TY - JOUR A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Breitenbach, Romy A1 - Radnik, Jörg A1 - Feldmann, Ines A1 - Schuessler, J.A. A1 - von Blanckenburg, F. A1 - Gorbushina, Anna A1 - Schott, J. T1 - How the rock-inhabiting fungus K. petricola A95 enhances olivine dissolution through attachment JF - Geochimica et Cosmochimica Acta N2 - Free-living and mycorrhizal fungi are able to enhance the weathering of rock and other solid substrates. Deciphering the exact mechanisms of these natural processes requires their experimental simulation. Moreover, by performing these simulations with genetically amenable rock-weathering fungi, one can knock-out certain fungal traits and consequently identify their weathering-relevant function. Here, the effect of the rock-inhabiting fungus, Knufia petricola A95, on the dissolution kinetics of an Fe-bearing olivine (Mg1.86Fe0.19SiO4) is investigated at 25 °C and pH 6 using reproducible batch and mixed flow experiments. The availability of a melanin-deficient mutant (ΔKppks) of K. petricola A95, which produces more extracellular polymeric substances (EPS) than the wild type (WT), enables the comparative study of the role of melanin and EPS in olivine dissolution. In abiotic dissolution experiments, the olivine dissolution rate decreased considerably over time at pH 6 but not at pH 3.5. This inhibition of abiotic olivine dissolution at pH 6 was most likely caused by the in-situ oxidation of ferrous Fe and/or the precipitation of ferric hydroxides at the olivine surface. In corresponding biotic experiments at pH 6, both the wild type K. petricola and its melanin-deficient mutant ΔKppks solubilised and bound significant amounts of Fe released by olivine dissolution. Fe oxidation and precipitation were thus prevented and olivine dissolution proceeded faster than in the abiotic experiments. By sequestering Fe directly at the olivine surface, the attached wild type K. petricola cells were particularly efficient at preventing the oxidation of Fe at the mineral surface: the slowdown of olivine dissolution almost completely disappeared. The attachment capacity of these wild type cells is most likely mediated by wild type-specific EPS. Our presented experimental systems allow the oxidation of mineral-released Fe and include a rock-inhabiting fungus, thus simulating chemical, physical and biological conditions that set dissolution rates in a way that is relevant to natural ecosystems. KW - Black fungi KW - Bio-weathering KW - Forsterite KW - Knock-out mutant KW - Extracellular polymeric substances KW - Melanin Adhesion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509332 DO - https://doi.org/10.1016/j.gca.2020.05.010 VL - 282 SP - 76 EP - 97 PB - Elsevier Ltd. AN - OPUS4-50933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Hutzler, C. A1 - Wilke, Olaf A1 - Luch, A. T1 - Emissions of volatile organic compounds from polymer-based consumer products: comparison of three emission chamber sizes JF - Indoor Air N2 - The ISO 16000 standard series provide guidelines for emission measurements of volatile organic compounds (VOCs) from building materials. However, polymer-based consumer products such as toys may also release harmful substances into indoor air. In such cases, the existing standard procedures are unsuitable for official control laboratories due to high costs for large emission testing chambers. This paper aims at developing and comparing alternative and more competitive methods for the emission testing of consumer products. The influence of the emission chamber size was investigated as smaller chambers are more suited to the common size of consumer products and may help to reduce the costs of testing. Comparison of the performance of a 203 l emission test chamber with two smaller chambers with the capacity of 24 l and 44 ml, respectively, was carried out by using a polyurethane reference material spiked with 14 VOCs during the course of 28 days. The area-specific emission rates obtained in the small chambers were always similar to those of the 203 l reference chamber after a few hours. This implies that smaller chambers can provide at least useful numbers on the extent of polymer-based consumer product emissions into indoor air, thereby supporting meaningful exposure assessments. KW - Comparison KW - Consumer products KW - Emission chamber KW - Reference material KW - Volatile organic compounds PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-493697 DO - https://doi.org/10.1111/ina.12605 VL - 30 IS - 1 SP - 40 EP - 48 PB - Wiley VCH-Verlag AN - OPUS4-49369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bucar, K. A1 - Malet, J. A1 - Stabile, L. A1 - Pražnikar, J. A1 - Seeger, Stefan A1 - Žitnik, M. T1 - Statistics of a Sharp GP2Y Low-Cost Aerosol PM Sensor Output Signals JF - Sensors N2 - In this work, we characterise the performance of a Sharp optical aerosol sensor model GP2Y1010AU0F. The sensor was exposed to different environments: to a clean room, to a controlled atmosphere with known aerosol size distribution and to the ambient atmosphere on a busy city street. During the exposure, the output waveforms of the sensor pulses were digitised, saved and a following offline analysis enabled us to study the behaviour of the sensor pulse-by-pulse. A linear response of the sensor on number concentration of the monosized dispersed PSL particles was shown together with an almost linear dependence on particle diameters in the 0.4 to 4 micrometer range. The gathered data about the sensor were used to predict its response to an ambient atmosphere, which was observed simultaneously with a calibrated optical particle counter. KW - Aerosol KW - Partikel KW - Aerosolsensor KW - Luftgüte KW - Umweltmessung PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517466 DO - https://doi.org/10.3390/s20236707 SN - 1424-8220 VL - 20 IS - 23 SP - 6707 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -