TY - JOUR A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Luch, A. A1 - Sogne, V. A1 - Maier, F. A1 - Burr, L. A1 - Schmid, D. A1 - Yoon, T.-H. A1 - Petters, R. A1 - Briffa, S.M. A1 - Valsami-Jones, E. T1 - Automation and Standardization—A Coupled Approach Towards Reproducible Sample Preparation Protocols for Nanomaterial Analysis N2 - Whereas the characterization of nanomaterials using different analytical techniques is often highly automated and standardized, the sample preparation that precedes it causes a bottleneck in nanomaterial analysis as it is performed manually. Usually, this pretreatment depends on the skills and experience of the analysts. Furthermore, adequate reporting of the sample preparation is often missing. In this overview, some solutions for techniques widely used in nano-analytics to overcome this problem are discussed. Two examples of sample preparation optimization by au-tomation are presented, which demonstrate that this approach is leading to increased analytical confidence. Our first example is motivated by the need to exclude human bias and focuses on the development of automation in sample introduction. To this end, a robotic system has been de-veloped, which can prepare stable and homogeneous nanomaterial suspensions amenable to a variety of well-established analytical methods, such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), field-flow fractionation (FFF) or single-particle inductively coupled mass spectrometry (sp-ICP-MS). Our second example addresses biological samples, such as cells exposed to nanomaterials, which are still challenging for reliable analysis. An air–liquid interface has been developed for the exposure of biological samples to nanomaterial-containing aerosols. The system exposes transmission electron microscopy (TEM) grids under reproducible conditions, whilst also allowing characterization of aerosol composition with mass spectrometry. Such an approach enables correlative measurements combining biological with physicochemical analysis. These case studies demonstrate that standardization and automation of sample preparation setups, combined with appropriate measurement processes and data reduction are crucial steps towards more reliable and reproducible data. KW - Sample preparation KW - Automation KW - Nanomaterial analysis KW - Standardization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543988 DO - https://doi.org/10.3390/molecules27030985 VL - 27 IS - 3 SP - 1 EP - 22 PB - MDPI AN - OPUS4-54398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Axel A1 - Altmann, Korinna A1 - Kocher, B. A1 - Braun, U. T1 - Determination of tire wear markers in soil samples and their distribution in a roadside soil N2 - Tire wear (TW) constitutes a significant source of microplastic in terrestrial ecosystems. It is known that particles emitted by roads can have an effect up to 100 m into adjacent areas. Here, we apply for the first-time thermal extraction desorption gas chromatography-mass spectrometry (TED-GC/MS) to determine TW in soil samples by detection of thermal decomposition products of styrene-butadiene rubber (SBR), without additional enrichment. Additionally, zinc contents were determined as an elemental marker for TW. Mixed soil samples were taken along three transects along a German motorway in 0.3, 2.0, and 5.0 m distance from the road. Sampling depths were 0–2, 2–5, 5–10, and 10–20 cm. Four fine fractions, 1 000–500, 500–100, 100–50, and <50 μm, were analyzed. TW contents based on SBR ranged from 155 to 15 898 mg kg−1. TW contents based on zinc were between 413 and 44 812 mg kg−1. Comparison of individual values of SBR and zinc reveals SBR as a more specific marker. Results confirm that most TW ends up in the topsoil within a 2 m distance. The sampling strategy resulted in representative data for a larger area. Standard deviations of quadruple TED-GC/MS determination of SBR were <10% for all grain size fractions. TED-GC/MS is a suitable analytical tool for determining TW in soil samples without the use of toxic chemicals, enrichment, or special sample preparation. KW - Microplastic KW - TED-GC/MS KW - Tire wear PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543344 DO - https://doi.org/10.1016/j.chemosphere.2022.133653 VL - 294 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-54334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B.P. A1 - Radnik, Jörg A1 - Shard, A.G. T1 - Ionic liquid [PMIM]+[NTf2]− (Solarpur®) characterized by XPS N2 - X-ray photoelectron spectroscopy (XPS) was performed on the meniscus of a droplet of ionic liquid 1-propyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl) imide [PMIM]+[NTf2]− (Solarpur®) in ultrahigh vacuum. High-resolution spectra of F 1s, O 1s, N 1s, C 1s, and S 2p are presented along with a survey spectrum and the valence band structure. The spectra presented here were generated using monochromatic Al Kα radiation (1486.6 eV). KW - Ionic liquid KW - 1-propyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide KW - X-ray Photoelectron Spectroscopy PY - 2022 DO - https://doi.org/10.1116/6.0001518 VL - 29 IS - 1 SP - 014001-1 PB - AVS AN - OPUS4-54335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - The role of transesterifications in reversible polycondensations and a reinvestigation of the Jacobson-Beckmann-Stockmayer experiments N2 - The polycondensations of adipic acid and 1,10-decanediol catalyzed by toluene sulfonic acid (TSA) were reinvestigated using MALDI TOF mass spectrometry and NMR spectroscopy. Unexpected reactions of TSA were detected along with incomplete conversion of the monomers. Furthermore, transesterification reactions of end-capped poly(1,10-decanediol adipate) and end-capped poly(ε-caprolactone) catalyzed by TSA were studied. Despite the quite different (ionic) reaction mechanisms, it was found that for polycondensations performed in bulk intermolecular transesterification is more efficient than the intramolecular “back-biting”; this scenario was not considered in the Jacobson–Stockmayer theory of reversible polycondensations. These results also confirm that the Jacobson–Stockmayer explanation of reversible polycondensations solely on the basis of ring chain equilibration is not only devoid of any experimental evidence, but also in contradiction to the results elaborated in this work. KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543402 DO - https://doi.org/10.1039/d1py01679b SN - 1759-9962 SP - 1 EP - 9 PB - RSC Publ. CY - Cambridge AN - OPUS4-54340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Wendt, R. A1 - Kunkel, B. A1 - Radnik, Jörg A1 - Hoell, A. A1 - Wohlrab, S. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Size-Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction N2 - A facile and efficient methodology is described for the solvothermal synthesis of size-tunable, stable, and uniform NiCu core–shell nanoparticles (NPs) for application in catalysis. The diameter of the NPs is tuned in a range from 6 nm to 30 nm and to adjust the Ni:Cu ratio from 30:1 to 1:1. Furthermore, the influence of different reaction parameters on the final NPs is studied. The NPs are structurally characterized by a method combination of transmission electron microscopy, anomalous small-angle X-ray scattering, X-ray absorption fine structure, and X-ray photoelectron spectroscopy. Using these analytical methods, it is possible to elucidate a core–shell–shell structure of all particles and their chemical composition. In all cases, a depletion from the core to the shell is observed, with the core consisting of NiCu alloy, surrounded by an inner Ni-rich shell and an outer NiO shell. The SiO2-supported NiCu core–shell NPs show pronounced selectivity of >99% for CO in the catalytic reduction of CO2 to CO using hydrogen as reactant (reverse water–gas shift reaction) independent of size and Ni:Cu ratio. KW - Nanoparticles KW - Core-shell KW - Catalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543606 DO - https://doi.org/10.1002/adem.202101308 SN - 1438-1656 SP - 1 EP - 13 PB - Wiley VCH AN - OPUS4-54360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhao, H. A1 - Chakraborty, Poulami A1 - Ponge, D. A1 - Hickel, Tilmann A1 - Sun, B. A1 - Wu, C.-H. A1 - Gault, B. A1 - Raabe, D. T1 - Hydrogen trapping and embrittlement in high-strength Al alloys N2 - Ever more stringent regulations on greenhouse gas emissions from transportation motivate efforts to revisit materials used for vehicles. High-strength aluminium alloys often used in aircrafts could help reduce the weight of automobiles, but are susceptible to environmental degradation. Hydrogen ‘embrittlement’ is often indicated as the main culprit; however, the exact mechanisms underpinning failure are not precisely known: atomic-scale analysis of H inside an alloy remains a challenge, and this prevents deploying alloy design strategies to enhance the durability of the materials. Here we performed near-atomic-scale analysis of H trapped in second-phase particles and at grain boundaries in a high-strength 7xxx Al alloy. We used these observations to guide atomistic ab initio calculations, which show that the co-segregation of alloying elements and H favours grain boundary decohesion, and the strong partitioning of H into the second-phase particles removes solute H from the matrix, hence preventing H embrittlement. Our insights further advance the mechanistic understanding of H-assisted embrittlement in Al alloys, emphasizing the role of H traps in minimizing cracking and guiding new alloy design. KW - Atomistic models KW - Hydrogen KW - Metals and alloys KW - Mechanical properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543631 DO - https://doi.org/10.1038/s41586-021-04343-z SN - 1476-4687 VL - 602 IS - 7897 SP - 437 EP - 441 PB - Nature Publ. Group CY - London AN - OPUS4-54363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Dubois, F. A1 - Mousa, M. S. A1 - von Schlippenbach, C. A1 - Többens, D. M. A1 - Yesilcicek, Yasemin A1 - Zaiser, E. A1 - Hesse, René A1 - Haas, S. A1 - Glatzel, U. T1 - On the Formation of Eutectics in Variations of the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy N2 - Superalloy inspired Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy is known for its gamma-gamma' microstructure and the third Heusler phase. Variations of this alloy, gained by replacing 0.5 or 1 at. pct Al by the equivalent amount of Mo, W, Zr, Hf or B, can show more phases in addition to this three-phase morphology. When the homogenization temperature is chosen too high, a eutectic phase formation can take place at the grain boundaries, depending on the trace elements: Mo and W do not form eutectics while Hf, Zr and B do. In order to avoid the eutectic formation and the potential implied grain boundary weakening, the homogenization temperature must be chosen carefully by differential scanning calorimetry measurements. A too low homogenization temperature, however, could impede the misorientation alignment of the dendrites in the grain. The influence of grain boundary phases and incomplete dendrite re-orientation are compared and discussed. KW - High entropy alloy KW - Eutectic KW - Homogenization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543504 DO - https://doi.org/10.1007/s11661-020-06091-7 VL - 52 IS - 1 SP - 143 EP - 150 PB - Springer AN - OPUS4-54350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mendive-Tapia, E. A1 - Neugebauer, J. A1 - Hickel, Tilmann T1 - Ab initio calculation of the magnetic Gibbs free energy of materials using magnetically constrained supercells N2 - We present a first-principles approach for the computation of the magnetic Gibbs free energy ofmaterials using magnetically constrained supercell calculations. Our approach is based on an adiabatic approximation of slowly varying local moment orientations, the so-called finite-temperature disordered local moment picture. It describes magnetic phase transitions and how electronic and/or magnetostructural mechanisms generate a discontinuous (first-order) character. We demonstrate that the statistical mechanics of the local moment orientations can be described by an affordable number of supercell calculations containing noncollinear magnetic configurations. The applicability of our approach is illustrated by firstly studying the ferromagnetic state in bcc Fe. We then investigate the temperature-dependent properties of a triangular antiferromagnetic state stabilizing in two antiperovskite systems Mn3AN (A = Ga, Ni). Our calculations provide the negative thermal expansion of These materials as well as the ab initio origin of the discontinuous character of the phase transitions, electronic and/or magnetostructural, in good agreement with experiment. KW - Ab initio KW - Thermodynamics KW - Magnetic alloys KW - Phase transformations PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543710 DO - https://doi.org/10.1103/PhysRevB.105.064425 SN - 2469-9969 VL - 105 IS - 6 SP - 1 EP - 6 PB - American Institute of Physics CY - Woodbury, NY AN - OPUS4-54371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Navarro, L. A1 - Thünemann, Andreas A1 - Klinger, D. T1 - Solvent Annealing of Striped Ellipsoidal Block Copolymer Particles: Reversible Control over Lamellae Asymmetry, Aspect Ratio, and Particle Surface N2 - Solvent annealing is a versatile tool to adjust the shape and morphology of block copolymer (BCP) particles. During this process, polar solvents are often used for block-selective swelling. However, such water-miscible solvents can induce (partial) solubilization of one block in the surrounding aqueous medium, thus, causing complex structural variations and even particle disassembly. To reduce the complexity in morphology control, we focused on toluene as a nonpolar polystyrene-selective solvent for the annealing of striped polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) ellipsoids. The selective stretching of PS chains produces unique asymmetric lamellae structures, which translate to an increase in the particle aspect ratio after toluene evaporation. Complete reversibility is achieved by changing to chloroform as a nonselective solvent. Moreover, surfactants can be used to tune block-selective wetting of the particle surface during the annealing; for example, a PS shell can protect the internal lamellae structure from disassembly. Overall, this versatile postassembly process enables the tailoring of the structural features of striped colloidal ellipsoids by only using commercial BCPs and solvents. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Polymer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543731 DO - https://doi.org/10.1021/acsmacrolett.1c00665 VL - 11 IS - 3 SP - 319 EP - 335 PB - American Chemical Society AN - OPUS4-54373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Crouzier, L. A1 - Feltin, N. A1 - Delvallée, A. A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Cios, Grzegorz A1 - Tokarski, T. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis of the dimensional properties of bipyramidal titania nanoparticles by complementing electron microscopy with other methods N2 - In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano‐bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging. Furthermore, a recently developed method, Transmission Kikuchi Diffraction (TKD), which needs preparation of the crystalline NPs on electron‐transparent substrates such as TEM grids, has been tested with respect to its capability of identifying the geometrical orientation of the individual NPs. With the NPs prepared homogeneously on a TEM grid, the transmission mode in a SEM, i.e., STEM‐in‐SEM (or T‐SEM), can be also applied to extract accurate projection dimensions of the nanoparticles from the same sample area as that analysed by SEM, TKD and possibly AFM. Finally, Small Angle X‐ray Scattering (SAXS) can be used as an ensemble technique able to measure the NPs in liquid suspension and, with ab‐initio knowledge of the NP shape from the descriptive imaging techniques, to provide traceable NP size distribution and particle concentration. KW - Nanoparticles KW - Complex-shape KW - Bipyramid KW - Electron microscopy KW - AFM KW - Size measurements KW - TKD KW - STEM-in-SEM KW - SAXS KW - Nanoparticle concentration KW - Correlative analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539888 DO - https://doi.org/10.3390/nano11123359 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-53988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -