TY - JOUR A1 - Michalchuk, Adam T1 - The Mechanochemical Excitation of Crystalline LiN3 N2 - Mechanochemical reactions are driven by the direct absorption of mechanical energy by a solid (often crystalline) material. Understanding how this energy is absorbed and ultimately causes a chemical transformation is essential for understanding the elementary stages of mechanochemical transformations. Using as a model system the energetic material LiN3 we here consider how vibrational energy flows through the crystal structure. By considering the compression response of the crystalline material we identify the partitioning of energy into an initial vibrational excitation. Subsequent energy flow is based on concepts of phonon–phonon scattering, which we calculate within a quasi-equilibrium model facilitated by phonon scattering data obtained from Density Functional Theory (DFT). Using this model we demonstrate how the moments (picoseconds) immediately following mechanical impact lead to significant thermal excitation of crystalline LiN3, sufficient to drive marked changes in its electronic structure and hence chemical reactivity. This work paves the way towards an ab initio approach to studying elementary processes in mechanochemical reactions involving crystalline solids. KW - Energetic materials KW - Ab initio simulation KW - DFT KW - Mechanochemistry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559310 DO - https://doi.org/10.1039/d2fd00112h SP - 1 EP - 20 PB - Royal Society of Chemistry AN - OPUS4-55931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sechi, R. A1 - Fackeldey, K. A1 - Chewle, Surahit A1 - Weber, M. T1 - SepFree NMF: A toolbox for analyzing the kinetics of sequential spectroscopic data N2 - This work addresses the problem of determining the number of components from sequential spectroscopic data analyzed by non-negative matrix factorization without separability assumption (SepFree NMF). These data are stored in a matrix M of dimension “measured times” versus “measured wavenumbers” and can be decomposed to obtain the spectral fingerprints of the states and their evolution over time. SepFree NMF assumes a memoryless (Markovian) process to underline the dynamics and decomposes M so that M = WH, with W representing the components’ fingerprints and H their kinetics. However, the rank of this decomposition (i.e., the number of physical states in the process) has to be guessed from pre-existing knowledge on the observed process. We propose a measure for determining the number of components with the computation of the minimal memory effect resulting from the decomposition; by quantifying how much the obtained factorization is deviating from the Markovian property, we are able to score factorizations of a different number of components. In this way, we estimate the number of different entities which contribute to the observed system, and we can extract kinetic information without knowing the characteristic spectra of the single components. This manuscript provides the mathematical background as well as an analysis of computer generated and experimental sequentially measured Raman spectra. KW - Kinetics from experiments KW - Separability assumption KW - Sequential spectroscopic data PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559046 DO - https://doi.org/10.3390/a15090297 SN - 1999-4893 VL - 15 IS - 9 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fackeldey, K. A1 - Röhm, J. A1 - Niknejad, A. A1 - Chewle, Surahit A1 - Weber, M. T1 - Analyzing Raman spectral data without separabiliy assumption N2 - Raman spectroscopy is a well established tool for the analysis of vibration spectra, which then allow for the determination of individual substances in a chemical sample, or for their phase transitions. In the time-resolved-Raman-sprectroscopy the vibration spectra of a chemical sample are recorded sequentially over a time interval, such that conclusions for intermediate products (transients) can be drawn within a chemical process. The observed data-matrix M from a Raman spectroscopy can be regarded as a matrix product of two unknown matrices W and H, where the first is representing the contribution of the spectra and the latter represents the chemical spectra. One approach for obtaining W and H is the non-negative matrix factorization. We propose a novel approach, which does not need the commonly used separability assumption. The performance of this approach is shown on a real world chemical example. KW - Non-negative matrix factorization KW - NMF KW - Raman spectra KW - Separability condition KW - PCCA+ PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559051 DO - https://doi.org/10.1007/s10910-020-01201-7 SN - 1572-8897 VL - 59 SP - 575 EP - 596 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-55905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüdicke, M. G. A1 - Hildebrandt, Jana A1 - Schindler, C. A1 - Sperling, R. A. A1 - Maskos, M. T1 - Automated QuantumDots Purification via Solid Phase Extraction N2 - The separation of colloidal nanocrystals from their original synthesis medium is an essential process step towards their application, however, the costs on a preparative scale are still a constraint. A new combination of approaches for the purification of hydrophobic Quantum Dots is presented, resulting in an efficient scalable process in regard to time and solvent consumption, using common laboratory equipment and low-cost materials. The procedure is based on a combination of solvent-induced adhesion and solid phase extraction. The platform allows the transition from manual handling towards automation, yielding an overall purification performance similar to one conventional batch precipitation/centrifugation step, which was investigated by thermogravimetry and gas chromatography. The distinct miscibility gaps between surfactants used as nanoparticle capping agents, original and extraction medium are clarified by their phase diagrams, which confirmed the outcome of the flow chemistry process. Furthermore, the solubility behavior of the Quantum Dots is put into context with the Hansen solubility parameters framework to reasonably decide upon appropriate solvent types. KW - Quantum Dots KW - Purification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559590 DO - https://doi.org/10.3390/nano12121983 SN - 2079-4991 VL - 12 IS - 12 PB - MDPI CY - Basel AN - OPUS4-55959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wurzler, Nina A1 - Hidde, Gundula A1 - Schenderlein, Matthias A1 - Özcan Sandikcioglu, Özlem T1 - Effect of organic conditioning layers adsorbed on stainless steel AISI 304 on the attachment and biofilm formation of electroactive bacteria Shewanella putrefaciens CN32 N2 - The initial attachment and subsequent biofilm formation of electroactive bac-teriaShewanella putrefaciensCN32 was investigated to clarify the influence oforganic conditioning layers. A selection of macromolecules and self-assembledmonolayers (SAMs) of different chain lengths and functional groups were pre-pared and characterized by means of infrared spectroscopy in terms of theirchemistry. Surface energy and Zeta (ζ-) potential of the conditioning layers wasdetermined with contact angle and streaming current measurements. Amongthe studied surface parameters, a high polar component and a high ratio ofpolar-to-disperse components of the surface energy has emerged as a successfulindicator for the inhibition of the initial settlement ofS. putrefacienson stainlesssteel AISI 304 surfaces. Considering the negative surface charge of planktonicS. putrefacienscells, and the strong inhibition of cell attachment by positivelycharged polyethylenimine (PEI) conditioning layers, our results indicate thatelectrostatic interactions do play a subordinate role in controlling the attach-ment of this microorganism on stainless steel AISI 304 surfaces. For the biofilmformation, the organization of the SAMs affected the local distribution of thebiofilms. The formation of three-dimensional and patchy biofilm networks waspromoted with increasing disorder of the SAMs. KW - Bacterial attachment KW - Conditioning films KW - Self-assembled monolayers KW - Stainless steel PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559887 DO - https://doi.org/10.1002/eng2.12458 VL - 4 IS - 1 SP - 1 EP - 12 PB - Wiley online library AN - OPUS4-55988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dubey, A. A1 - Hon Keat, C. A1 - Shvartsman, V. A1 - Yusenko, Kirill A1 - Escobar, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Hagemann, U. A1 - Kovalenko, S. A1 - Stächler, J. A1 - Lupascu, D. T1 - Mono-, Di-, and Tri-valent Cation Doped BiFe0.95Mn0.05O3 Nanoparticles: Ferroelectric Photocatalysts N2 - The ferroelectricity of multivalent co-doped Bismuth ferrite (BiFeO3; BFO) nanoparticles (NPs) is revealed and utilized for light photocatalysis exploiting their narrow electronic band gap. The photocatalytic activity of ferroelectric photocatalysts BiFe0.95Mn0.05O3 (BFM) NPs and mono-, di-, or tri-valent cations (Ag+, Ca2+, Dy3+; MDT) co-incorporated BFM NPs are studied under ultrasonication and in acidic conditions. We find that such doping enhances the photocatalytic activity of the ferroelectric NPs approximately three times. The correlation of the photocatalytic activity with structural, optical, and electrical properties of the doped NPs is established. The increase of spontaneous polarization by the mono- and tri-valent doping is one of the major factors in enhancing the photocatalytic performance along with other factors such as stronger light absorption in the visible range, low recombination rate of charge carriers and larger surface area of NPs. A-site doping of BFO NPs by divalent elements suppresses the polarization, whereas trivalent (Dy3+) and monovalent (Ag+) cations provide an increase of polarization. The depolarization field in these single domain NPs acts as a driving force to mitigate recombination of the photoinduced charge carriers. KW - Piezoresponse KW - Bismuth Ferrite KW - Nanoparticles KW - Photocatalysis KW - Ferroelectric KW - Polarization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557230 DO - https://doi.org/10.1002/adfm.202207105 SN - 1616-301X SP - 1 EP - 16 PB - Wiley AN - OPUS4-55723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Ring-opening polymerizations of L-Lactide catalyzed by zinc caprylate: Syntheses of cyclic and linear poly(L-lactide)s N2 - Alcohol-initiated ring-opening polymerizations (ROPs) of L-Lactide (LA) were conducted in bulk at 130 °C catalyzed by Zn acetate (ZnAc2), lactate (ZnLac2), or caprylate (ZnCap2). 11-undecenol (UND), 1-hydroxymethylnaphtalene (HMN), and 4-nitrobenzylalcohol (4NB) were used as alcohols. Whereas variation of the alcohols had little effect, the usefulness of the catalysts increased in the order: acetate < lactate < caprylate. Hence, further alcohol-initiated polymerizations were performed with ZnCap2 alone and with variation of the lactide/catalyst (LA/Cat) ratio. With increasing LA/Cat ratio higher fractions of cyclic poly(L-lactide) (PLA) were found, so that the measured degree of polymerization (DP) is considerably lower than the theoretical value (i.e., 2 x LA/alcohol). With neat ZnCap2 cyclic PLAs were the largely prevailing reaction products. For these cyclic PLAs weight average molar masses (Mw) up to 134,000 were obtained and an optical purity around 99% was indicated by 13C NMR spectroscopy and DSC measurements even after 48 h at 150 or 160 °C. KW - Cyclization KW - Lactide KW - Ring opening polymerization KW - Transesterification KW - Zinc catalyst KW - MALDI PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557565 DO - https://doi.org/10.1002/pol.20220328 SN - 2642-4150 SP - 1 EP - 10 PB - Wiley AN - OPUS4-55756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Bhattacharya, Biswajit A1 - Witt, Julia A1 - Jain, Mohit A1 - Emmerling, Franziska T1 - In situ time-resolved monitoring of mixed-ligand metal–organic framework mechanosynthesis N2 - The mechanism of mixed-ligand metal–organic framework (MOF) formation, and the possible role of intermediate single-ligand metal complexes during mechanosynthesis, have not been explored yet. For the first time, we report here in situ real-time monitoring of the mechanochemical formation mechanism of mixed-ligand MOFs. Our results show that binary phases can act as intermediates or competing products in one-pot and stepwise synthesis. KW - Mechanochemistry KW - Metal-organic-frameworks KW - In situ X-ray diffraction KW - Mixed-ligand MOFs PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558167 DO - https://doi.org/10.1039/D2CE00803C SP - 1 EP - 4 PB - Royal Society of Chemistry AN - OPUS4-55816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pakrashy, S. A1 - Mandal, P. K. A1 - Goswami, J. N. A1 - Dey, S. K. A1 - Choudhury, S. M. A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska A1 - Alasmary, F. A. A1 - Dolai, M. T1 - Bioinformatics and Network Pharmacology of the First Crystal Structured Clerodin: Anticancer and Antioxidant Potential against Human Breast Carcinoma Cell N2 - Clerodin was isolated from the medicinal plant Clerodendrum infortunatum, and CSD search showed the first crystal structure of clerodin by a single-crystal X-ray diffraction study. We checked its binding potential with target proteins by docking and conducted network pharmacology analysis, ADMET analysis, in silico pathway analysis, normal mode analysis (NMA), and cytotoxic activity studies to evaluate clerodin as a potential anticancer agent. The cell viability studies of clerodin on the human breast carcinoma cell line (MCF-7) showed toxicity on MCF-7 cells but no toxicity toward normal human lymphocyte cells (HLCs). The anticancer mechanism of clerodin was validated by its enhanced capacity to produce intracellular reactive oxygen species (ROS) and to lower the reduced glutathione content in MCF-7 cells. KW - Anticancer KW - Clerodin PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567600 DO - https://doi.org/10.1021/acsomega.2c07173 SN - 2470-1343 VL - 7 IS - 51 SP - 48572 EP - 48582 PB - ACS Publ. CY - Washington, DC AN - OPUS4-56760 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brüngel, R. A1 - Rückert, J. A1 - Müller, P. A1 - Babick, F. A1 - Friedrich, C. M. A1 - Ghanem, A. A1 - Hodoroaba, Vasile-Dan A1 - Mech, A. A1 - Weigel, S. A1 - Wohlleben, W. A1 - Rauscher, H. T1 - NanoDefiner Framework and e-Tool Revisited According to the European Commission’s Nanomaterial Definition 2022/C 229/01 N2 - The new recommended definition of a nanomaterial, 2022/C 229/01, adopted by the European Commission in 2022, will have a considerable impact on European Union legislation addressing chemicals, and therefore tools to implement this new definition are urgently needed. The updated NanoDefiner framework and its e-tool implementation presented here are such instruments, which help stakeholders to find out in a straightforward way whether a material is a nanomaterial or not. They are two major outcomes of the NanoDefine project, which is explicitly referred to in the new definition. This work revisits the framework and e-tool, and elaborates necessary adjustments to make these outcomes applicable for the updated recommendation. A broad set of case studies on representative materials confirms the validity of these adjustments. To further foster the sustainability and applicability of the framework and e-tool, measures for the FAIRification of expert knowledge within the e-tool’s knowledge base are elaborated as well. The updated framework and e-tool are now ready to be used in line with the updated recommendation. The presented approach may serve as an example for reviewing existing guidance and tools developed for the previous definition 2011/696/EU, particularly those adopting NanoDefine project outcomes. KW - Nanomaterial definition KW - Nanomaterial categorisation KW - Nanomaterial regulation KW - Nanomaterial legislation KW - Decision support KW - FAIRification PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571618 DO - https://doi.org/10.3390/nano13060990 SN - 2079-4991 VL - 13 IS - 6 - Special Issue "Identification and Quantification of Nanomaterials" SP - 1 EP - 16 PB - MDPI CY - Basel, CH AN - OPUS4-57161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -