https://doi.org/10.1038/s41598-020-59842-2 VL - 10 SP - Article number: 3231 PB - Springer Nature Limited CY - London, New York, Berlin, Shanghai and Tokyo AN - OPUS4-52554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Simultaneous molecular MRI of extracellular matrix collagen and inflammatory activity to predict abdominal aortic aneurysm rupture N2 - Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease with an up to 80% mortality in case of rupture. Current biomarkers fail to account for size-independent risk of rupture. By combining the information of different molecular probes, multi-target molecular MRI holds the potential to enable individual characterization of AAA. In this experimental study, we aimed to examine the feasibility of simultaneous imaging of extracellular collagen and inflammation for size-independent prediction of risk of rupture in murine AAA. The study design consisted of: (1) A outcome-based longitudinal study with imaging performed once after one week with follow-up and death as the end-point for assessment of rupture risk. (2) A week-by-week study for the characterization of AAA development with imaging after 1, 2, 3 and 4 weeks. For both studies, the animals were administered a type 1 collagen-targeted gadolinium-based probe (surrogate marker for extracellular matrix (ECM) remodeling) and an iron oxide-based probe (surrogate marker for inflammatory activity), in one imaging session. In vivo measurements of collagen and iron oxide probes showed a significant correlation with ex vivo histology (p < 0.001) and also corresponded well to inductively-coupled plasma-mass spectrometry and laser-ablation inductively-coupled plasma mass spectrometry. Combined evaluation of collagen-related ECM remodeling and inflammatory activity was the most accurate predictor for AAA rupture (sensitivity 80%, specificity 100%, area under the curve 0.85), being superior to information from the individual probes alone. Our study supports the feasibility of a simultaneous assessment of collagen-related extracellular matrix remodeling and inflammatory activity in a murine model of AAA. KW - Atherosclerosis KW - Specific probe KW - Magnetic resonance imaging KW - Gadolinium KW - Iron oxide KW - Ferumoxytol KW - Inductively‑coupled mass spectrometry KW - ICP-MS KW - LA-ICP-MS KW - Laser ablation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525864 UR - https://www.nature.com/articles/s41598-020-71817-x DO - https://doi.org/10.1038/s41598-020-71817-x VL - 10 IS - 1 SP - 15206 PB - Springer Nature Limited CY - London, New York, Berlin, Shanghai and Tokyo AN - OPUS4-52586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Hutzler, C. A1 - Wilke, Olaf A1 - Luch, A. T1 - Emissions of volatile organic compounds from polymer-based consumer products: comparison of three emission chamber sizes N2 - The ISO 16000 standard series provide guidelines for emission measurements of volatile organic compounds (VOCs) from building materials. However, polymer-based consumer products such as toys may also release harmful substances into indoor air. In such cases, the existing standard procedures are unsuitable for official control laboratories due to high costs for large emission testing chambers. This paper aims at developing and comparing alternative and more competitive methods for the emission testing of consumer products. The influence of the emission chamber size was investigated as smaller chambers are more suited to the common size of consumer products and may help to reduce the costs of testing. Comparison of the performance of a 203 l emission test chamber with two smaller chambers with the capacity of 24 l and 44 ml, respectively, was carried out by using a polyurethane reference material spiked with 14 VOCs during the course of 28 days. The area-specific emission rates obtained in the small chambers were always similar to those of the 203 l reference chamber after a few hours. This implies that smaller chambers can provide at least useful numbers on the extent of polymer-based consumer product emissions into indoor air, thereby supporting meaningful exposure assessments. KW - Comparison KW - Consumer products KW - Emission chamber KW - Reference material KW - Volatile organic compounds PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-493697 DO - https://doi.org/10.1111/ina.12605 VL - 30 IS - 1 SP - 40 EP - 48 PB - Wiley VCH-Verlag AN - OPUS4-49369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neuhold, S. A1 - Algermissen, D. A1 - Drissen, P. A1 - Adamczyk, Burkart A1 - Presoly, P. A1 - Sedlazeck, K. P. A1 - Schenk, J. A1 - Raith, J. G. A1 - Pomberger, R. A1 - Vollprecht, D. T1 - Tailoring the FeO/SiO2 Ratio in Electric Arc Furnace Slags to Minimize the Leaching of Vanadium and Chromium N2 - Based on recently published research on leaching control mechanisms in electric arc furnace (EAF) slags, it is assumed that a FeO/SiO2 ratio of around one leads to low leached V and Cr concentrations. This ratio influences the mineral phase composition of the slag toward higher amounts of spinel and a lower solubility of calcium silicate phases by suppressing the formation of magnesiowuestite and highly soluble calcium silicate phases. To evaluate this hypothesis, laboratory and scaled up tests in an EAF pilot plant were performed on slag samples characterized by elevated V and Cr leaching and a high FeO/SiO2 ratio. Prior to the melting experiments, the optimum FeO/SiO2 ratio was calculated via FactSageTM. In the melting experiments, the ratio was adjusted by adding quartz sand, which also decreased the basicity (CaO/SiO2) of the slag. As a reference, remelting experiments without quartz sand addition were conducted and additionally, the influence of the cooling rate of the slag was examined. The remelted (without quartz sand) and the remelted modified slags (with quartz sand) were analyzed chemically and mineralogically and the leaching behavior was investigated. The modification of the slags yielded a minimized release of V and Cr, supporting the hypothesis that the FeO/SiO2 ratio influences the mineralogy and the leaching behavior. KW - Electric arc furnace (EAF) slags KW - FactSageTM calculations KW - Leaching control mechanisms KW - Melting experiments PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571517 DO - https://doi.org/10.3390/app10072549 VL - 10 IS - 7 SP - 1 EP - 18 PB - MDPI AN - OPUS4-57151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Johann, Sergej A1 - Strangfeld, Christoph A1 - Zimmek, David A1 - Bartholmai, Matthias T1 - Smart electronic helper for long-term monitoring of bridges and building structures N2 - Increasing traffic volume on the one hand and ageing infrastructure on the other hand have created many new challenges for maintenance and structural health monitoring of roads and bridges. In the past, many bridges and road structures have been neglected, often resulting in traffic congestion, road closure, and increased repair costs. This research is concerned with the development of a system to improve the challenge of maintenance and early detection of damage, particularly moisture penetration and corrosion of steel reinforced concrete components. The objective is to develop a method that will also work after 30 years and longer. Many new IoT solutions are equipped with internal energy storage elements (accumulators or batteries) which are inappropriate here, since most relevant signs of concrete degradation occur after decades, where the functioning of such elements are more than questionable. The presented technology approach uses radio-frequency identification (RFID) and enables connectivity to sensors. It offers the advantage of an passive, completely independent energy supply without any energy storage components. Since the system should be permanently embedded in concrete, it is crucial to develop a long-term stable device which is adapted to the environmental influences of the structure, e.g., long-term resistance in very alkaline environment of pH 13. In numerous experiments, the robustness of the system was tested and evaluated. Various tests with encapsulations to protect the electronics were performed, and for long-term validation different concrete specimens were instrumented with RFID-sensor-systems. Their operating time is now around two years and investigations for signs of fatigue and damage to the encapsulation and the electronics are ongoing. T2 - SMAR 2019 CY - Potsdam, Germany DA - 27.08.2019 KW - Sensors KW - Passive RFID KW - Smart structures KW - SHT KW - Long term monitoring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-501931 UR - https://www.ndt.net/?id=25011 SN - 1435-4934 VL - 25 IS - 1 SP - 1 EP - 6 PB - NDT.net CY - Kirchwald AN - OPUS4-50193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Robens-Radermacher, Annika A1 - Unger, Jörg F. T1 - Efficient structural reliability analysis by using a PGD model in an adaptive importance sampling schema N2 - One of the most important goals in civil engineering is to guarantee the safety of the construction. Standards prescribe a required failure probability in the order of 10−4 to 10−6. Generally, it is not possible to compute the failure probability analytically. Therefore, many approximation methods have been developed to estimate the failure probability. Nevertheless, these methods still require a large number of evaluations of the investigated structure, usually finite element (FE) simulations, making full probabilistic design studies not feasible for relevant applications. The aim of this paper is to increase the efficiency of structural reliability analysis by means of reduced order models. The developed method paves the way for using full probabilistic approaches in industrial applications. In the proposed PGD reliability analysis, the solution of the structural computation is directly obtained from evaluating the PGD solution for a specific parameter set without computing a full FE simulation. Additionally, an adaptive importance sampling scheme is used to minimize the total number of required samples. The accuracy of the failure probability depends on the accuracy of the PGD model (mainly influenced on mesh discretization and mode truncation) as well as the number of samples in the sampling algorithm. Therefore, a general iterative PGD reliability procedure is developed to automatically verify the accuracy of the computed failure probability. It is based on a goal-oriented refinement of the PGD model around the adaptively approximated design point. The methodology is applied and evaluated for 1D and 2D examples. The computational savings compared to the method based on a FE model is shown and the influence of the accuracy of the PGD model on the failure probability is studied. KW - Reliability KW - Probability of failure KW - Adaptive importance sampling KW - Reduced order models KW - Proper Generalized Decomposition PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510345 DO - https://doi.org/10.1186/s40323-020-00168-z VL - 7 SP - Article number: 29 PB - SpringerOpen AN - OPUS4-51034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallau, Wilma A1 - Recknagel, Christoph T1 - Durability Assessment of Structural Sealant Glazing Systems applying a Performance Test Method N2 - During the service life of a Structural Sealant Glazing (SSG) facade, its silicone bond is exposed to climatic, chemical, and mechanical loads. While current durability assessment methods schedule separate test programmes for accelerated weathering and fatigue, the presented test applies mechanical loading and weather cycling simultaneously to simulate 50 years of use. Specifically designed medium-scale system specimens resemble a common SSG-bond. Displacement-controlled sinusoidal load cycles in two load directions subject these specimens to tensile, compression and shear loads. Weathering comprises temperature and humidity cycles, UV-radiation, and application of water and detergent. During testing, the forces transmitted by the system specimens are continuously measured for performance assessment. The resulting system response reveals mechanical performance characteristics like elastic moduli and dissipated energies which decrease during exposure, indicating stress relaxation and degradation. Two common structural sealants were tested. After testing, sections of the system specimens were subjected to tensile and shear tests for mechanical characterisation. Strengths and moduli are notably reduced by combined loading compared to those of reference and weathered specimens. Hardness and visual inspections of the bond correlate with the performance and bond characteristics. The approach introduced in this article provides a basis for life cycle assessment of SSG-systems. KW - Structural sealant glazing KW - Cyclic weathering KW - Mechanical loading KW - Artificial ageing KW - Durability assessment PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519172 DO - https://doi.org/10.1080/00218464.2020.1840985 VL - 98 IS - 5 SP - 464 EP - 487 PB - Taylor & Francis Group AN - OPUS4-51917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezera, Marek A1 - Alamri, S. A1 - Hendriks, W. A. P. M. A1 - Hertwig, Andreas A1 - Elert, Anna Maria A1 - Bonse, Jörn A1 - Kunze, T. A1 - Lasagni, A. F. A1 - Römer, G. R. B. E. T1 - Hierarchical micro-/nano-structures on polycarbonate via UV pulsed laser processing N2 - Hierarchical micro/-nanostructures were produced on polycarbonate polymer surfaces by employing a two-step UV-laser processing strategy based on the combination of Direct Laser Interference Patterning (DLIP) of gratings and pillars on the microscale (3 ns, 266 nm, 2 kHz) and subsequently superimposing Laser-induced Periodic Surface Structures (LIPSS; 7–10 ps, 350 nm, 100 kHz) which adds nanoscale surface features. Particular emphasis was laid on the influence of the direction of the laser beam polarization on the morphology of resulting hierarchical surfaces. Scanning electron and atomic force microscopy methods were used for the characterization of the hybrid surface structures. Finite-difference time-domain (FDTD) calculations of the laser intensity distribution on the DLIP structures allowed to address the specific polarization dependence of the LIPSS formation observed in the second processing step. Complementary chemical analyzes by micro-Raman spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy provided in-depth information on the chemical and structural material modifications and material degradation imposed by the laser processing. It was found that when the linear laser polarization was set perpendicular to the DLIP ridges, LIPSS could be formed on top of various DLIP structures. FDTD calculations showed enhanced optical intensity at the topographic maxima, which can explain the dependency of the morphology of LIPSS on the polarization with respect to the orientation of the DLIP structures. It was also found that the degradation of the polymer was enhanced for increasing accumulated fluence levels. KW - Direct laser interference patterning KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Hierarchical structures KW - Surface functionalization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509101 DO - https://doi.org/10.3390/nano10061184 SN - 2079-4991 VL - 10(6) IS - Special issue "Laser-generated periodic nanostructures" SP - 1184-1 EP - 1184-19 PB - MDPI CY - Basel AN - OPUS4-50910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fosodeder, P. A1 - Baumgartner, W. A1 - Steinwender, C. A1 - Hassel, A. W. A1 - Florian, Camilo A1 - Bonse, Jörn A1 - Heitz, J. T1 - Repellent rings at titanium cylinders against overgrowth by fibroblasts N2 - The invention of new miniaturized and smart medical implants continues in all medical fields, including miniaturized heart pacemakers. These implants often come with a titanium (Ti) casing, which may have to be removed after several months or years and shall therefore not be completely overgrown by cells or scar tissue after implantation. Scar tissue is mainly formed by fibroblast cells and extracellular matrix proteins like collagen produced by them. Suppression of fibroblast growth at Ti surfaces could be achieved by 800 nm femtosecond laser-ablation creating self-organized sharp spikes with dimensions in the 10 μm-range which are superposed by fine sub-μm parallel ripples. On flat Ti control samples, the best results regarding suppression of cell growth were obtained on spike-structures which were additionally electrochemically anodized under acidic conditions. When Ti cylinders with a diameter of 8 mm (similar as the pacemakers) were placed upright in a culture of murine fibroblasts, a multi-layer cell growth up to a height of at least 1.5 mm occurred within 19–22 days. We have demonstrated that a laser-structured and anodized ring around the Ti cylinder surface is an effective way to create a barrier that murine fibroblasts were not able to overgrow within this time. KW - Cell-repellent surfaces KW - Femtosecond laser-processing KW - Electrochemical treatment KW - Laser-induced micro- and nanostructures KW - Medical implants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509966 DO - https://doi.org/10.1515/aot-2019-0070 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 3 (Topical issue: Laser micro- and nano-material processing - Part 2) SP - 113 EP - 120 PB - De Gruyter CY - Berlin AN - OPUS4-50996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira, P. F. M. A1 - Torresi, R. A1 - Emmerling, Franziska A1 - Carmago, P. T1 - Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles N2 - Mechanochemistry is a promising alternative to solution-based protocols across the chemical sciences, enabling different types of chemistries in solvent-free and environmentally benign conditions. The use of mechanical energy to promote physical and chemical transformations has reached a high level of refinement, allowing for the design of sophisticated molecules and nanostructured materials. Among them, the synthesis of noble metal nanoparticles deserves special attention due to their catalytic applications. In this review, we discuss the recent progress on the development of mechanochemical strategies for the controlled synthesis of noble metal nanostructures. We start by covering the fundamentals of different preparation routes, namely top-down and bottom-up approaches. Next, we focus on the key examples of the mechanochemical synthesis of non-supported and supported metal nanoparticles as well as hybrid nanomaterials containing noble metals. In these examples, in addition to the principles and synthesis mechanisms, their performances in catalysis are discussed. Finally, a perspective of the field is given, where we discuss the opportunities for future work and the challenges of mechanochemical synthesis to produce well-defined noble metal nanoparticles. KW - Mechanochemistry KW - Nanoparticles PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512080 DO - https://doi.org/10.1039/D0TA05183G VL - 8 IS - 32 SP - 16114 AN - OPUS4-51208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Urbaniak, T. A1 - Haag, K. A1 - Koschek, K. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Intrinsic flame retardant phosphonate-based vitrimers as a recyclable alternative for commodity polymers in composite materials N2 - Recycling of crosslinked fiber-reinforced polymers is difficult. Moreover, as they are often based on flammable resins, additional additives are needed. So-called “vitrimers” open the possibility of Recycling and reprocessing and repairing with dynamically crosslinked chemistries. To date, vitrimer-based composites still need flame retardant additives, such as organophosphates. An additive-free vitrimer composite has not been reported. Herein, we synthesized an intrinsic flame-retardant vitrimer, relying on vinylogous polyurethanes containing covalently installed phosphonates as flame-retardant units and prepared glassfiber-reinforced composites. We studied recycling and flame retardant properties and compared the data to phosphorus-free vitrimers and conventional epoxy resins (with and without additive flame retardant). Our phosphonate-based vitrimer proved in first tests, a flame retardant effect comparable to commercial flame retardant resins. The bending strength and bending modulus for the phosphorus-vitrimer glass fiber composites were comparable to glass fiber composites with permanently cross-linked epoxies. In summary, we were able to prove that the covalent installation of phosphonates into vitrimers allows the preparation of recyclable and intrinsic flame retardant composites that do not need flame retardant additives. We believe this concept can be expanded to other polymer networks and additives to generate recyclable and sustainable high-performance materials. KW - Vitrimer KW - Flame retardant KW - Recyclable KW - Organophosphonate KW - Polyurethane PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510889 DO - https://doi.org/10.1039/d0py00275e VL - 11 IS - 30 SP - 4933 EP - 4941 AN - OPUS4-51088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hille, Falk A1 - Sowietzki, D. A1 - Makris, R. T1 - Luminescence-based early detection of fatigue cracks N2 - Classic non-destructive fatigue crack detection methods reveal the state of the fatigue damage evolution at the moment of application, generally not under operational conditions. The here introduced crack luminescence method realizes a clear visibility of the occurred and growing crack in loaded components during operation. Different established experiments show that due to the sensitive coating a crack Formation can be detected even in early stage under the premise the crack reached the surface. The coating consists of two layers with different properties and functions. The bottom layer emits light as fluorescence under UV radiation. The top layer covers the fluorescing one and prevents the emitting of light in case of no damage at the surface. In case of surface crack occurrence, the luminescent light is clearly noticeable by visual observations and also by standard camera equipment which makes automated crack detection possible as well. It is expected that crack luminescence can increase structural safety as well as reduce costs and time for inspections and preventive maintenance. KW - Coating KW - Fatigue KW - Crack damage detection KW - Luminescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510517 DO - https://doi.org/10.1016/j.matpr.2020.02.338 SN - 2214-7853 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-51051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Esmann, M. A1 - Chimeh, A. A1 - Korte, A. A1 - Zhong, J. A1 - Stephan, S. A1 - Witt, Julia A1 - Wittstock, G. A1 - Talebi, N. A1 - Lienau, C. T1 - Plasmonic nanofocusing spectral interferometry N2 - We describe and demonstrate a novel experimental approach to measure broadband, amplitude- and phase-resolved scattering spectra of single nanoparticles with 10-nm spatial resolution. Nanofocusing of Surface plasmon polaritons (SPPs) propagating along the shaft of a conical gold taper is used to create a spatially isolated, spectrally broad nanoscale light source at ist very apex. The interference between these incident SPPs and SPPs that are backpropagating from the apex leads to the formation of an inherently phase-stable interferogram, which we detect in the far field by partially scattering SPPs off a small protrusion on the taper shaft. We show that these interferograms allow the reconstruction of both the amplitude and phase of the local optical near fields around individual nanoparticles optically coupled to the taper apex. We extract local light scattering spectra of particles and quantify line broadenings and spectral shifts induced by tip-sample coupling. Our experimental findings are supported by corresponding finite-difference time-domain and coupled dipole simulations and Show that, in the limit of weak tip-sample coupling, the measurements directly probe the projected local density of optical states of the plasmonic system. The combination of a highly stable inline interferometer with the inherent optical background suppression through nanofocusing makes it a promising tool for the locally resolved study of the spectral and temporal optical response of coupled hybrid nanosystems. KW - Plasmonic nanofocusing KW - Near-field spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504985 DO - https://doi.org/10.1515/nanoph-2019-0397 VL - 9 IS - 2 SP - 491 EP - 508 PB - De Gruyter AN - OPUS4-50498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Study of micro- and nanoscale wetting properties of lubricants using AFM force-distance curves N2 - Atomic force microscopy (AFM) plays an important role as a multifuntional tool in nanotribology.In the present work it was shown that the main features of force-distance curves on different lubricants have been characterized and the underlying phenomena could be explained. KW - Lubricants KW - Atomic force microscopy KW - Force-distance curves PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504631 DO - https://doi.org/10.1007/s11249-020-1275-3 SN - 1573-2711 VL - 68 IS - 1 SP - 1 EP - 12 PB - Springer CY - Cham AN - OPUS4-50463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Spaltmann, Dirk T1 - Editorial: Special issue "Laser-induced periodic surface nano- and microstructures for tribological applications" N2 - Laser material processing is an emerging technology that generates surface functionalities on the basis of optical, mechanical, or chemical properties. In the form of laser surface texturing (LST), it has attracted a remarkable amount of research to tailor surface properties towards various tribological applications. The main advantages of this single-step, laser-based technology are the contactless machining, featuring a high flexibility, efficiency, and speed, along with the excellent quality of the processed products. LST can be applied precisely localized to sub-micrometric areas, but, via laser beam scanning, it is also feasible for structuring large surface areas at the square meter size. This Special Issue focuses on the latest developments concerning the tribological performance of laser-generated periodic surface nano- and microstructures and their applications. This includes the laser-based processing of different surface patterns, such as “self-organized” laser-induced periodic surface structures (LIPSS, ripples), grooves, micro-spikes, hierarchical hybrid nano-/micro-structures, microfeatures generated by direct laser interference patterning (DLIP), or even dimples or other topographic geometries shaped by direct laser modification or ablation. The applications of these periodically nano- and micro-patterned surfaces may improve the lubricated or non-lubricated tribological performance of surfaces in conformal and even non-conformal contact through a reduction of wear, a variation of the coefficient of friction, altered load carrying capacity, etc., resulting in energy saving, improved reliability, increased lifetimes as well as durability, leading in turn to extended maintenance intervals/reduced down-time. This can be beneficial in terms of bearings, gears, engines, seals, cutting tools, or other tribological components. Fundamental aspects addressed may involve the investigation of the relevant physical and chemical effects accompanying the laser-generated nano- and microscale topographies, such as alterations of the material structures, the hardness, superficial oxidation, the role of additives contained in lubricants, surface wettability, micro-hydrodynamic effects, etc. For this Special Issue we aim to attract both academic and industrial researchers and would like to provide a bridge between research in the fields of tribology and laser material processing in order to foster the current knowledge and present new ideas for future applications and new technologies. KW - Laser-induced periodic surface structures (LIPSS) KW - Tribology KW - Applications KW - Wear KW - Friction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505948 DO - https://doi.org/10.3390/lubricants8030034 SN - 2075-4442 VL - 8 IS - 3 SP - 34, 1 EP - 34, 3 PB - MDPI CY - Basel AN - OPUS4-50594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfretzschner, Beate A1 - Schaupp, Thomas A1 - Hannemann, Andreas A1 - Schultz, Michael A1 - Griesche, Axel T1 - On the Genesis of Artifacts in Neutron Transmission Imaging of Hydrogenous Steel Specimens N2 - Hydrogen-charged supermartensitic steel samples were used to systematically investigate imaging artifacts in neutron radiography. Cadmium stencils were placed around the samples to shield the scintillator from excessive neutron radiation and to investigate the influence of the backlight effect. The contribution of scattered neutrons to the total detected intensity was investigated by additionally varying the sample-detector distance and applying a functional correlation between distance and intensity. Furthermore, the influence of the surface roughness on the edge effect due to refraction was investigated. KW - Refraction KW - Neutron imaging KW - Hydrogen KW - Supermartensitic steel KW - Backlight KW - Scattering PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506587 DO - https://doi.org/10.3390/jimaging6040022 VL - 6 IS - 22 SP - 1 EP - 10 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Khandarkhaeva, S. A1 - Bykov, M. A1 - Fedotenko, T. A1 - Hanfland, M. A1 - Sukhikh, A. A1 - Gromilov, S. A1 - Dubrovinsky, L. T1 - Face-centered cubic refractory alloys prepared from single-source precursors N2 - Three binary fcc-structured alloys (fcc–Ir0.50Pt0.50, fcc Rh0.66Pt0.33 and fcc–Rh0.50Pd0.50) were 14 prepared from [Ir(NH3)5Cl][PtCl6], [Ir(NH3)5Cl][PtBr6], [Rh(NH3)5Cl]2[PtCl6]Cl2 and 15 [Rh(NH3)5Cl][PdCl4]·H2O, respectively, as single-source precursors. All alloys were prepared by 16 thermal decomposition in gaseous hydrogen flow below 800 °C. Fcc–Ir0.50Pt0.50 and fcc–Rh0.50Pd0.50 17 correspond to miscibility gaps on binary metallic phase diagrams and can be considered as 18 metastable alloys. Detailed comparison of [Ir(NH3)5Cl][PtCl6] and [Ir(NH3)5Cl][PtBr6] crystal 19 structures suggests that two isoformular salts are not isostructural. In [Ir(NH3)5Cl][PtBr6], specific 20 Br…Br interactions are responsible for crystal structure arrangement. Room temperature 21 compressibility of fcc–Ir0.50Pt0.50, fcc–Rh0.66Pt0.33 and fcc–Rh0.50Pd0.50 has been investigated up to 50 GPa 22 in diamond anvil cells. All investigated fcc-structured binary alloys are stable under compression. 23 Atomic volumes and bulk moduli show good agreement with ideal solutions model. For fcc–24 Ir0.50Pt0.50, V0/Z = 14.597(6) Å3·atom-1, B0 = 321(6) GPa, B0' = 6(1); for fcc–Rh0.66Pt0.33, V0/Z = 14.211(3) 25 Å3·atom-1, B0 =259(1) GPa, B0' = 6.66(9); for fcc–Rh0.50Pd0.50, V0/Z = 14.18(2) Å3·atom-1, B0 =223(4) GPa, 26 B0' = 5.0(3). KW - High-pressure KW - Refractory alloys KW - Platinum group metals KW - Single-source precursors PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508176 DO - https://doi.org/10.3390/ma13061418 VL - 13 IS - 6 SP - 1418 PB - MDPI CY - Basel AN - OPUS4-50817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Sukhikh, A. A1 - Kraus, Werner A1 - Gromilov, S. T1 - Synthesis and Crystal Chemistry of Octahedral Rhodium(III) Chloroamines N2 - Rhodium(III) octahedral complexes with amine and chloride ligands are the most common starting compounds for preparing catalytically active rhodium(I) and rhodium(III) species. Despite intensive study during the last 100 years, synthesis and crystal structures of rhodium(III) complexes were described only briefly. Some [RhClx(NH3)6-x] compounds are still unknown. In this study, available information about synthetic protocols and the crystal structures of possible [RhClx(NH3)6−x] octahedral species are summarized and critically analyzed. Unknown crystal structuresof(NH4)2[Rh(NH3)Cl5],trans–[Rh(NH3)4Cl2]Cl·H2O,andcis–[Rh(NH3)4Cl2]Clarereported based on high quality single crystal X-ray diffraction data. The crystal structure of [Rh(NH3)5Cl]Cl2 was redetermined. All available crystal structures with octahedral complexes [RhClx(NH3)6-x] were analyzed in terms of their packings and pseudo-translational sublattices. Pseudo-translation lattices suggest face-centered cubic and hexagonal closed-packed sub-cells, where Rh atoms occupy nearly ideal lattices. KW - Pseudo-translationalsublattices KW - Rhodiumcomplexes KW - Ligandsubstitution KW - Crystalstructure PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508194 DO - https://doi.org/10.3390/molecules25040768 VL - 25 IS - 4 SP - 768 PB - MDPI CY - Basel AN - OPUS4-50819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yusenko, Kirill A1 - Domonov, D. A1 - Pechenyuk, S. A1 - Belyevskii, A. T1 - Formation of Nanostructured Carbon from [Ni(NH3)6]3[Fe(CN)6]2 N2 - The products of thermal decomposition in an argon atmosphere of [Ni(NH3)6]3[Fe(CN)6]2 as a precursor has been studied. Decomposition products were studied up to 800◦C. Above 600◦C, all coordination bonds in the residues are broken with a formation of Ni3Fe, Fe, and free carbon with a small admixture of nitrogen. Elementary carbon can be easily separated from metals by treatment with a water solution of hydrochloric acid. Only carbon is responsible for the specific surface of the composite products. The released carbon has a high degree of graphitization and begins to oxidize in air above 500°C and is completely oxidized above 700°C. KW - Carbon materials KW - Double complex compound KW - Thermal decomposition PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508188 DO - https://doi.org/10.3390/nano10020389 VL - 10 IS - 2 SP - 389 PB - MDPI CY - Basel AN - OPUS4-50818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan-Scherb, Christiane A1 - Schulz, Wencke A1 - Schneider, M. A1 - Karafiludis, Stephanos A1 - Laplanche, G. T1 - High-Temperature Oxidation in Dry and Humid Atmospheres of the Equiatomic CrMnFeCoNi and CrCoNi High- and Medium-Entropy Alloys N2 - Surface degradation phenomena of two model equiatomic alloys from the CrMnFeCoNi alloy system were investigated in 2% O2 and 10% H2O (pO2 = 0.02 and 10−7 atm, respectively) at 800 °C for times up to 96 h. The crystallographic structures, morphologies, and chemical compositions of the corrosion layers developing on CrMnFeCoNi and CrCoNi were comparatively analyzed by mass gain analysis, X-ray diffraction, and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy and electron backscatter diffraction. The oxidation resistance of CrMnFeCoNi is relatively poor due to the fast growth of porous Mnoxide(s). CrCoNi forms an external chromia layer that is dense and continuous in a dry 2% O2 atmosphere. This layer buckles and spalls off after exposure to 10% H2O atmosphere. Beneath the chromia layer, a Cr-depleted zone forms in the CrCoNi alloy in both environments. As the oxide scale spalls off in the H2O-containing atmosphere, a secondary chromia layer was observed and correspondingly enlarges the Cr-depleted zone. In contrast, as the chromia layer remains without significant spallation when CrCoNi is exposed to a dry oxidizing atmosphere, the region depleted in Cr is narrower. KW - High temperature oxidation KW - High entropy alloys KW - Medium entropy alloys KW - CrMnFeCoNi KW - CrCoNi KW - Mn-oxides PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517859 DO - https://doi.org/10.1007/s11085-020-10014-7 SN - 0030-770X VL - 95 IS - 1-2 SP - 105 EP - 133 PB - Springer AN - OPUS4-51785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Santos, C.I.L. A1 - Machado, W.S. A1 - Wegner, Karl David A1 - Gontijo, L.A.P. A1 - Bettini, J. A1 - Schiavon, M.A. A1 - Reiss, P. A1 - Aldakov, D. T1 - Hydrothermal Synthesis of Aqueous-Soluble Copper Indium Sulfide Nanocrystals and Their Use in Quantum Dot Sensitized Solar Cells N2 - facile hydrothermal method to synthesize water-soluble copper indium sulfide (CIS) nanocrystals (NCs) at 150 degrees C is presented. The obtained samples exhibited three distinct photoluminescence peaks in the red, green and blue spectral regions, corresponding to three size fractions, which could be separated by means of size-selective precipitation. While the red and green emitting fractions consist of 4.5 and 2.5 nm CIS NCs, the blue fraction was identified as in situ formed carbon nanodots showing excitation wavelength dependent emission. When used as light absorbers in quantum dot sensitized solar cells, the individual green and red fractions yielded power conversion efficiencies of 2.9% and 2.6%, respectively. With the unfractionated samples, the efficiency values approaching 5% were obtained. This improvement was mainly due to a significantly enhanced photocurrent arising from complementary panchromatic absorption. KW - Aqueous quantum dot KW - Solar cells KW - CUINS2 nanocrystals KW - Colloidal semiconductor nanocrystals PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517983 DO - https://doi.org/10.3390/nano10071252 VL - 10 IS - 7 SP - 1252 PB - MDPI AN - OPUS4-51798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Surface superconductivity changes of niobium sheets by femtosecond laser-induced periodic nanostructures N2 - Irradiation with ultra-short (femtosecond) laser beams enables the generation of sub-wavelength laser-induced periodic surface structures (LIPSS) over large areas with controlled spatial periodicity, orientation, and depths affecting only a material layer on the sub-micrometer scale. This study reports on how fs-laser irradiation of commercially available Nb foil samples affects their superconducting behavior. DC magnetization and AC susceptibility measurements at cryogenic temperatures and with magnetic fields of different amplitude and orientation are thus analyzed and reported. This study pays special attention to the surface superconducting layer that persists above the upper critical magnetic field strength Hc2, and disappears at a higher nucleation field strength Hc3. Characteristic changes were distinguished between the surface properties of the laser-irradiated samples, as compared to the corresponding reference samples (non-irradiated). Clear correlations have been observed between the surface nanostructures and the nucleation field Hc3, which depends on the relative orientation of the magnetic field and the surface patterns developed by the laser irradiation. KW - Niobium KW - Surface superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Nanostructures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518462 DO - https://doi.org/10.3390/nano10122525 SN - 2079-4991 VL - 10(12) IS - Special issue "Laser-generated periodic nanostructures" SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-51846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pirker, F. A1 - Toth, I. A1 - Cihak-Bayr, U. A1 - Grundtner, R. A1 - Vernes, A. A1 - Benedicto, J. A1 - Spaltmann, Dirk A1 - Gradt, Thomas A1 - Alberdi, A. A1 - Alonso, I. A1 - Bayón, R. A1 - Igartua, A. A1 - García, Á. A1 - Pagano, F. A1 - Bravo, I. A1 - Kogia, M. A1 - Dykeman, D. A1 - Liedtke, S. A1 - Minami, I. A1 - Nyberg, E. A1 - Soivio, K. A1 - Ronkainen, H. A1 - Majaniemi, S. A1 - Heino, V. A1 - Gkagkas, K. A1 - Mont, L. A1 - Amigorena, I. T1 - Tribological characterisation services for materials - i-TRIBOMAT N2 - Um den Entwicklungsprozess von neuen Komponenten zu beschleunigen, ist die Vorrausage der Eigenschaften der eingesetzten Werkstoffe im Betrieb der Komponenten von enormer Bedeutung. Um neue Werkstoffe hinsichtlich Ihrer Performance (in einer Komponente) bewerten zu können, ist deshalb die Entwicklung neuer innovativer Methoden notwendig. Diese Methoden können auch unter dem Begriff „lab-to-field“ oder „materials“ – up-scaling zusammengefasst werden. D. h. Werkstoffe werden im Labor charakterisiert, und deren Eigenschaften mittels z.B. Simulation auf die Komponentenperformance hochskaliert (upscaling). i-TRIBOMAT ist ein EU gefördertes Projekt (H2020, GA Nr. 814494) mit dem Ziel ein Open Innovation Test Bed für tribologische Werkstoffcharakterisierung aufzubauen und entsprechende Services von der tribologischen Charakterisierung neuer Werkstoffe bis hin zu Simulationsmodellen zur Vorrausage der Perfomance von Komponenten der Industrie anzubieten. Durch die Bündelung von Knowhow und Infrastruktur zu Charakterisierung sowie den Aufbau einer digitalen Plattform, wird i-TRIBOMAT das weltgrößte Open Innovation Test Bed für tribologische Werkstoffcharakterisierung. N2 - The prediction of the properties of the materials used in the operation of components is of enormous importance, in order to accelerate the development process of new components. To evaluate new materials in terms of their performance (in a component), the development of new innovative methods is necessary. These methods can also be summarized under the term lab-to-field or materials – upscaling, meaning materials being characterised in a laboratory and their properties being upscaled to the component performance by means of e.g. simulation. i-TRIBOMAT is a EU funded project (H2020, GA Nr. 814494) aiming at building an Open Innovation Test Bed for tribological material characterization and offering corresponding services from tribological characterization of new materials to simulation models for predicting the performance of industrial components. By bundling the infrastructure, know-how for characterization and building a digital platform, i-TRIBOMAT becomes the world’s largest open innovation test bed for tribological material characterization. T2 - 22nd International Colloquium Tribology CY - Esslingen, Germany DA - 28.01.2020 KW - Tribologie KW - Lab-to-field up-scaling KW - Werkstoffdatenbank KW - Geteilte Infrastruktur KW - Tribo-Analytik KW - Intelligente tribologische Werkstoffcharakterisierung KW - Lab-to-field upscaling KW - Tribology KW - Intelligent tribological material characterization KW - Materials database KW - Shared infrastruture KW - Tribo-analytics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576762 DO - https://doi.org/10.30419/TuS-2020-0026 SN - 0724-3472 SN - 2941-0908 VL - 67 IS - 5-6 SP - 35 EP - 50 PB - Expert CY - Tübingen AN - OPUS4-57676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Niebergall, Ute A1 - Wachtendorf, Volker A1 - Böhning, Martin T1 - Evaluation of UV-induced embrittlement of PE-HD by Charpy impact test N2 - The impact fracture behavior of two common high-density polyethylene grades for container applications were intensively studied by the instrumented Charpy impact test after well-defined exposure to UV-irradiation. Individual stages of the impact event, such as crack initiation and crack propagation energy as well as maximum impact load, were investigated from the recorded load–deflection curves. UV-induced material property changes were further investigated by infrared spectroscopy, differential scanning calorimetry, and dynamic-mechanical analysis as well as density measurements. Based on the results of the Charpy impact test, three indicators were identified to describe the extend of photooxidation on high-density polyethylene: (a) a reduced Charpy impact strength—at least to half of its initial value for a distinctly brittle impact fracture, (b) a marked decrease in the crack propagation contribution to the impact strength, and (c) an increase of the brittle features of the fracture surface. KW - Degradation KW - Mechanical properties KW - Packaging KW - Polyolefins KW - Polyethylene PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509130 DO - https://doi.org/10.1002/APP.49069 SN - 0021-8995 VL - 137 IS - 36 SP - 49069 PB - Wiley AN - OPUS4-50913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Editorial for the special issue "Modern Raman spectroscopy of minerals" N2 - Raman spectroscopy provides vibrational fingerprints of chemical compounds enabling their unambiguous identification. The assignment of Raman spectra to minerals is straightforward, if appropriate reference data is accessible. Modern couplings of Raman spectroscopy with microscopy (Raman microspectroscopy) merge the high structural specificity with down to sub-micrometre spatial resolution. This analytical tool has high potential not only in the identification of minerals from natural sources but also for studying the complex microstructure and mineral distribution of both ancient and modern man-made materials. In addition to the chemical identity of minerals, Raman spectra are affected by crystal orientations (varying relative Raman band intensities); (sub)stoichiometric compositional changes (e.g., in solid solution series), traces of foreign ions, strain (the latter three shifting Raman bands); and crystallinity (changing Raman band widths), enabling a comprehensive physico-chemical characterisation of minerals. Thus, Raman spectroscopy – including its in situ measurement capabilities – provides possibilities to study mineral paragenesis in both, natural and man-made samples at the micrometre scale. While in 1928 the first experimental evidence for inelastic light scattering was provided by C. V. Raman and K. S. Krishnan by using sunlight for excitation, filters for selecting the inelastically scattered light, and their eyes for detection (later, photographic plates for acquisition of spectra were employed), modern Raman spectrometers make use of laser excitation, dispersive spectrographs and charge coupled device (CCD) detection. This Special Issue includes technological developments and applications in the field of modern Raman spectroscopy of minerals in a broad sense, from natural mineral deposits and archaeological objects to inorganic phases in man-made materials. The studied minerals include fossil resins, typical rock-forming minerals (calcite, quartz, forsterite), iron-sulphur species (e.g., mackinawite), a range of sulphates (gypsum, bassanite, anhydrite III, anhydrite II, celestine, barite, ternesite), as well as silicate minerals like garnets (e.g., almandine). KW - Raman spectroscopy KW - Raman microspectroscopy KW - Mineral identification KW - Physico-chemical characterisation of minerals KW - Mineral paragenesis PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515041 DO - https://doi.org/10.3390/min10100860 VL - 10 SP - 860 PB - MDPI CY - Basel AN - OPUS4-51504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottu Mukkula, A. R. A1 - Kern, Simon A1 - Salge, M. A1 - Holtkamp, M. A1 - Guhl, Svetlana A1 - Fleischer, C. A1 - Meyer, Klas A1 - Remelhe, M. A1 - Maiwald, Michael A1 - Engell, S. T1 - An Application of Modifier Adaptation with Quadratic Approximation on a Pilot Scale Plant in Industrial Environment N2 - The goal of this work is to identify the optimal operating input for a lithiation reaction that is performed in a highly innovative pilot scale continuous flow chemical plant in an industrial environment, taking into account the process and safety constraints. The main challenge is to identify the optimum operation in the absence of information about the reaction mechanism and the reaction kinetics. We employ an iterative real-time optimization scheme called modifier adaptation with quadratic approximation (MAWQA) to identify the plant optimum in the presence of plant-model mismatch and measurement noise. A novel NMR PAT-sensor is used to measure the concentration of the reactants and of the product at the reactor outlet. The experiment results demonstrate the capabilities of the iterative optimization using the MAWQA algorithm in driving a complex real plant to an economically optimal operating point in the presence of plant-model mismatch and of process and measurement uncertainties. KW - Process Analytical Technology KW - Online NMR Spectroscopy KW - Process Industry KW - Iterative real-time optimization KW - Modifier adaptation KW - Plant-model mismatch KW - Reactor control KW - CONSENS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524531 DO - https://doi.org/10.1016/j.ifacol.2020.12.685 SN - 1522-2640 VL - 53 IS - 2 SP - 11773 EP - 11779 PB - Elsevier CY - Amsterdam AN - OPUS4-52453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Jungnickel, Robert A1 - Dariz, P. T1 - Insights into the CaSO4–H2O System: A Raman-Spectroscopic Study N2 - Even though being the subject of natural scientific research for many decades, the system CaSO4–H2O, consisting of the five crystalline phases gypsum, bassanite, and the anhydrites III, II, and I, has left many open questions for research. Raman spectroscopy was used because of its structural sensitivity and in situ measurement capability to obtain further insight by studying phase transitions in both ex situ and in situ experiments. The findings include significant contributions to the completeness and understanding of Raman spectroscopic data of the system. The dehydration path gypsum–bassanite–anhydrite III was shown to have strong parallels to a physical drying process, which depends on many parameters beyond the burning temperature. Raman band width determination was demonstrated to enable the quantitative discrimination of α-bassanite and β-bassanite as well as the postulated three sub-forms of anhydrite II (AII), which are all based on differences in crystallinity. In the latter case, the observed continuous structural variations over increasing burning temperatures were elucidated as a combination of decreasing surface areas and healing of crystal lattice defects. We propose an only two-fold sub-division of AII into reactive “disordered AII” and much less reactive “crystalline AII” with a transition temperature of 650°C ± 50 K. KW - Gypsum KW - Bassanite KW - Hemihydrate KW - Anhydrite KW - Raman spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506701 DO - https://doi.org/10.3390/min10020115 SN - 2075-163X VL - 10 IS - 2 SP - 115, 35 PB - MDPI CY - Basel AN - OPUS4-50670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, M. A1 - Nadejde, C. A1 - Brinza, L. A1 - Dragos, O. A1 - Gherghel, D. A1 - Paul, Andrea T1 - Iron phthalocyanine-sensitized magnetic catalysts for BPA photodegradation N2 - The catalytic behavior of iron phthalocyanine (FePc)-sensitized magnetic nanocatalysts was evaluated for their application in the oxidative treatment of Bisphenol A (BPA) under mild environmental conditions. Two types of FePc (Fe(II)Pc and Fe(III)Pc), which are highly photosensitive compounds, were immobilized on the surface of functionalized magnetite. The nanomaterials were characterized by high resolution transmission electron microscopy (HR-TEM), X-ray difraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analyses (TGA). The generation of singlet Oxygen by nanomaterials was also investigated. In the presence of UVA light exposure (365nm) and 15mM H2O2, the M@Fe(III)Pc photocatalyst gave the best results; for a catalyst concentration of 2.0gL −1, around 60% BPA was removed after 120min of reaction. These experimental conditions were further tested under natural solar light exposure, for which also M@Fe(III)Pc exhibited enhanced oxidative catalytic activity, being able to remove 83% of BPA in solution. The water samples were less cytotoxic after treatment, this being confrmed by the MCF-7 cell viability assay. KW - Photosensitization KW - magnetic nanocatalysts KW - BPA removal PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506368 DO - https://doi.org/10.1038/s41598-020-61980-6 VL - 10 IS - 1 SP - 5376 AN - OPUS4-50636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eifert, T. A1 - Eisen, K. A1 - Maiwald, Michael A1 - Herwig, C. T1 - Current and future requirements to industrial analytical infrastructure—part 2: smart sensors N2 - Complex processes meet and need Industry 4.0 capabilities. Shorter product cycles, flexible production needs, and direct assessment of product quality attributes and raw material attributes call for an increased need of new process analytical technologies (PAT) concepts. While individual PAT tools may be available since decades, we need holistic concepts to fulfill above industrial needs. In this series of two contributions, we want to present a combined view on the future of PAT (process analytical technology), which is projected in smart labs (Part 1) and smart sensors (Part 2). Part 2 of this feature article series describes the future functionality as well as the ingredients of a smart sensor aiming to eventually fuel full PAT functionality. The smart sensor consists of (i) chemical and process information in the physical twin by smart field devices, by measuring multiple components, and is fully connected in the IIoT 4.0 environment. In addition, (ii) it includes process intelligence in the digital twin, as to being able to generate knowledge from multi-sensor and multi-dimensional data. The cyber-physical system (CPS) combines both elements mentioned above and allows the smart sensor to be self-calibrating and self-optimizing. It maintains its operation autonomously. Furthermore, it allows—as central PAT enabler—a flexible but also target-oriented predictive control strategy and efficient process development and can compensate variations of the process and raw material attributes. Future cyber-physical production systems—like smart sensors—consist of the fusion of two main pillars, the physical and the digital twins. We discuss the individual elements of both pillars, such as connectivity, and chemical analytics on the one hand as well as hybrid models and knowledge workflows on the other. Finally, we discuss its integration needs in a CPS in order to allow is versatile deployment in efficient process development and advanced optimum predictive process control. KW - Smart sensors KW - Industry 4.0 KW - Digital twins KW - Process intelligence KW - Process analytical technology KW - Physical twin KW - Cyber-physical system PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503980 DO - https://doi.org/10.1007/s00216-020-02421-1 SN - 1618-2642 VL - 412 IS - 9 SP - 2037 EP - 2045 PB - Springer CY - Berlin Heidelberg AN - OPUS4-50398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisen, K A1 - Eifert, T A1 - Herwig, C A1 - Maiwald, Michael T1 - Current and future requirements to industrial analytical infrastructure—part 1: process analytical laboratories N2 - The competitiveness of the chemical and pharmaceutical industry is based on ensuring the required product quality while making optimum use of plants, raw materials, and energy. In this context, effective process control using reliable chemical process analytics secures global competitiveness. The setup of those control strategies often originate in process development but need to be transferable along the whole product life cycle. In this series of two contributions, we want to present a combined view on the future of PAT (process analytical technology), which is projected in smart labs (part 1) and smart sensors (part 2). In laboratories and pilot plants, offline chemical analytical methods are frequently used, where inline methods are also used in production. Here, a transferability from process development to the process in operation would be desirable. This can be obtained by establishing PAT methods for production already during process development or scale-up. However, the current PAT (Bakeev 2005, Org Process Res 19:3–62; Simon et al. 2015, Org Process Res Dev 19:3–62) must become more flexible and smarter. This can be achieved by introducing digitalization-based knowledge management, so that knowledge from product development enables and accelerates the integration of PAT. Conversely, knowledge from the production process will also contribute to product and process development. This contribution describes the future role of the laboratory and develops requirements therefrom. In part 2, we examine the future functionality as well as the ingredients of a smart sensor aiming to eventually fuel full PAT functionality—also within process development or scale-up facilities (Eifert et al. 2020, Anal Bioanal Chem). KW - Smart test laboratories KW - Laboratory 4.0 KW - Sustainable Production KW - Industry 4.0 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504020 DO - https://doi.org/10.1007/s00216-020-02420-2 SN - 1618-2642 VL - 412 IS - 9 SP - 2027 EP - 2035 PB - Springer CY - Berlin Heidelberg AN - OPUS4-50402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zettner, Alina A1 - Gojani, Ardian A1 - Schmid, Thomas A1 - Gornushkin, Igor B. T1 - Evaluation of a Spatial Heterodyne Spectrometer for Raman Spectroscopy of Minerals N2 - Spatial heterodyne spectroscopy (SHS) is a novel spectral analysis technique that is being applied for Raman spectroscopy of minerals. This paper presents the theoretical basis of SHS and its application for Raman measurements of calcite, quartz and forsterite in marble, copper ore and nickel ore, respectively. The SHS measurements are done using a broadband (518–686 nm) and resolving power R ≈ 3000 instrument. The spectra obtained using SHS are compared to those obtained by benchtop and modular dispersive spectrometers. It is found that SHRS performance in terms of resolution is comparable to that of the benchtop spectrometer and better than the modular dispersive spectrometer, while the sensitivity of SHRS is worse than that of a benchtop spectrometer, but better than that of a modular dispersive spectrometer. When considered that SHS components are small and can be packaged into a handheld device, there is interest in developing an SHS-based Instrument for mobile Raman spectroscopy. This paper evaluates the possibility of such an application. KW - Forsterite KW - Spatial heterodyne spectrometer KW - Interferometric spectroscopy KW - Fourier transform spectroscopy KW - Raman spectroscopy KW - Calcite KW - Quartz PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504624 DO - https://doi.org/10.3390/min10020202 VL - 10 IS - 2 SP - 202 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael T1 - Integrated and Networked Systems and Processes—A Perspective for Digital Transformation in Thermal Process Engineering N2 - Separation technology as a sub-discipline of thermal process engineering is one of the most critical steps in the production of chemicals, essential for the quality of intermediate and end products. The discipline comprises the construction of facilities that convert raw materials into value-added products along the value chain. Conversions typically take place in repeated reaction and separation steps—either in batch or continuous processes. The end products are the result of several production and separation steps that are not only sequentially linked, but also include the treatment of unused raw materials, by-products and wastes. Production processes in the process industry are particularly susceptible to fluctuations in raw materials and other influences affecting product quality. This is a challenge, despite increasing fluctuations, to deliver targeted quality and simultaneously meet the increasing dynamics of the market, at least for high value fine chemicals. In order to survive successfully in a changed environment, chemical companies must tread new paths. This includes the potential of digital technologies. The full integration and intelligent networking of systems and processes is progressing hesitantly. This contribution aims to encourage a more holistic approach to the digitalization in thermal process engineering by introduction of integrated and networked systems and processes. KW - Smarter Sensor KW - Digitalisation KW - Digital transformation KW - Process Industry KW - Thermal Process Engineering KW - Digital Twins PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504964 DO - https://doi.org/10.3390/chemengineering4010015 SN - 2305-7084 VL - 4 IS - 15 SP - 1 EP - 9 PB - MDPI CY - Basel AN - OPUS4-50496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Javaheri, E. A1 - Kumala, V. A1 - Javaheri, A. A1 - Rawassizadeh, R. A1 - Lubritz, J. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Quantifying Mechanical Properties of Automotive Steels with Deep Learing Based Computer Vision Algorithms N2 - This paper demonstrates that the instrumented indentation test (IIT), together with a trained artificial neural network (ANN), has the capability to characterize the mechanical properties of the local parts of a welded steel structure such as a weld nugget or heat affected zone. Aside from force-indentation depth curves generated from the IIT, the profile of the indented surface deformed after the indentation test also has a strong correlation with the materials’ plastic behavior. The profile of the indented surface was used as the training dataset to design an ANN to determine the material parameters of the welded zones. The deformation of the indented surface in three dimensions shown in images were analyzed with the computer vision algorithms and the obtained data were employed to train the ANN for the characterization of the mechanical properties. Moreover, this method was applied to the images taken with a simple light microscope from the surface of a specimen. Therefore, it is possible to quantify the mechanical properties of the automotive steels with the four independent methods: (1) force-indentation depth curve; (2) profile of the indented surface; (3) analyzing of the 3D-measurement image; and (4) evaluation of the images taken by a simple light microscope. The results show that there is a very good Agreement between the material parameters obtained from the trained ANN and the experimental uniaxial tensile test. The results present that the mechanical properties of an unknown steel can be determined by only analyzing the images taken from its surface after pushing a simple indenter into its surface. KW - Deep learning KW - Computer vision KW - Artificial neural network KW - Clustering KW - Mechanical properties KW - High strength steels KW - Instumented indentation test PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503038 DO - https://doi.org/10.3390/met10020163 VL - 10 IS - 2 SP - 163 PB - MDPI AN - OPUS4-50303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirilina, E. A1 - Helbling, S. A1 - Morawski, M. A1 - Pine, K. A1 - Reimann, K. A1 - Jankuhn, S. A1 - Dinse, J. A1 - Deistung, A. A1 - Reichenbach, J. R. A1 - Trampel, R. A1 - Geyer, S. A1 - Müller, Larissa A1 - Jakubowski, Norbert A1 - Arendt, T. A1 - Bazin, P.-L. A1 - Weiskopf, N. T1 - Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping N2 - Superficial white matter (SWM) contains the most cortico-cortical white matter connections in the human brain encompassing the short U-shaped association fibers. Despite its importance for brain connectivity, very little is known about SWM in humans, mainly due to the lack of noninvasive imaging methods. Here, we lay the groundwork for systematic in vivo SWM mapping using ultrahigh resolution 7 T magnetic resonance imaging. Using biophysical modeling informed by quantitative ion beam microscopy on postmortem brain tissue, we demonstrate that MR contrast in SWM is driven by iron and can be linked to the microscopic iron distribution. Higher SWM iron concentrations were observed in U-fiber–rich frontal, temporal, and parietal areas, potentially reflecting high fiber density or late myelination in these areas. Our SWM mapping approach provides the foundation for systematic studies of interindividual differences, plasticity, and pathologies of this crucial structure for cortico-cortical connectivity in humans. KW - Magnetic resonance imaging KW - Laser ablation KW - ICP-MS KW - Brain KW - Imaging PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514430 DO - https://doi.org/10.1126/sciadv.aaz9281 SN - 2375-2548 VL - 6 IS - 41 SP - eaaz9281 PB - American Association for the Advancement of Science (Science/AAAS) CY - Washington, DC, USA AN - OPUS4-51443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Krieger, S. A1 - Gumenyuk, Andrey A1 - El-Batahgy, A. M. A1 - Rethmeier, Michael T1 - Notch impact toughness of laser beam welded thick sheets of cryogenic nickel alloyed steel X8Ni9 N2 - The paper deals with the investigations of the impact toughness of laser beam welded 14.5 mm thick sheets made of cryogenic steel X8Ni9 as a function of preheating. This 9% nickel alloyed steel is widely used in the liquefied natural gas (LNG) industry. An application of highly efficient welding processes such as high-power laser beam welding (LBW) in LNG sector requires an understanding of the interactions between the LBW process parameters and weld properties, in particular the impact toughness. The results show that the original fine-grained martensitic microstructure of the base metal (BM) is significantly changed by melting and crystallization during the LBW, what can lead to a decrease in the impact toughness of the weld metal (WM) below the required level. An optimal preheating temperature range leads to the favorable thermal welding cycle and is of remarkable importance for maintaining the notch impact toughness of laser beam welded joints of these thick steel sheets. A parameter window was identified in which V-notch impact toughness comparable to that of the BM at -196 °C was achieved. KW - Cryogenic steel KW - Laser beam welding KW - Preheating KW - Welding thermal cycle KW - Microstructure KW - Hardness KW - V-notch impact toughness PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513250 DO - https://doi.org/10.1016/j.procir.2020.09.095 VL - 94 SP - 627 EP - 631 PB - Elsevier B.V. AN - OPUS4-51325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Pavlov, V. A1 - Volvenko, S. A1 - Rethmeier, Michael T1 - In situ determination of the critical straining condition for solidification cracking during laser beam welding N2 - A self-restraint hot cracking test (free edge test) was used in combination with a novel optical measurement technique to determine the critical straining conditions for solidification cracking for the stainless steel grade 1.4828 (AISI 309). The Lucas-Kanade algorithm for the optical flow (OF) calculation was implemented to obtain the full-field displacement and then the full-field strain. The use of external laser illumination with appropriate filters allows to obtain good image quality with good contrast. The critical straining conditions required for solidification cracking can be obtained by means the proposed technique in the immediate vicinity of the solidification front. A very good repeatability was demonstrated for the used measurement technique. The critical straining conditions for solidification cracking for the tested steel und under this welding conditions has been detected KW - Laser beam welding KW - Solidification cracking KW - Critical strain KW - Critical strain rate KW - Optical flow PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513070 DO - https://doi.org/10.1016/j.procir.2020.09.104 SN - 2212-8271 VL - 94 SP - 666 EP - 670 PB - Elsevier AN - OPUS4-51307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Distortion-based validation of the heat treatment simulation of Directed Energy Deposition additive manufactured parts N2 - Directed energy deposition additive manufactured parts have steep stress gradients and an anisotropic microstructure caused by the rapid thermo-cycles and the layer-upon-layer manufacturing, hence heat treatment can be used to reduce the residual stresses and to restore the microstructure. The numerical simulation is a suitable tool to determine the parameters of the heat treatment process and to reduce the necessary application efforts. The heat treatment simulation calculates the distortion and residual stresses during the process. Validation experiments are necessary to verify the simulation results. This paper presents a 3D coupled thermo-mechanical model of the heat treatment of additive components. A distortion-based validation is conducted to verify the simulation results, using a C-ring shaped specimen geometry. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to compare the distortion of the samples with different post-processing histories. KW - Directed Energy Deposition KW - Additive Manufacturing KW - Heat Treatment KW - Numerical Simulation KW - Finite Element Method PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513153 DO - https://doi.org/10.1016/j.procir.2020.09.146 VL - 94 SP - 362 EP - 366 PB - Elsevier B.V. AN - OPUS4-51315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser-arc welding of thick-walled pipe segments with optimization of the end crater N2 - The study deals with the application of the high-power hybrid-laser arc welding process on up to 15 mm thick pipe segments with the intention to avoid end crater imperfections during closing of the circumferential welds, where the pipes were turned during welding in 1G- and 2Gpositions. Different techniques such as laser power ramp-down, abrupt switch-off of the laser power and change of the magnification of the laser spot diameter and defocusing of the laser beam relative to the workpiece were tested to remove the laser energy from the process. It could be shown that a high defocusing of the optic system above 40 mm with a resulting beam diameter > 2.9 mm in a short overlap length of approx. 20 mm leads to the formation of a cup-shaped weld seam, which is preferred for avoidance of cracks and pores in the end crater. A laser optics with motor-driven lens system was used for the welding experiments to defocuse the laser beam without changing the position of the arc. KW - Hybrid laser-arc welding KW - Circumferential weld KW - Thick-walled steel KW - Single-pass welding KW - End crater PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513260 DO - https://doi.org/10.1016/j.procir.2020.09.106 VL - 94 SP - 676 EP - 679 PB - Elsevier B.V. AN - OPUS4-51326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study of additional element transport in wire feed laser beam welding N2 - The transport phenomena in the wire feed laser beam welding are investigated numerically. A three-dimensional transient heat transfer and fluid flow model coupled with free surface tracing and element transport is developed. A ray-tracing method with local grid refinement algorithm is used to calculate the multiple reflections and Fresnel absorption on the keyhole wall. The filler material flows backward along the lateral side of the weld pool, and subsequently flows forward along the longitudinal plane. The occurrence of the bulging phenomenon may further prevent the downward transfer of the additional elements to the root of the weld pool. KW - Laser beam welding KW - Element transport KW - Filler wire KW - Numerical modelling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513271 DO - https://doi.org/10.1016/j.procir.2020.09.129 VL - 94 SP - 722 EP - 725 PB - Elsevier B.V. AN - OPUS4-51327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaumann, P. A1 - Schürmann, K. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Experimental investigations on the fatigue resistance of automatically welded tubular X-joints for jacket support structures N2 - The development within the offshore wind sector towards more powerful turbines combined with increasing water depth for new wind parks is challenging both the designer as well as the manufacturer of bottom fixed support structures. Besides XL-monopiles, the market developed an innovative and economic jacket support structure which is based on automatically manufactured tubular joints combined with standardized pipes. Besides the improvements for a serial manufacturing process the automatically welded tubular joints show a great potential in terms of fatigue resistance e.g. due to a smooth weld geometry without sharp notches. However, these benefits are not considered yet within the fatigue design process of automatically manufactured jacket substructures according to current standards due to the lack of suitable S-N curves. Therefore, 32 axial fatigue tests on single and double-sided automatically welded tubular X-joints have been performed to determine a new hot spot stress related S-N curve. Based on these constant amplitude fatigue tests a new S-N curve equal to a FAT 126 curve was computed which implicitly includes the benefits of the automatically welding procedure. T2 - EERA Deep Wind 2020 CY - Trondheim, Norway DA - 15.01.2020 KW - Notch stress approach KW - Fatigue tests KW - Automated manufacturing KW - Tubular X-joints KW - Structural stress approach PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518509 DO - https://doi.org/10.1088/1742-6596/1669/1/012022 VL - 1669 SP - 012022 PB - IOP Publishing Ltd AN - OPUS4-51850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clauß, F. A1 - Epple, Niklas A1 - Ahrens, M. A. A1 - Niederleithinger, Ernst A1 - Mark, P. T1 - Comparison of Experimentally Determined Two-Dimensional Strain Fields and Mapped Ultrasonic Data Processed by Coda Wave Interferometry N2 - Due to the high sensitivity of coda waves to the smallest structural alterations such as strain, humidity or temperature changes, ultrasonic waves are a valid means to examine entire structures employing networks of ultrasonic transducers. In order to substantiate this ex ante assessment, the viability of measuring ultrasonic waves as a valid point of reference and inference for structural changes is to be further scrutinized in this work. In order to investigate the influence of mechanical strain on ultrasonic signals, a four-point bending test was carried out on a reinforced concrete beam at Ruhr University Bochum. Thus, measurements collected from a network of selected transducer pairings arranged across the central, shear-free segment of the test specimen, were correlated to their respective strain fields. Detected ultrasonic signals were evaluated employing Coda Wave Interferometry. Such analysis comprised the initial non-cracked state as well as later stages with incremental crack depth and quantity. It was to ascertain that the test specimen can in fact be qualitatively compartmentalized into areas of compression and tension identified via Relative Velocity Changes presented in Attribute Maps. However, since results did not entail a zero crossing, i.e., neither positive nor negative values were to be calculated, only relative changes in this work displayed staggered over the height of the object under test, are discussed. Under the given methodological premises, additional information is currently required to make quantitative assertions regarding this correlation of ultrasonic and strain results. This holds true for the comparability of the ultrasonic and strain results for both non-cracked and even the cracked state. KW - Digital image correlation KW - Fiber optic sensors KW - Coda Wave Interferometry KW - Ultrasound KW - Concrete PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510501 DO - https://doi.org/10.3390/s20144023 SN - 1424-8220 VL - 20 IS - 14 SP - Paper 4023, 1 PB - MDPI CY - Basel AN - OPUS4-51050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Xin A1 - Chakraborty, J. A1 - Bassil, A. A1 - Niederleithinger, Ernst T1 - Detection of Multiple Cracks in Four-Point Bending Tests Using the Coda Wave Interferometry Method N2 - The enlargement of the cracks outside the permitted dimension is one of the main causes for the reduction of service life of Reinforced Concrete (RC) structures. Cracks can develop due to many causes such as dynamic or static load. When tensile stress exceeds the tensile strength of RC, cracks appear. Traditional techniques have limitations in early stage damage detection and localisation, especially on large-scale structures. The ultrasonic Coda Wave Interferometry (CWI) method using diffuse waves is one of the most promising methods to detect subtle changes in heterogeneous materials, such as concrete. In this paper, the assessment of the CWI method applied for multiple cracks opening detection on two specimens based on four-point bending test is presented. Both beams were monitored using a limited number of embedded Ultrasonic (US) transducers as well as other transducers and techniques (e.g., Digital Image Correlation (DIC), LVDT sensors, strain gauges, and Fiber Optics Sensor (FOS)). Results show that strain change and crack formation are successfully and efficiently detected by CWI method even earlier than by the other techniques. The CWI technique using embedded US transducers is undoubtedly a feasible, efficient, and promising method for long-term monitoring on real infrastructure. KW - Coda wave interferometry KW - Reinforced concrete KW - Cracks KW - SHM KW - Damage detection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506666 DO - https://doi.org/10.3390/s20071986 VL - 20 IS - 7 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Wang, J. A1 - Kaiser, L. A1 - Rethmeier, Michael T1 - Automated Tool-Path Generation for Rapid Manufacturing of Additive Manufacturing Directed Energy Deposition Geometries N2 - In additive manufacturing (AM) directed energy deposition (DED), parts are built by welding layers of powder or wire feedstock onto a substrate with applications for steel powders in the fields of forging tools, spare parts, and structural components for various industries. For large and bulky parts, the choice of toolpaths influences the build rate, the mechanical performance, and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool-path generation is essential for the usability of DED processes. This contribution presents automated tool-path generation approaches and discusses the results for arbitrary geometries. Socalled “zig-zag” and “contour-parallel” processing strategies are investigated and the tool-paths are automatically formatted into machine-readable g-code for experimental validation to build sample geometries. The results are discussed in regard to volume-fill, microstructure, and porosity in dependence of the path planning according to photographs and metallographic cross-sections. KW - Porosity KW - Path planning KW - Mechanical properties KW - Laser metal deposition KW - Additive manufacturing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510454 DO - https://doi.org/10.1002/srin.202000017 VL - 91 IS - 11 SP - 2000017 PB - WILEY-VCH Verlag GmbH & co. KGaA CY - Weinheim AN - OPUS4-51045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Karkhin, V. A1 - Rethmeier, Michael T1 - On the relationship between the bulge effect and the hot cracking formation during deep penetration laser beam welding N2 - Recent studies have confirmed the widening of the weld pool interface, known as a bulge effect, during deep penetration high power laser beam welding. The link between such geometric particularities of the weld pool shape and the hot cracking phenomena is significant. The present work seeks to extend the level of understanding by investigating their relationship. A coupled multiphysics, multiscale numerical framework is developed, comprising a series of subsequent analyses. The study examines the influences of the bulge on the three most dominant effects causing hot cracking, namely the thermal cycles, the mechanical loading, and the local microstructure. The bulge in the weld pool shape forms approximately in the middle of the plate, thus correlating with the location of hot cracking. It increases the hot cracking susceptibility by enhancing the three dominant effects. The numerical results are backed up by experimental data. T2 - 11th CIRP Conference on Photonic Technologies [LANE 2020] KW - Hot cracking KW - Bulge effect KW - Numerical modelling KW - Laser beam welding KW - Deep penetration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512783 DO - https://doi.org/10.1016/j.procir.2020.09.002 SN - 2212-8271 VL - 94 SP - 5 EP - 10 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-51278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kool, L. A1 - Dekker, F. A1 - Bunschoten, A. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Velders, A. H. A1 - Saggiomo, V. T1 - Gold and silver dichroic nanocomposite in the quest for 3D printing the Lycurgus cup N2 - The Lycurgus cup is an ancient glass artefact that shows dichroism as it looks green when a white light is reflected on it and a red colouring appears when a white light is transmitted through it. This peculiar dichroic effect is due to silver and gold nanoparticles present in the glass. In this research we show the synthesis of dichroic silver nanoparticles and their embedding in a 3D printable nanocomposite. The addition of gold nanoparticles to the silver nanoparticle composite, gave a 3D printable nanocomposite with the same dichroism effect of the Lycurgus cup. KW - SAXS KW - Au KW - Ag KW - Nanocomposite KW - 3D printing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-501831 DO - https://doi.org/10.3762/bjnano.11.2 SP - 16 EP - 23 AN - OPUS4-50183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Rowlandson, J. L. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Ting, V. P. A1 - Kulak, A. A1 - Schnepp, Z. T1 - The effect of precursor structure on porous carbons produced by iron-catalyzed graphitization of biomass N2 - This paper reports a systematic study into the effect of different biomass-derived precursors on the structure and porosity of carbons prepared via catalytic graphitization. Glucose, starch and cellulose are combined with iron nitrate and heated under a nitrogen atmosphere to produce Fe3C nanoparticles, which catalyze the conversion of amorphous carbon to graphitic nanostructures. The choice of organic precursor provides a means of controlling the catalyst particle size, which has a direct effect on the porosity of the material. Cellulose and glucose produce mesoporous carbons, while starch produces a mixture of micro- and mesopores under the same conditions and proceeds via a much slower graphitization step, generating a mixture of graphitic nanostructures and turbostratic carbon. Porous carbons are critical to energy applications such as batteries and electrocatalytic processes. For These applications, a simple and sustainable route to those carbons is essential. Therefore, the ability to control the precise structure of a biomass-derived carbon simply through the choice of precursor will enable the production of a new generation of energy materials. KW - SAXS KW - Porous carbons KW - Graphitization KW - Iron nanoparticles KW - Catalysis KW - Gas sorption PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515531 DO - https://doi.org/10.1039/d0ma00692k VL - Royal Society of Chemistry SP - 1 EP - 11 AN - OPUS4-51553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosenkranz, D. A1 - Kriegel, F. L. A1 - Mavrakis, E. A1 - Pergantis, S. A. A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jakubowski, N. A1 - Laux, P. A1 - Panne, Ulrich A1 - Luch, A. T1 - Versatile dual-inlet sample introduction system for multi-mode single particle inductively coupled plasma mass spectrometry N2 - Metal-containing nanoparticles (NP) can be characterized with inductively coupled plasma mass spectrometers (ICP-MS) in terms of their size and number concentration by using the single-particle mode of the instrument (spICP-MS). The accuracy of measurement depends on the setup, operational conditions of the instrument and specific parameters that are set by the user. The transport efficiency of the ICP-MS is crucial for the quantification of the NP and usually requires a reference material with homogenous size distribution and a known particle number concentration. Currently, NP reference materials are available for only a few metals and in limited sizes. If particles are characterized without a reference standard, the results of both size and particle number may be biased. Therefore, a dual-inlet Setup for characterizing nanoparticles with spICP-MS was developed to overcome this problem. This setup is based on a conventional introduction system consisting of a pneumatic nebulizer (PN) for nanoparticle solutions and a microdroplet Generator (μDG) for ionic calibration solutions. A new and flexible interface was developed to facilitate the coupling of μDG, PN and the ICP-MS system. The interface consists of available laboratory components and allows for the calibration, nanoparticle (NP) characterization and cleaning of the arrangement, while the ICP-MS instrument is still running. Three independent analysis modes are available for determining particle size and number concentration. Each mode is based on a different calibration principle. While mode I (counting) and mode III (μDG) are known from the literature, mode II (sensitivity), is used to determine the transport efficiency by inorganic ionic Standard solutions only. It is independent of NP reference materials. The μDG based inlet system described here guarantees superior analyte sensitivities and, therefore, lower detection limits (LOD). The size dependent LODs achieved are less than 15 nm for all NP (Au, Ag, CeO2) investigated. KW - Spectrometer KW - Reference KW - Calibration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536121 DO - https://doi.org/10.3791/61653 SN - 1940-087X IS - 163 SP - 1 EP - 19 PB - MyJoVE Corporation CY - Cambridge, MA, USA AN - OPUS4-53612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachenberger, Y. U. A1 - Rosenkranz, D. A1 - Kriegel, Fabian L. A1 - Krause, B. A1 - Matschaß, René A1 - Reichardt, P. A1 - Tentschert, J. A1 - Laux, P. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Luch, A. T1 - Tackling Complex Analytical Tasks: An ISO/TS-Based Validation Approach for Hydrodynamic Chromatography Single Particle Inductively Coupled Plasma Mass Spectrometry N2 - Nano-carrier systems such as liposomes have promising biomedical applications. Nevertheless, characterization of these complex samples is a challenging analytical task. In this study a coupled hydrodynamic chromatography-single particle-inductively coupled plasma mass spectrometry (HDC-spICP-MS) approach was validated based on the technical specification (TS) 19590:2017 of the international organization for standardization (ISO). The TS has been adapted to the hyphenated setup. The quality criteria (QC), e.g., linearity of the calibration, transport efficiency, were investigated. Furthermore, a cross calibration of the particle size was performed with values from dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to an additional Y-piece, an online-calibration routine was implemented. This approach allows the calibration of the ICP-MS during the dead time of the chromatography run, to reduce the required time and enhance the robustness of the results. The optimized method was tested with different gold nanoparticle (Au-NP) mixtures to investigate the characterization properties of HDC separations for samples with increasing complexity. Additionally, the technique was successfully applied to simultaneously determine both the hydrodynamic radius and the Au-NP content in liposomes. With the established hyphenated setup, it was possible to distinguish between different subpopulations with various NP loads and different hydrodynamic diameters inside the liposome carriers. KW - Single particle ICP-MS KW - Nanoparticle characterization KW - Nano-carrier KW - Iposomes KW - Hydrodynamic chromatography (HDC) KW - Validation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506609 DO - https://doi.org/10.3390/ma13061447 VL - 13 IS - 6 SP - 1 EP - 14 CY - Basel, Switzerland AN - OPUS4-50660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Falkenhagen, Jana A1 - Panne, Ulrich A1 - Hiller, W. A1 - Gruendling, T. A1 - Staal, B. A1 - Lang, C. A1 - Lamprou, A. T1 - Simultaneous characterization of poly(acrylic acid) andpolysaccharide polymers and copolymers N2 - Copolymer products that result from grafting acrylic acid and other hydrophilicmonomers onto polysaccharides have recently gained significant interest in researchand industry. Originating from renewable sources, these biodegradable, low toxicity,and polar copolymer products exhibit potential to replace polymers from fossil sourcesin several applications and industries. The methods usually employed to character-ize these copolymers are, however, quite limited, especially for the measurement ofbulk properties. With more sophisticated applications, for example, in pharmaceu-tics requiring a more detailed analysis of the chemical structure, we describe a newapproach for this kind of complex polymers. Our approach utilizes chromatographyin combination with several detection methods to separate and characterize reactionproducts of the copolymerization of acrylic acid and chemically hydrolyzed starch.These samples consisted of a mixture of homopolymer poly (acrylic acid), homopoly-mer hydrolyzed starch, and – in a lower amount – the formed copolymers. Several chro-matographic methods exist that are capable of characterizing either poly (acrylic acid)or hydrolyzed starch. In contrast, our approach offers simultaneous characterization ofboth polymers. The combination of LC and UV/RI offered insight into the compositionand copolymer content of the samples. Size exclusion chromatography experimentsrevealed the molar mass distribution of homopolymers and copolymers. FTIR inves-tigations confirmed the formation of copolymers while ESI-MS gave more details onthe end groups of hydrolyzed starches and poly (acrylic acids). Evidence of copolymerstructures was obtained through NMR measurements. Finally, two-dimensional chro-matography led to the separation of the copolymers from both homopolymers as wellas the additional separation of sodium clusters. The methods described in this work area powerful toolset to characterize copolymerization products of hydrolyzed starch andpoly(acrylic acid). Together, our approach successfully correlates the physicochemicalproperties of such complex mixtures with their actual composition. KW - 2D chromatography KW - LC-MS KW - SEC KW - Renewable copolymers KW - Grafting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508873 DO - https://doi.org/10.1002/ansa.202000044 SP - 1 EP - 12 PB - Wiley-VCH Verlag-GmbH&Co. KGaA CY - Weinheim AN - OPUS4-50887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Benseghier, Z. A1 - Cuéllar, Pablo A1 - Luu, L.-H. A1 - Bonelli, S. A1 - Philippe, P. T1 - A parallel GPU-based computational framework for the micromechanical analysis of geotechnical and erosion problems N2 - This article deals with the relevance and practical feasibility of micromechanical simulations for their application to general geomechanical problems involving fluid-saturated granular assemblies, whether frictional or cohesive. A set of conceptual and numerical tools is here presented, advocating for a parallel computation using graphical processing units (GPUs) to treat large numbers of degrees of freedom with conventional Desktop computers. The fluid phase is here simulated with a particle-resolved approach in the frame of the Lattice Botzmann Method (LBM) while the granular solid phase is modelled as a collection of discrete particles from a Molecular Dynamics DEM perspective. The range of possible material behaviours for the solid granular phase is intended here to cover a broad spectrum from purely frictional to viscous cohesive materials with either brittle or transient debonding features. Specific details of the implementation and some validation cases are put forward. Finally, some exemplary applications in the fields of soil erosion and geotechnical profile installation are provided along with a discussion on the parallel performance of the presented models. The results show that a micromechanical approach can be feasible and useful in practice, providing meaningful insights into complex engineering problems like the erosion kinetics of a soil under an impinging jet or the penetration resistance of a deep foundation in a layered soil profile. KW - Offshore geomechanics KW - Erosion KW - Micromechanical modelling KW - LBM-DEM KW - GPU Parallel computing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502309 DO - https://doi.org/10.1016/j.compgeo.2019.103404 VL - 120 SP - Paper 103404, 1 PB - Elsevier Ltd. AN - OPUS4-50230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García-González, M. A1 - Blasón Gonzalez, Sergio A1 - García-García, I. A1 - Lamela-Rey, M. J. A1 - Fernández-Canteli, A. A1 - Álvarez-Arenal, Á. T1 - Optimized planning and evaluation of dental implant fatigue testing: A specific software application N2 - Mechanical complications in implant-supported fixed dental prostheses are often related to implant and prosthetic design. Although the current ISO 14801 provides a framework for the evaluation of dental implant mechanical reliability, strict adherence to it may be difficult to achieve due to the large number of test specimens which it requires as well as the fact that it does not offer any probabilistic reference for determining the endurance limit. In order to address these issues, a new software program called ProFatigue is presented as a potentially powerful tool to optimize fatigue testing of implant-supported prostheses. The present work provides a brief description of some concepts such as load, fatigue and stress-number of cycles to failure curves (S-N curves), before subsequently describing the current regulatory situation. After analyzing the two most recent versions of the ISO recommendation (from 2008 and 2016), some limitations inherent to the experimental methods which they propose are highlighted. Finally, the main advantages and instructions for the correct implementation of the ProFatigue free software are given. This software will contribute to improving the performance of fatigue testing in a more accurate and optimized way, helping researchers to gain a better understanding of the behavior of dental implants in this type of mechanical test. KW - Dental materials KW - Prostheses KW - Implants KW - Reference standards KW - Software KW - Cyclic loading KW - Fatigue KW - Lifetime KW - S-N curve KW - Staircase method PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516268 DO - https://doi.org/10.3390/biology9110372 SN - 2079-7737 VL - 9 IS - 11 SP - 372-1 EP - 372-12 PB - MDPI CY - Basel AN - OPUS4-51626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krösche, C. A1 - Malow, Marcus A1 - Budde, K. T1 - False-Positive Results of UN Test O.2 Liquid Oxidizer Test of Polychlorosilanes N2 - According to UN Test O.2, surprisingly, the polychlorosilanes hexachlorodisilane (HCDS), octachlorotrisilane (OCTS) and decachlorotetrasilane (DCTS) formally fulfill the criteria of the “test for oxidizing liquids”. This result is in contrast to the properties of polychlorosilanes that are described in the literature and those we have experienced in our own production. By investigating the reaction products from the UN O.2 test reactor, using IR, Raman and XPS spectroscopy, it was shown that the results are not due to oxidizing properties of HCDS, OCTS or DCTS, but are caused by the specified test substance cellulose. To our knowledge, this is the very first substance class in which the reference substance oxidizes the test sample, instead of vice versa. This represents an important limitation of the internationally used UN Test O.2 for this substance class. The cause for this false-positive result is the known high degree of affinity of oxygen to silicon. It is shown that the correctly executed UN Test O.2 produces false-positive results and that the polychlorosilanes do not have an oxidizing effect and, therefore, do not have to be classified as “oxidizing substances”. KW - Polychlorosilanes KW - UN Test O.2 KW - Hexachlorodisilane KW - Octachlortrisilane KW - Decachlorotetrasilane KW - False-positive results PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523989 DO - https://doi.org/10.1016/j.jlp.2021.104434 VL - 70 SP - 104434 PB - Elsevier Ltd. AN - OPUS4-52398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, P. T1 - Black Egyptian inks in Late Antiquity: new insights on their manufacture and use N2 - We present here our methodological approach applied to the study of Egyptian inks in Late Antiquity. It is based on an interdisciplinary strategy, bringing together a variety of disciplines from humanities and natural sciences, and it aims at systematically collecting a statistically relevant amount of data regarding the composition of the inks. The application of a wellestablished, non-invasive protocol that includes near-infrared imaging and X-ray fluorescence spectroscopy for in situ measurements enables the identification and characterisation of inks dating from the end of Late Antiquity onwards. However, sometimes this method limits our understanding when characterising more ancient inks. Trying to overcome these limitations, the potential of a new device for the characterisation of organic compounds is here explored by conducting preliminary tests on mock samples. In this work, we present the results from 77 codicological units that include some of the earliest manuscripts of our corpus that presently lists 159 units. KW - Ink KW - Archaeometry KW - Manuscripts KW - Coptic KW - Egypt PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503893 DO - https://doi.org/10.1007/s12520-019-00977-3 VL - 12 IS - 3 SP - 1 EP - 14 PB - Springer AN - OPUS4-50389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boaretto, E. A1 - Newman, H. A1 - Shevchuk, I. A1 - Breterniz, S. A1 - Rabin, Ira T1 - Date, Materiality and Historical Significance of P.Köln Inv. 5941 N2 - The paper presents the results of the radiocarbon dating and ink analysis of a leather fragment bearing an important liturgical text in Hebrew from the early centuries of the common era. The work initiated by the scholarly interest in the text stresses the importance of the date and materiality of the manuscripts and closes with an appeal to the curators of manuscript collections. KW - Mixed ink KW - Radiocarbon KW - Leather PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528063 DO - https://doi.org/10.25592/uhhfdm.8471 VL - 6/2 SP - 173 EP - 186 AN - OPUS4-52806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography N2 - Additive manufacturing offers a range of novel applications. However, the manufacturing process is complex and the production of almost defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal additive manufacturing processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid wavelength infrared camera with those from a short wavelength infrared camera and those from a visual spectrum high-speed camera with band pass filter in the near infrared range. KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - LMD KW - Metal KW - MWIR KW - SWIR KW - NIR PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516318 DO - https://doi.org/10.1080/17686733.2020.1829889 VL - 19 IS - 2 SP - 97 EP - 114 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-51631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernegger, Raphael A1 - Maierhofer, Christiane A1 - Altenburg, Simon T1 - Quantification of delaminations in semitransparent solids using pulsed thermography and mathematical 1D models N2 - Material defects in fiber reinforced polymers such as delaminations can rapidly degrade the material properties or can lead to the failure of a component. Pulse thermography (PT) has proven to be a valuable tool to identify and quantify such defects in opaque materials. However, quantification of delaminations within semitransparent materials is extremely challenging. We present an approach to quantify delaminations within materials being semitransparent within the wavelength ranges of the optical excitation sources as well as of the infrared (IR) camera. PT experimental data of a glass fiber reinforced polymer with a real delamination within the material were reconstructed by one dimensional (1D) mathematical models. These models describe the heat diffusion within the material and consider semitransparency to the excitation source as well to the IR camera, thermal losses at the samples surfaces and a thermal contact resistance between the two layers describing the delamination. By fitting the models to the PT data, we were able to determine the depth of the delamination very accurately. Additionally, we analyzed synthetic PT data from a 2D simulation with our 1D-models to show how the thermal contact resistance is influenced by lateral heat flow within the material. KW - Pulsed thermography KW - Quantification KW - Numerical simulation KW - Analytical model KW - Semitransparent KW - GFRP KW - Delamination PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505766 DO - https://doi.org/10.1007/s10765-020-02642-7 VL - 41 IS - 5 SP - Article number: 67 PB - Springer AN - OPUS4-50576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munzke, Dorit A1 - Duffner, Eric A1 - Eisermann, René A1 - Schukar, Marcus A1 - Schoppa, André A1 - Szczepaniak, Mariusz A1 - Strohhäcker, J. A1 - Mair, Georg W. T1 - Monitoring of type IV composite pressure vessels with multilayer fully integrated optical fiber based distributed strain sensing N2 - We present the results of distributed fiber optic strain sensing for condition monitoring of a hybrid type IV composite fully wrapped pressure vessel using multilayer integrated optical fibers. Distributed strain sensing was performed for a total number of 252,000 load cycles until burst of the vessel. During this ageing test material fatigue could be monitored and spatially localized. Critical material changes were detected 17,000 cycles before material failure. Results have been validated by acoustic emission analysis. T2 - 12th International Conference on Composite Science and Technology (ICCST12) CY - Sorrento, Italy DA - 08.05.2019 KW - Hybrid composite pressure vessel KW - Distributed fiber optic sensing KW - Acoustic emission analysis KW - Structural health monitoring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516772 DO - https://doi.org/10.1016/j.matpr.2020.02.872 SN - 2214-7853 VL - 34 SP - 217 EP - 223 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-51677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mair, Georg W. A1 - Thomas, Sebastian A1 - Schalau, Bernd A1 - Wang, Bin T1 - Safety criteria for the transport of hydrogen in permanently mounted composite pressure vessels N2 - The recent growth of the net of hydrogen fuelling stations increases the demands to transport compressed hydrogen on road by battery vehicles or tube-trailers, both in composite pressure vessels. As a transport regulation, the ADR is applicable in Europe and adjoined regions, and is used for national transport in the EU. This regulation provides requirements based on the behaviour of each individual pressure vessel, regardless of the pressure of the transported hydrogen and relevant consequences resulting from generally possible worst case scenarios such as sudden rupture. In 2012, the BAM (German Federal Institute for Materials Research and Testing) introduced consequence-dependent requirements and established them in national transport requirements concerning the “UN service life checks” etc. to consider the transported volume and pressure of gases. This results in a requirement that becomes more restrictive as the product of pressure and volume increases. In the studies presented here, the safety measures for hydrogen road transport are identified and reviewed through a number of safety measures from countries including Japan, the USA and China. Subsequently, the failure consequences of using trailer vehicles, the related risk and the chance are evaluated. A benefit-related risk criterion is suggested to add to regulations and to be defined as a safety goal in standards for hydrogen transport vehicles and for mounted pressure vessels. Finally, an idea is given for generating probabilistic safety data and for highly efficient evaluation without a significant increase of effort. T2 - ICHS 2019 CY - Adelaide, Australia DA - 24.09.2019 KW - F-N-diagram KW - Chance-risk analysis KW - Pressure-volume product KW - Limit of acceptable consequence KW - Minimum burst pressure PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511589 DO - https://doi.org/10.1016/j.ijhydene.2020.07.268 SN - 0360-3199 VL - 46 IS - 23 SP - 12577 EP - 12593 PB - Elsevier Ltd. AN - OPUS4-51158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kern, Simon A1 - Liehr, Sascha A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Müller, S. A1 - Maiwald, Michael A1 - Kowarik, Stefan T1 - Artificial neural networks for quantitative online NMR spectroscopy N2 - Industry 4.0 is all about interconnectivity, sensor-enhanced process control, and data-driven systems. Process analytical technology (PAT) such as online nuclear magnetic resonance (NMR) spectroscopy is gaining in importance, as it increasingly contributes to automation and digitalization in production. In many cases up to now, however, a classical evaluation of process data and their transformation into knowledge is not possible or not economical due to the insufficiently large datasets available. When developing an automated method applicable in process control, sometimes only the basic data of a limited number of batch tests from typical product and process development campaigns are available. However, these datasets are not large enough for training machine-supported procedures. In this work, to overcome this limitation, a new procedure was developed, which allows physically motivated multiplication of the available reference data in order to obtain a sufficiently large dataset for training machine learning algorithms. The underlying example chemical synthesis was measured and analyzed with both application-relevant low-field NMR and high-field NMR spectroscopy as reference method. Artificial neural networks (ANNs) have the potential to infer valuable process information already from relatively limited input data. However, in order to predict the concentration at complex conditions (many reactants and wide concentration ranges), larger ANNs and, therefore, a larger Training dataset are required. We demonstrate that a moderately complex problem with four reactants can be addressed using ANNs in combination with the presented PAT method (low-field NMR) and with the proposed approach to generate meaningful training data. KW - Online NMR spectroscopy KW - Real-time process monitoring KW - Artificial neural networks KW - Automation KW - Process industry PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507508 DO - https://doi.org/10.1007/s00216-020-02687-5 SN - 1618-2642 VL - 412 IS - 18 SP - 4447 EP - 4459 PB - Springer CY - Berlin AN - OPUS4-50750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Optimization of analytical assay performance of antibody-gated indicator-releasing mesoporous silica particles N2 - Antibody-gated indicator delivery (gAID) systems based on mesoporous silica nano- and microparticle scaffolds are a promising class of materials for the sensitive chemical detection of small-molecule analytes in simple test formats such as lateral flow assays (LFAs) or microfluidic chips. Their architecture is reminiscent of drug delivery systems, only that reporter molecules instead of drugs are stored in the voids of a porous host particle. In addition, the pores are closed with macromolecular “caps” through a tailored “gatekeeping” recognition chemistry so that the caps are opened when an analyte has reacted with a “gatekeeper”. The subsequent uncapping leads to a release of a large number of indicator molecules, endowing the system with signal amplification features. Particular benefits of such systems are their modularity and adaptability. With the example of the immunochemical detection of type-I pyrethroids by fluorescent dye-releasing gAID systems, the influence of several tuning modes on the optimisation of such hybrid sensory materials is introduced here. In particular, different mesoporous silica supports (from nano- and microparticles to platelets and short fibres), different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in the absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material's pore opening, the better the closing/opening mechanism can be controlled. Because such materials are well-suited for LFAs, performance assessment included a test-strip format besides conventional assays in suspension. In combination with dyes as indicators and smartphones for read-out, simple analytical tests for use by untrained personnel directly at a point-of-need such as an aeroplane cabin can be devised, allowing for sensitivities down to the μg kg−1 range in <5 min with case-required selectivities. KW - Antibody-gated indicator delivery KW - Lateral flow assay KW - SBA-15 KW - SBA-16 KW - Type-I pyrethroids KW - Phenothrin KW - Permethrin KW - Etofenprox KW - Amplification KW - Biosensors KW - Immunoassays KW - Mesoporous particles KW - Optical detection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517053 DO - https://doi.org/10.1039/d0tb00371a VL - 8 IS - 22 SP - 4950 EP - 4961 PB - Royal Society of Chemistry AN - OPUS4-51705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gröninger, Delia A1 - Weller, Michael G. A1 - Martínez Mánez, R. A1 - Rurack, Knut T1 - Multiplex‐Nachweis von Analyten auf einem einzelnen Teststreifen mit Antikörper‐gesteuerten und Indikator freisetzenden mesoporösen Nanopartikeln N2 - Vor dem Hintergrund der einzigartigen Modularität, hohen Empfindlichkeit und Selektivität von Antikörper‐gesteuerten Indikatorfreisetzungssystemen (gAID‐Systemen) wurde hier ein Multiplex‐Assay für drei organische Explosivstoffmoleküle (TATP, TNT, PETN) entwickelt, der es erlaubt, die Analyten gleichzeitig in flüssiger Phase mit einem einzelnen Teststreifen und einem Fluoreszenzlesegerät bzw. Smartphone als Detektor in Konzentrationen bis in den unteren ppb‐Bereich in <5 min nachzuweisen. Alle drei Systeme, darunter die hier neu entwickelten Systeme für TNT und PETN, tolerieren zudem nicht nur gepufferte wässrige Modelllösungen, sondern auch komplexere Matrices. Neben einem konventionellen Teststreifen mit einem Kanal erlaubte uns die Anwendung von Wachsdrucktechnologie das Herstellen von mehrkanaligen Streifen mit vergleichbarer analytischer Leistungsfähigkeit, was das enorme Potenzial der modular aufgebauten, hybriden Biosensormaterialien im Hinblick auf eine für den Endanwender maßgeschneiderte Vor‐Ort‐Analytik unterstreicht. KW - Multiplex KW - Gesteuerten Nanopartikeln KW - Explosiven PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518431 DO - https://doi.org/10.1002/ange.202009000 SN - 1521-3757 SN - 0044-8249 VL - 132 IS - 52 SP - 24071 EP - 24078 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51843 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pu, Y. A1 - Lawrence, M. J. A1 - Celorrio, V. A1 - Wang, Q. A1 - Gu, M. A1 - Sun, Z. A1 - Agudo Jácome, Leonardo A1 - Russell, A. E. A1 - Huang, L. A1 - Rodriguez, P. T1 - Nickel confined in 2D earth-abundant oxide layers for highly efficient and durable oxygen evolution catalysts N2 - Low cost, high-efficiency catalysts towards water splitting are urgently required to fulfil the increasing demand for energy. In this work, low-loading (<20 wt%) Ni-confined in layered metal oxide anode catalysts (birnessite and lepidocrocite titanate) have been synthesized by facile ion exchange methodology and subjected to systematic electrochemical studies. It was found that Ni-intercalated on K-rich birnessite (Ni-KMO) presents an onset overpotential (ηonset) as low as 100 mV and overpotential at 10 mA cm−2 (η10) of 206 mV in pH = 14 electrolyte. By combining electrochemical methods and X-ray absorption and emission spectroscopies (XAS and XES), we demonstrate Ni sites are the active sites for OER catalysis and that the Mn3+ sites facilitate Ni intercalation during the ion-exchange process, but display no observable contribution towards OER activity. The effect of the pH and the nature of the supporting electrolyte on the electrochemical performance was also evaluated. KW - Confined catalyst KW - Low-loading KW - Layered manganese oxide KW - Oxygen evolution reaction KW - Transmission electron microscopy (TEM) PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515027 DO - https://doi.org/10.1039/D0TA04031B SN - 2050-7496 SN - 2050-7488 VL - 8 IS - 26 SP - 13340 EP - 13350 PB - Royal Society of Chemistry CY - London AN - OPUS4-51502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Q. A1 - Shinde, S. A1 - Grasso, G. A1 - Caroli, A. A1 - Abouhany, R. A1 - Lanzillotta, M. A1 - Pan, G. A1 - Wan, Wei A1 - Rurack, Knut A1 - Sellergren, B. T1 - Selective detection of phospholipids using molecularly imprinted fluorescent sensory core-shell particles N2 - Sphingosine-1-phosphate (S1P) is a bioactive sphingo-lipid with a broad range of activities coupled to its role in G-protein coupled receptor signalling. Monitoring of both intra and extra cellular levels of this lipid is challenging due to its low abundance and lack of robust affinity assays or sensors. We here report on fluorescent sensory core-shell molecularly imprinted polymer (MIP) particles responsive to near physiologically relevant levels of S1P and the S1P receptor modulator fingolimod phosphate (FP) in spiked human serum samples. Imprinting was achieved using the tetrabutylammonium (TBA) salt of FP or phosphatidic acid (DPPA·Na) as templates in combination with a polymerizable nitrobenzoxadiazole (NBD)-urea monomer with the dual role of capturing the phospho-anion and signalling its presence. The monomers were grafted from ca 300 nm RAFT-modified silica core particles using ethyleneglycol dimethacrylate (EGDMA) as crosslinker resulting in 10–20 nm thick shells displaying selective fluorescence response to the targeted lipids S1P and DPPA in aqueous buffered media. Potential use of the sensory particles for monitoring S1P in serum was demonstrated on spiked serum samples, proving a linear range of 18–60 μM and a detection limit of 5.6 μM, a value in the same range as the plasma concentration of the biomarker. KW - Molecularly imprinted polymers KW - Phospholipids KW - Fluorescence KW - Dye monomers PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509485 DO - https://doi.org/10.1038/s41598-020-66802-3 SN - 2045-2322 VL - 10 IS - 1 SP - 9924 PB - Nature Research CY - London AN - OPUS4-50948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gadelmeier, C. A1 - Haas, S. A1 - Lienig, T. A1 - Manzoni, Anna Maria A1 - Feuerbacher, M. A1 - Glatzel, U. T1 - Temperature Dependent Solid Solution Strengthening in the High Entropy Alloy CrMnFeCoNi in Single Crystalline State N2 - The main difference between high entropy alloys and conventional alloys is the solid solution strengthening effect, which shifts from a single element to a multi-element matrix. Little is known about the effectiveness of this effect at high temperatures. Face-centered cubic, equiatomic, and single crystalline high entropy alloy CrMnFeCoNi was pre-alloyed by arc-melting and cast as a single Crystal using the Bridgman process. Mechanical characterization by creep testing were performed at temperatures of 700, 980, 1100, and 1200°C at different loads under vacuum and compared to single-crystalline pure nickel. The results allow a direct assessment of the influence of the chemical composition without any disturbance by grain boundary sliding or diffusion. The results indicate different behaviors of single crystalline pure nickel and CrMnFeCoNi. At 700°C CrMnFeCoNi is more creep-resistant than Ni, but at 980°C both alloys show a nearly similar creep strength. Above 980°C the creep behavior is identical and the solid solution strengthening effect of the CrMnFeCoNi alloy disappears. KW - High entropy alloys KW - Single crystal PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514572 DO - https://doi.org/10.3390/met10111412 VL - 10 IS - 11 SP - 1412 PB - MDPI AN - OPUS4-51457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noureen, N. A1 - Shah, F. A. A1 - Lisec, Jan A1 - Usman, H. A1 - Khalid, M. A1 - Munir, R. A1 - Zaidi, N. T1 - Revisiting the association between human leukocyte antigen and end-stage renal disease N2 - Multiple works have studied possible associations between human leukocyte antigen (HLA) alleles and end stage renal disease (ESRD) showing, however, contradictory and inconsistent results. Here, we revisit the association between ESRD and HLA antigens, comparing HLA polymorphism (at HLA-A, -B, -C, -DRB1, -DQB1 and DQA1 loci) in ESRD patients (n = 497) and controls (n = 672). Our data identified several HLA alleles that displayed a significant positive or negative association with ESRD. We also determined whether heterozygosity or homozygosity of the ESRD-associated HLA alleles at different loci could modify the prevalence of the disease. Few HLA allele combinations displayed significant associations with ESRD, among which A*3_26 combination showed the highest strength of association (OR = 4.488, P≤ 0.05) with ESRD. Interestingly, the age of ESRD onset was not affected by HLA allele combinations at different loci. We also performed an extensive literature analysis to determine whether the association of HLA to ESRD can be similar across different ethnic groups. Our analysis showed that at least certain HLA alleles, HLA-A*11, HLA-DRB1*11, and HLA-DRB1*4, display a significant association with ESRD in different ethnic groups. The findings of our study will help in determining possible protective or susceptible roles of various HLA alleles in ESRD. KW - Cancer KW - Human leukocyte antigen (HLA) KW - Renal disease PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512651 DO - https://doi.org/10.1371/journal.pone.0238878 SN - 1932-6203 VL - 15 IS - 9 SP - e0238878 AN - OPUS4-51265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Scheuschner, Nils A1 - Hilgenberg, Kai T1 - In situ heat accumulation by geometrical features obstructing heat flux and by reduced inter layer times in laser powder bed fusion of AISI 316L stainless steel N2 - Material qualification for laser powder bed fusion (L-PBF) processes are often based on results derived from additively manufactured (AM) bulk material or small density cubes, although it is well known that the part geometry has a tremendous influence on the heat flux and, therefore, on the thermal history of an AM component. This study shows experimentally the effect of simple geometrical obstructions to the heat flux on cooling behavior and solidification conditions of 316L stainless steel processed by L-PBF. Additionally, it respects two distinct inter layer times (ILT) as well as the build height of the parts. The cooling behavior of the parts is in-situ traced by infrared (IR) thermography during the built-up. The IR signals reveal significant differences in cooling conditions, which are correlated to differences in melt pool geometries. The acquired data and results can be used for validation of computational models and improvements of quality assurance. KW - Selective laser beam melting KW - Thermography KW - Melt pool depth KW - Inter layer time KW - Ppreheating temperature KW - Additive Manufacturing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512549 DO - https://doi.org/10.1016/j.procir.2020.09.030 VL - 94 SP - 155 EP - 160 PB - Elsevier B.V. AN - OPUS4-51254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Mechanochemical Syntheses of Isostructural Luminescent Cocrystals of 9-Anthracenecarboxylic Acid with two Dipyridines Coformers N2 - Tuning and controlling the solid-state photophysical properties of organic luminophore are very important to develop next-generation organic luminescent materials. With the aim of discovering new functional luminescent materials, new cocrystals of 9-anthracene carboxylic acid (ACA) were prepared with two different dipyridine coformers: 1,2-bis(4-pyridyl)ethylene and 1,2-bis(4-pyridyl)ethane. The cocrystals were successfully obtained by both mechanochemical approaches and conventional solvent crystallization. The newly obtained crystalline solids were characterized thoroughly using a combination of single crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy, differential thermal analysis, and thermogravimetric analysis. Structural analysis revealed that the cocrystals are isostructural, exhibiting two-fold interpenetrated hydrogen bonded networks. While the O–H···N hydrogen bonds adopts a primary role in the stabilization of the cocrystal phases, the C–H···O hydrogen bonding interactions appear to play a significant role in guiding the three-dimensional assembly. Both π···π and C–H···π interactions assist in stabilizing the interpenetrated structure. The photoluminescence properties of both the starting materials and cocrystals were examined in their solid states. All the cocrystals display tunable photophysical properties as compared to pure ACA. Density functional theory simulations suggest that the modified optical properties result from charge transfers between the ACA and coformer molecules in each case. This study demonstrates the potential of crystal engineering to design solid-state luminescence switching materials through cocrystallization. KW - Cocrystal KW - Mechanochemical synthesis KW - Luminescence KW - X-ray diffraction KW - DFT calculation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518226 DO - https://doi.org/10.3390/cryst10100889 VL - 10 IS - 10 SP - 889 PB - MDPI AN - OPUS4-51822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Potential use of incineration bottom ash in construction – Evaluation of the environmental impact N2 - Knowledge of the long-term leaching behavior of potentially harmful substances is crucial for the assessment of the environmental compatibility of reusing municipal solid-waste incineration bottom ash (MSWI BA) in construction, i.e., as a road base layer. BA fractions obtained from wet-processing aiming at the improvement of environmental quality were used to investigate the mobility of relevant substances. Eluates from laboratory-scaled leaching procedures (column percolation and lysimeters) were analyzed to learn about the long-term release of substances. Unsaturated conditions and artificial rainwater (AR) were used in the lysimeter tests to simulate field conditions. In addition, batch test eluates were generated at usual liquid-to-solid ratios (L/S) for compliance testing purposes. A variety of cations and anions was measured in the eluates. The wet treatment reduces the leaching of chloride and particularly sulfate by more than 60%. The release of typical contaminants for the treated MSWI BA such as the heavy metals Cu and Cr was well below 1% in the conducted leaching tests. An increase in the Sb concentration observed in the lysimeter experiments starting at L/S 0.75 L/kg and in the column experiment at L/S 4 L/kg is assumed to be related to decreasing concentrations of Ca and thus to the dissolution of sparingly soluble calcium antimonate. The same leaching mechanism applies with V, but the concentration levels observed are less critical regarding relevant limit values. However, on the long term the behavior of Sb could be problematic for the application of MSWI BA in construction. KW - MSWI bottom ash KW - Leaching KW - Batch tests KW - Lysimeter KW - Antimony PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508421 DO - https://doi.org/10.1007/s12649-020-01086-2 SN - 1877-2641 VL - 11 IS - 12 SP - 7055 EP - 7065 PB - Springer AN - OPUS4-50842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kervarec, M.-C. A1 - Kemnitz, E. A1 - Scholz, G. A1 - Rudic, S. A1 - Jäger, Christian A1 - Braun, T. A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - A HF Loaded Lewis-Acidic Aluminium Chlorofluoride for Hydrofluorination Reactions N2 - The very strong Lewis acid aluminium chlorofluo-ride (ACF) was loaded with anhydrous HF. The interactionbetween the surface of the catalyst and HF was investigatedusing a variety of characterization methods, which revealed he formation of polyfluorides. Moreover, the reactivity ofthe HF-loaded ACF towards the hydrofluorination of alkyneswas studied. KW - Aluminium KW - HF KW - Hydrofluorination KW - Metal fluorides PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508360 DO - https://doi.org/10.1002/chem.202001627 VL - 26 SP - 1 PB - Wiley Online Libary AN - OPUS4-50836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tantardini, C. A1 - Michalchuk, Adam A1 - Samtsevich, A. A1 - Rota, C. A1 - Kvashnin, A. G. T1 - The Volumetric Source Function: Looking Inside van der Waals Interactions N2 - The study of van der Waals interactions plays a central role in the understanding of bonding across a range of biological, chemical and physical phenomena. The presence of van der Waals interactions can be identified through analysis of the reduced density gradient, a fundamental parameter at the core of Density Functional Theory. An extension of Bader’s Quantum Theory of Atoms in Molecules is developed here through combination with the analysis of the reduced density gradient. Through this development, a new quantum chemical topological tool is presented: the volumetric source function. This technique allows insight into the atomic composition of van der Waals interactions, offering the first route towards applying the highly successful source function to these disperse interactions. A new algorithm has been implemented in the open-source code, CRITIC2, and tested on acetone, adipic and maleic acids molecular crystals, each stabilized by van der Waals interactions. This novel technique for studying van der Waals interactions at an atomic level offers unprecedented opportunities in the fundamental study of intermolecular interactions and molecular design for crystal engineering, drug design and bio-macromolecular processes. KW - Noncovalent interactions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507911 DO - https://doi.org/10.1038/s41598-020-64261-4 VL - 10 IS - 1 SP - 7816 AN - OPUS4-50791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Griesche, Axel T1 - Tungsten inert gas bead-on-plate weld chemical composition analysis by laser-induced breakdown spectroscopy N2 - Chemical compositions of a weld can be varying locally as a result of the welding process. These local variations can be due to the vaporization of individual alloying elements. In this work, tungsten inert gas (TIG) bead-on-plate stainless steel welds of EN grade 1.4404 and 1.4435 were investigated using laser-induced breakdown spectroscopy (LIBS) on the completed welds. This study aims to reveal the welding parameters’ influence on the resulting local chemical compositions of the stainless steel welds. We demonstrated Mn vaporize before Cr due to its lower latent enthalpy of vaporization. Hence, Mn accumulates on the heat-affected zone (HAZ) both sides across the weld bead by being swept away through the circulation flow of the welding plasma. Additionally, increasing the heat input tends to enhance the accumulated Mn content on the HAZ as well as increasing the shielding gas flow rate. The results are in good agreement with the literature and proved that LIBS is an effective method to inspect completed welds. T2 - Symposium on Materials and Joining Technology CY - Magdeburg, Germany DA - 07.09.2020 KW - LIBS TIG welding KW - Austenitic stainless steels KW - Chemical composition KW - In situ measurement PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511595 DO - https://doi.org/10.1088/1757-899X/882/1/012023 SN - 1757-8981 SN - 1757-899X VL - 882 IS - 012023 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-51159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Heinrich, Ph. A1 - Baum, D. A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography N2 - Among additive manufacturing (AM) technologies, the laser powder bed fusion (L-PBF) is one of the most important technologies to produce metallic components. The layer-wise build-up of components and the complex process conditions increase the probability of the occurrence of defects. However, due to the iterative nature of its manufacturing process and in contrast to conventional manufacturing technologies such as casting, L-PBF offers unique opportunities for in-situ monitoring. In this study, two cameras were successfully tested simultaneously as a machine manufacturer independent process monitoring setup: a high-frequency infrared camera and a camera for long time exposure, working in the visible and infrared spectrum and equipped with a near infrared filter. An AISI 316L stainless steel specimen with integrated artificial defects has been monitored during the build. The acquired camera data was compared to data obtained by computed tomography. A promising and easy to use examination method for data analysis was developed and correlations between measured signals and defects were identified. Moreover, sources of possible data misinterpretation were specified. Lastly, attempts for automatic data analysis by data Integration are presented. KW - Laser powder bed fusion (L-PBF) KW - Selective laser melting (SLM) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Data fusion KW - Lack-of-fusion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502417 DO - https://doi.org/10.3390/met10010103 VL - 10 IS - 1 SP - 103 PB - MDPI CY - Basel, Schweiz AN - OPUS4-50241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Laser powder bed fusion (L-PBF) is the most prominent additive manufacturing (AM) technology for metal part production. Among the high number of factors influencing part quality and mechanical properties, the inter layer time (ILT) between iterative melting of volume elements in subsequent layers is almost completely unappreciated in the relevant literature on L-PBF. This study investigates the effect of ILT with respect to build height and under distinct levels of volumetric energy density (VED) using the example of 316L stainless steel. In-situ thermography is used to gather information on cooling conditions during the process, which is followed by an extensive metallographic analysis. Significant effects of ILT and build height on heat accumulation, sub-grain sizes, melt pool geometries and hardness are presented. Furthermore, the rise of defect densities can be attributed to a mutual interplay of build height and ILT. Hence, ILT has been identified as a crucial factor for L-PBF of real part components especially for those with small cross sections. KW - Laser powder bed fusion (L-PBF) KW - Laser beam melting (LBM) KW - Selective laser melting (SLM) KW - Dwell-time KW - Thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503300 DO - https://doi.org/10.1016/j.addma.2020.101080 SN - 2214-8604 VL - 32 SP - 101080-1 EP - 101080-13 PB - Elsevier CY - Amsterdam AN - OPUS4-50330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Nowakowski, Susanna A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples N2 - Recording the temperature distribution of the layer under construction during laser powder bed fusion (L-PBF) is of utmost interest for a deep process understanding as well as for quality assurance and in situ monitoring means. While having a notable number of thermal monitoring approaches in additive manufacturing (AM), attempts at temperature calibration and emissivity determination are relatively rare. This study aims for the experimental temperature adjustment of an off-axis infrared (IR) thermography setup used for in situ thermal data acquisition in L-PBF processes. The temperature adjustment was conducted by means of the so-called contact method using thermocouples at two different surface conditions and two different materials: AISI 316L L-PBF bulk surface, AISI 316L powder surface, and IN718 powder surface. The apparent emissivity values for the particular setup were determined. For the first time, also corrected, closer to real emissivity values of the bulk or powder surface condition are published. In the temperature region from approximately 150 °C to 580 °C, the corrected emissivity was determined in a range from 0.2 to 0.25 for a 316L L-PBF bulk surface, in a range from 0.37 to 0.45 for 316L powder layer, and in a range from 0.37 to 0.4 for IN718 powder layer. KW - Emisssivity KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring KW - Infrared thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516148 DO - https://doi.org/10.3390/met10111546 VL - 10 IS - 11 SP - 1546 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -