TY - JOUR A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Bruno, Giovanni ED - Czujko, T. ED - Benedetti, M. T1 - Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study JF - Metals N2 - Additive manufacturing (AM) of metals and in particular laser powder bed fusion (LPBF) enables a degree of freedom in design unparalleled by conventional subtractive methods. To ensure that the designed precision is matched by the produced LPBF parts, a full understanding of the interaction between the laser and the feedstock powder is needed. It has been shown that the laser also melts subjacent layers of material underneath. This effect plays a key role when designing small cavities or overhanging structures, because, in these cases, the material underneath is feed-stock powder. In this study, we quantify the extension of the melt pool during laser illumination of powder layers and the defect spatial distribution in a cylindrical specimen. During the LPBF process, several layers were intentionally not exposed to the laser beam at various locations, while the build process was monitored by thermography and optical tomography. The cylinder was finally scanned by X-ray computed tomography (XCT). To correlate the positions of the unmolten layers in the part, a staircase was manufactured around the cylinder for easier registration. The results show that healing among layers occurs if a scan strategy is applied, where the orientation of the hatches is changed for each subsequent layer. They also show that small pores and surface roughness of solidified material below a thick layer of unmolten material (>200 µm) serve as seeding points for larger voids. The orientation of the first two layers fully exposed after a thick layer of unmolten powder shapes the orientation of these voids, created by a lack of fusion. KW - Computed tomography KW - Laser Powder Bed Fusion KW - In situ monitoring KW - infrared Thermography KW - Optical Tomography KW - Additive manufacturing KW - AISI 316L PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-528778 DO - https://doi.org/10.3390/met11071012 VL - 11 IS - 7 SP - 1012 PB - MDPI CY - Basel AN - OPUS4-52877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Osterloh, Kurt A1 - Fratzscher, Daniel A1 - Jechow, Mirko A1 - Bücherl, T. A1 - Schillinger, B. A1 - Hasenstab, A. A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Limited view tomography of wood with fast and thermal neutrons T2 - DGZfP-Berichtsband N2 - Neutrons are absorbed particularly by hydrogen containing materials so they can be used as a tool for visualising heterogeneous density distributions of organic materials. Penetration limits are set by the layer thicknesses and the neutron energies applied. In case of specimens with a flat shape the situation may be encountered that the object only could be penetrated in selected directions. In addition, the overall size may exceed the beam diameter and thus the viewing window if a certain region of interest should be studied by tomography without destroying the integrity of the specimen. This study shows the capabilities and limits of thermal and fast neutrons to investigate flat wooden specimens such as boards and girders by neutron tomography under such circumstances. Taking projections was impaired either by the limits of penetrability or by the total size of the object. As a consequence, projections were included for reconstruction only from a limited angular range of 90°. It could be shown that an approach based on the slice theorem was capable to visualise structural features along the beam directions while simply omitting the perpendicular ones without causing additional artefacts. Small samples with a thickness of up to 2 cm but several times broader could be studied with the ANTARES facility of the FRM II neutron source in Garching providing thermal neutrons while larger objects required a beam of higher energy as available in the NECTAR facility of the same institution. The fast (fission) neutrons (1.5 – 2 MeV) of this site allowed investigating an area of interest inside a girder with a cross section of 23.5 x 49 cm². Internal features such as inclusions could be detected as well as a heterogeneous density distribution in glue layers. T2 - International symposium on digital industrial radiology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Computed tomography KW - Slice theoreme KW - Limited angle tomography PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-250663 SN - 978-3-940283-34-4 VL - 128 SP - 1 EP - 5 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-25066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Osterloh, Kurt A1 - Bellon, Carsten A1 - Hohendorf, Stefan A1 - Kolkoori, Sanjeevareddy A1 - Wrobel, Norma A1 - Nusser, A. A1 - Freitag, M. A1 - Bücherl, T. A1 - Bar, D. A1 - Mor, I. A1 - Tamin, N. A1 - Weiss-Babai, R. A1 - Bromberger, B. A1 - Dangendorf, V. A1 - Tittelmeier, K. T1 - Computed tomography with X-rays and fast neutrons for restoration of wooden artwork JF - Physics Procedia N2 - The objects of this investigation were sculptures taken from a ca. three hundred years old baroque epitaph of a church in Tonning, a town in Northern Germany. Around 1900 it was found in a disastrous state heavily damaged by wood-worm. At that time, the whole artwork was treated with the tar extract carbolineum as a remedy. Nowadays, this substance has been identified as carcinogenic, and its presence can be perceived by its stench and visually at certain spots on the surface where it has penetrated the covering paint. A gold-painted sculpture of a massive wooden skull was interrogated with X-rays and fast neutrons to investigate the internal distribution of the carbolineum. The X-ray tomography, with its excellent spatial resolution revealed galleries left over from the worm infestation in the outer areas and cracks in the central region. The golden color coating appeared as a thick and dense layer. In comparison the tomography with fast neutrons, though being of lower resolution and yet unresolved artefacts revealed sections of slightly different densities in the bulk of the wood. These differences we attribute to the differences in the distribution of the impregnant in the wood, visible due to its higher hydrogen content making it less transparent for neutrons. T2 - WCNR-10 - 10th World conference on neutron radiography CY - Grindelwald, Switzerland DA - 05.10.2014 KW - Computed tomography KW - Neutron radiology KW - Conservation of wooden artwork PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-323050 DO - https://doi.org/10.1016/j.phpro.2015.07.066 SN - 1875-3892 VL - 69 SP - 472 EP - 477 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-32305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, Henning A1 - Sintschuk, Michael A1 - Britzke, Ralf A1 - Dayani, Shahabeddin A1 - Bruno, Giovanni T1 - Upgraded imaging capabilities at the BAMline (BESSY II) JF - Journal of Synchrotron Radiation N2 - The BAMline at the BESSY II synchrotron X-ray source has enabled research for more than 20 years in widely spread research fields such as materials science, biology, cultural heritage and medicine. As a nondestructive characterization method, synchrotron X-ray imaging, especially tomography, plays a particularly important role in structural characterization. A recent upgrade of key equipment of the BAMline widens its imaging capabilities: shorter scan acquisition times are now possible, in situ and operando studies can now be routinely performed, and different energy spectra can easily be set up. In fact, the upgraded double-multilayer monochromator brings full flexibility by yielding different energy spectra to optimize flux and energy resolution as desired. The upgraded detector (based on an sCMOS camera) also allows exploiting the higher flux with reduced readout times. Furthermore, an installed slip ring allows the sample stage to continuously rotate. The latter feature enables tomographic observation of processes occurring in the time scale of a few seconds. KW - Synchrotron radiation KW - Computed tomography KW - Double-multilayer monochromators KW - Pink beams KW - X-ray optics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556907 DO - https://doi.org/10.1107/S1600577522007342 SN - 1600-5775 VL - 29 IS - Pt 5 SP - 1292 EP - 1298 PB - International Union of Crystallography CY - Chester AN - OPUS4-55690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Magkos, Sotirios A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Suppression of Cone-Beam Artefacts with Direct Iterative Reconstruction Computed Tomography Trajectories (DIRECTT) JF - Journal of Imaging N2 - The reconstruction of cone-beam computed tomography data using filtered back-projection algorithms unavoidably results in severe artefacts. We describe how the Direct Iterative Reconstruction of Computed Tomography Trajectories (DIRECTT) algorithm can be combined with a model of the artefacts for the reconstruction of such data. The implementation of DIRECTT results in reconstructed volumes of superior quality compared to the conventional algorithms. KW - DIRECTT KW - Iterative method KW - Signal processing KW - X-ray imaging KW - Computed tomography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531085 DO - https://doi.org/10.3390/jimaging7080147 SN - 2313-433X) VL - 7 IS - 8 SP - 147 - 1 EP - 147 -9 PB - MDPI CY - Basel, Switzerland AN - OPUS4-53108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Magkos, Sotirios A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Direct iterative reconstruction of computed tomography trajectories: Reconstruction from limited number of projections with DIRECTT JF - Review of scientific instruments N2 - X-ray computed tomography has many applications in materials science and non-destructive testing. While the standard filtered back-projection reconstruction of the radiographic data sets is fast and simple, it typically fails in returning accurate results from missing or inconsistent projections. Among the alternative techniques that have been proposed to handle such data is the Direct Iterative REconstruction of Computed Tomography Trajectories (DIRECTT) algorithm. We describe a new approach to the algorithm, which significantly decreases the computational time, while achieving a better reconstruction quality than that of other established algorithms. KW - Computed tomography KW - DIRECTT KW - Iterative reconstruction KW - Limited data PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514403 DO - https://doi.org/10.1063/5.0013111 SN - 0034-6748 VL - 91 IS - 10 SP - 103107-1 EP - 103107-8 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-51440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lück, S. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Schmidt, V. T1 - Statistical analysis of tomographic reconstruction algorithms by morphological image characteristics JF - Image, analysis & stereology N2 - We suggest a procedure for quantitative quality control of tomographic reconstruction algorithms. Our task-oriented evaluation focuses on the correct reproduction of phase boundary length and has thus a clear implication for morphological image analysis of tomographic data. Indirectly the method monitors accurate reproduction of a variety of locally defined critical image features within tomograms such as interface positions and microstructures, debonding, cracks and pores. Tomographic errors of such local nature are neglected if only global integral characteristics such as mean squared deviation are considered for the evaluation of an algorithm. The significance of differences in reconstruction quality between algorithms is assessed using a sample of independent random scenes to be reconstructed. These are generated by a Boolean model and thus exhibit a substantial stochastic variability with respect to image morphology. It is demonstrated that phase boundaries in standard reconstructions by filtered backprojection exhibit substantial errors. In the setting of our simulations, these could be significantly reduced by the use of the innovative reconstruction algorithm DIRECTT. KW - Tomography KW - Computed tomography KW - Reconstruction algorithm KW - Morphological image analysis KW - Phase boundary KW - Metrology KW - Non-destructive testing PY - 2010 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-210710 DO - https://doi.org/10.5566/ias.v29.p61-77 SN - 1580-3139 SN - 1854-5165 VL - 29 SP - 61 EP - 77 CY - Ljubljana, Slovenia AN - OPUS4-21071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - 3D Crack analysis in hydrogen charged lean duplex stainless steel with synchrotron refraction CT T2 - Proceeedings of the 19th World Conference on Non-Destructive Testing 2016 N2 - Hydrogen in metals can cause a degradation of the mechanical properties, the so-called hydrogen embrittlement. In combination with internal stresses, hydrogen assisted cracking (HAC) can occur. This phenomenon is not completely understood yet. To better characterise the cracking behaviour, it is important to gain information about the evolution of the 3D crack network. For this purpose samples of lean duplex stainless steel were loaded with hydrogen by means of electrochemical charging and investigated by means of synchrotron refraction CT and SEM fractography after uniaxial tensile loading. Synchrotron refraction CT is an analyser-based imaging (ABI) technique. It uses a Si (111) single crystal as analyser, which is placed into the beam path between sample and detector. According to Bragg’s law only incident x-rays within a narrow range around the Bragg-angle are diffracted from the analyser into the detector. Hence, the analyser acts as an angular filter for the transmitted beam. This filtering allows to turn the refraction and scattering of x-rays into image contrast. Refraction occurs at all interfaces, where the density of the material changes and is more sensitive to density changes than the attenuation. Therefore, it is possible to detect smaller cracks than with classical x-ray imaging techniques, like CT, with comparable spacial resolution. It also visualises the 3D structure of the cracks and gains quantitative information about their morphology and distribution. Since cracks introduced by HAC are usually very small and have a small opening displacement, synchrotron refraction CT is expected to be well suited for imaging this cracking mechanism and can be a valuable tool to characterise the formation and the evolution of a 3D crack network. T2 - WCNDT 2016 CY - München, Germany DA - 13.06.2016 KW - X-ray refraction KW - Computed tomography KW - Hydrogen assisted cracking KW - Duplex stainless steel PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366481 SN - 978-3-940283-78-8 VL - BB 158 SP - Tu.4.B.3, 1 EP - 9 AN - OPUS4-36648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Schaupp, Thomas A1 - Griesche, Axel A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hannemann, Andreas A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Quantitative analysis of hydrogen-assisted microcracking in duplex stainless steel through X-ray refraction 3D imaging JF - Advanced engineering materials N2 - While the problem of the identification of mechanisms of hydrogen assisted damage has and is being thoroughly studied, the quantitative analysis of such damage still lacks suitable tools. In fact, while, for instance, electron microscopy yields excellent characterization, the quantitative analysis of damage requires at the same time large field-of-views and high spatial resolution. Synchrotron X-ray refraction techniques do possess both features. In this work, we show how synchrotron X-ray refraction computed tomography (SXRCT) can quantify damage induced by hydrogen embrittlement in a lean duplex steel, yielding results that overperform even those achievable by synchrotron X-ray absorption computed tomography. As already reported in literature, but this time using a non-destructive technique, we show that the hydrogen charge does not penetrate to the center of tensile specimens. By the comparison between virgin and hydrogen-charged specimens, we deduce that cracks in the specimen bulk are due to the rolling process rather than hydrogen-assisted. We show that (micro)cracks propagate from the surface of tensile specimens to the interior with increasing applied strain, and we deduce that a significant crack propagation can only be observed short before rupture. KW - 2101 duplex stainless steel KW - Hydrogen embrittlement KW - Synchrotron radiation KW - X-ray refraction KW - Computed tomography KW - Microcracking PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542811 DO - https://doi.org/10.1002/adem.202101287 SN - 1438-1656 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Kupsch, Andreas A1 - Müller, Bernd R. T1 - Correction of diffuse X-ray detector based background T2 - DIR 2011 - International symposium on digital industrial raidology and computed tomography (Proceedings) N2 - A novel approach to strongly suppress artifacts in radiography and computed tomography caused by the effect of diffuse background Signals (“backlight”) of 2D X-ray detectors is suggested. Depending on the detector geometry the mechanism may be different, either based on the optical scattering of the fluorescent screen materials into optical detection devices or Compton or X-ray fluorescence scattering by the detector components. Consequently, these erroneous intensity portions result in locally different violations of Lambert Beer’s law in single projections (radiographs). When used as input data for computed tomography these violations are directly observed via modulation of the projected mass as a function of the rotation Phase and the sample’s aspect ratio (dynamics). The magnitude of the diffuse Background signal depends on the detector area covered by the projected sample. They are more pronounced the smaller the shaded area and the stronger the total attenuation. Moreover, the local intensity mismatch depends on the attenuation of the sample. We present very basic reference data measured with multiple metal foils at a synchrotron radiation source. Beam hardening artifacts can be excluded due to the monochromatic radiation. The proposed correction procedure assumes a constant (non-local) scattering mechanism. T2 - DIR 2011 - International symposium on digital industrial raidology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Backlight KW - X-ray detector KW - Fluorescence screen KW - Synchrotron radiography KW - Computed tomography PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-243589 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Poster 24) SP - 1 EP - 7 PB - Deutsche Gesellscahft für Zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -