TY - JOUR A1 - Radtke, Martin A1 - Rakotondrajoa, A. T1 - Machine learning based quantification of synchrotron radiation-induced X-ray fluorescence measurements - a case study N2 - In this work, we describe the use of artificial neural networks for the quantification of X-ray fluorescence measurements. The training data were generated using Monte Carlo simulation, which avoided the use of adapted reference materials. The extension of the available data set by means of an ANN to generate additional data was demonstrated. Particular emphasis was put on the comparability of simulated and experimental data and how the influence of deviations can be reduced. The search for the optimal hyperparameter, manual and automatic, is also described. For the presented case, we were able to train a network with a mean absolute error of 0.1 weight percent for the synthetic data and 0.7 weight percent for a set of experimental data obtained with certified reference materials. KW - Machine learning KW - BAMline KW - XRF KW - Synchrotron KW - Neural network PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519008 DO - https://doi.org/10.1088/2632-2153/abc9fb SP - 1 EP - 16 PB - IOP Publishing AN - OPUS4-51900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz A1 - Wagner, L.-C. A1 - Gluth, Gregor A1 - Pirskawetz, Stephan A1 - Kühne, Hans-Carsten T1 - Application of Steel Fibres in Alkali-Activated Mortars N2 - Alkali-activated materials are ideal for the repair of concrete structures in harsh environmental conditions due to their high durability in chemically aggressive environments. However, slag-based mortars, in particular, are prone to shrinkage and associated cracks. In this respect, the application of steel fibres is one solution to reduce the formation of shrinkage induced cracks and to improve post cracking behaviour of these mortars. This study investigated the influence of two different types of steel fibres on the tensile properties of two alkali-activated mortars. Direct tensile tests and single fibre pull-outs were performed to analyse the determining failure modes both on macro and micro scale. Mechanical testing was accompanied by non-destructive testing methods such as digital image correlation and acoustic emission for a detailed analysis of the fracture process. T2 - Local Mechanical Properties - LMP 2019 CY - Prague, Czech Republic DA - 06.11.2019 KW - Alkali-activated materials KW - Fibre pull-out KW - Steel fibres KW - Tensile strength PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509291 UR - https://ojs.cvut.cz/ojs/index.php/APP/article/view/6695 DO - https://doi.org/10.14311/APP.2020.27.0090 VL - 27 SP - 90 EP - 95 CY - Prague, Czech Republic AN - OPUS4-50929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smekhova, A. A1 - Kuzmin, A. A1 - Siemensmeyer, K. A1 - Luo, C. A1 - Taylor, J. A1 - Thakur, S. A1 - Radu, F. A1 - Weschke, E. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Xiao, B. A1 - Savan, A. A1 - Yusenko, Kirill A1 - Ludwig, A. T1 - Local structure and magnetic properties of a nanocrystalline Mn-rich Cantor alloy thin film down to the atomic scale N2 - The huge atomic heterogeneity of high-entropy materials along with a possibility to unravel the behavior of individual components at the atomic scale suggests a great promise in designing new compositionally complex systems with the desired multi-functionality. Herein, we apply multi-edge X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and X-ray magnetic circular dichroism (XMCD)) to probe the structural, electronic, and magnetic properties of all individual constituents in the single-phase face-centered cubic (fcc)-structured nanocrystalline thin film of Cr20Mn26Fe18Co19Ni17 (at.%) high-entropy alloy on the local scale. The local crystallographic ordering and component-dependent lattice displacements were explored within the reverse Monte Carlo approach applied to EXAFS spectra collected at the K absorption edges of several constituents at room temperature. A homogeneous short-range fcc atomic environment around the absorbers of each type with very similar statistically averaged interatomic distances (2.54–2.55 Å) to their nearest-neighbors and enlarged structural relaxations of Cr atoms were revealed. XANES and XMCD spectra collected at the L2,3 absorption edges of all principal components at low temperature from the oxidized and in situ cleaned surfaces were used to probe the oxidation states, the changes in the electronic structure, and magnetic behavior of all constituents at the surface and in the sub-surface volume of the film. The spin and orbital magnetic moments of Fe, Co, and Ni components were quantitatively evaluated. The presence of magnetic phase transitions and the co-existence of different magnetic phases were uncovered by conventional magnetometry in a broad temperature range. KW - Magnetism KW - High-entropy alloys KW - Reverse Monte Carlo (RMC) KW - Element-specific spectroscopy KW - Extended X-ray absorption fine structure (EXAFS), KW - X-ray magnetic circular dichroism (XMCD), PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578254 DO - https://doi.org/10.1007/s12274-022-5135-3 SN - 1998-0124 SP - 5626 PB - Springer AN - OPUS4-57825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rudić, O. A1 - Mittermayr, F. A1 - Gluth, Gregor A1 - Simon, Sebastian A1 - Ukrainczyk, N. A1 - Seyrek, Y. A1 - Freytag, B. A1 - Juhart, J. A1 - Grengg, C. T1 - On the benefits of vegetable oil addition for the pore structure and acid resistance of alkali-activated systems N2 - The impact of high additions of vegetable oil (12 vol%) on the mechanical and microstructural properties of metakaolin-slag-based alkali-activated materials (AAMs) was studied. The addition of oil resulted in a slight decrease in initial polymerization kinetics but did not affect the final degree of reaction. AAM-oil-composite-mortars exhibited approximately ∼30% lower compressive strength primarily due to the entrainment of air voids. Newly formed soap phases significantly reduced the volume of small capillary and gel pores (pore radii <15 nm), leading to a decrease in specific inner surface area by a factor of up to 15. The porosity modification induced by the oil addition greatly enhanced the resistance of AAMs against sulfuric acid attack, shifting the dominant processes from diffusion and cracks to framework-dissolution controlled by the inherent phase stabilities. Following the immersion in sulfuric acid (pHstat = 2) for 8 weeks, the depth of corroded layer decreased by 70% and no cracks due to expansive phases were observed. These promising findings suggest that the incorporation of vegetable oil in AAMs has the potential to address durability concerns associated with diffusion-based corrosion processes, thereby expanding the range of future applications. KW - Alkali-activated materials KW - Acid resistance KW - Pore structure PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581719 DO - https://doi.org/10.1016/j.ceramint.2023.08.036 VL - 49 IS - 20 SP - 33275 EP - 33290 PB - Elsevier Ltd. AN - OPUS4-58171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mundra, S. A1 - Samson, G. A1 - Masi, G. A1 - Achenbach, R. A1 - Bastidas, D. M. A1 - Bernal, S. A. A1 - Bignozzi, M. C. A1 - Criado, M. A1 - Cyr, M. A1 - Gartner, N. A1 - von Greve-Dierfeld, S. A1 - Legat, A. A1 - Nikoonasab, Ali A1 - Provis, J. L. A1 - Raupach, M. A1 - Gluth, Gregor T1 - Application of electrochemical methods for studying steel corrosion in alkali-activated materials N2 - Alkali-activated materials (AAMs) are binders that can complement and partially substitute the current use of conventional cement. However, the present knowledge about how AAMs protect steel reinforcement in concrete elements is incomplete, and uncertainties exist regarding the application of electrochemical methods to investigate this issue. The present review by EFC WP11-Task Force ‘Corrosion of steel in alkali-activated materials’ demonstrates that important differences exist between AAMs and Portland cement, and between different classes of AAMs, which are mainly caused by differing pore solution compositions, and which affect the outcomes of electrochemical measurements. The high sulfide concentrations in blast furnace slag-based AAMs lead to distinct anodic polarisation curves, unusually low open circuit potentials, and low polarisation resistances, which might be incorrectly interpreted as indicating active corrosion of steel reinforcement. No systematic study of the influence of the steel–concrete interface on the susceptibility of steel to corrosion in AAMs is available. Less common electrochemical methods present an opportunity for future progress in the field. KW - Alkali-activated materials KW - Reinforcement corrosion KW - Steel corrrosion KW - Electrochemical methods KW - Concrete PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572241 DO - https://doi.org/10.1002/maco.202313743 SN - 1521-4176 VL - 74 IS - 7 SP - 988 EP - 1008 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, Stefan A1 - Kunkel, Benny A1 - Cakir, Cafer Tufan A1 - Kabelitz, Anke A1 - Witte, Steffen A1 - Bernstein, Thomas A1 - Bartling, Stephan A1 - Radtke, Martin A1 - Emmerling, Franziska A1 - Abdel-Mageed, Ali Mohamed A1 - Wohlrab, Sebastian A1 - de Oliveira Guilherme Buzanich, Ana T1 - Time-, space- and energy-resolved in situ characterization of catalysts by X-ray absorption spectroscopy N2 - A novel setup for dispersive X-ray absorption spectroscopy (XAS) with simultaneous resolution of space, time and energy for in situ characterization of solid materials is demonstrated. KW - Dispersive XAS KW - Catalysis KW - In situ KW - Structure analysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584924 DO - https://doi.org/10.1039/d3cc03277a SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Ryll, T. W. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Stawski, Tomasz Maciej T1 - Phase stability studies on transition metal phosphates aided by an automated synthesis N2 - Transition metal phosphates (TMPs) have attracted interest as materials for (electro-) catalysis, and electrochemistry due to their low-cost, stability, and tunability. In this work, an automated synthesis platform was used for the preparation of transition metal phosphate crystals to efficiently explore the multidimensional parameter space, determining the phase selection, crystal sizes, shapes. By using X-ray diffraction and spectroscopy-based methods and electron microscopy imaging, a complete characterization of the phase stability fields, phase transitions, and crystal morphology/sizes was achieved. In an automated three-reactant synthesis, the individual effect of each reactant species NH4+, M2+, and PO43- on the formation of transition metal phosphate phases: M-struvite NH4MPO4·6H2O, M-phosphate octahydrate M3(PO4)2·8H2O with M = Ni, Co and an amorphous phase, was investigated. The NH4+ concentration dictates the phase composition, morphology, and particle size in the Ni-system (crystalline Ni-struvite versus amorphous Ni-PO4 phase), whereas in the Co-system all reactant species - NH4+, Co2+, and PO43- - influence the reaction outcome equivalently (Co-struvite vs. Co-phosphate octahydrate). The coordination environment for all crystalline compounds and of the amorphous Ni-PO4 phase was resolved by X-ray absorption spectroscopy, revealing matching characteristics to its crystalline analogue, Ni3(PO4)2·8H2O. The automated synthesis turned out to be significantly advantageous for the exploration of phase diagrams due to its simple modularity, facile traceability, and enhanced reproducibility compared to a typical manual synthesis. KW - Automated synthesis KW - Phase diagrams KW - Transition metals KW - Phosphates KW - Local structure KW - Struvite PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579151 DO - https://doi.org/10.1039/D3CE00386H VL - 25 IS - 30 SP - 4333 EP - 4344 PB - CrystEngComm CY - London AN - OPUS4-57915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Cakir, Cafer Tufan A1 - Radtke, Martin A1 - Haider, M. Bilal A1 - Emmerling, Franziska A1 - F. M. Oliveira, P. A1 - Michalchuk, Adam T1 - Dispersive x-ray absorption spectroscopy for time-resolved in situ monitoring of mechanochemical reactions N2 - X-ray absorption spectroscopy (XAS) provides a unique, atom-specific tool to probe the electronic structure of solids. By surmounting long-held limitations of powder-based XAS using a dynamically averaged powder in a Resonant Acoustic Mixer (RAM), we demonstrate how time-resolved in situ (TRIS) XAS provides unprecedented detail of mechanochemical synthesis. The use of a custom-designed dispersive XAS (DXAS) setup allows us to increase the time resolution over existing fluorescence measurements from ∼15 min to 2 s for a complete absorption spectrum. Hence, we here establish TRIS-XAS as a viable method for studying mechanochemical reactions and sampling reaction kinetics. The generality of our approach is demonstrated through RAM-induced (i) bottom-up Au nanoparticle mechanosynthesis and (ii) the synthesis of a prototypical metal organic framework, ZIF-8. Moreover, we demonstrate that our approach also works with the addition of a stainless steel milling ball, opening the door to using TRIS-DXAS for following conventional ball milling reactions. We expect that our TRIS-DXAS approach will become an essential part of the mechanochemical tool box. KW - In situ studies KW - Dipsersive XAS KW - Mechanochemistry KW - Time-resolved PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567659 DO - https://doi.org/10.1063/5.0130673 SN - 1089-7690 VL - 157 IS - 21 SP - 1 EP - 12 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-56765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Ahrens, M. A1 - Braun, T. A1 - Emmerling, Franziska T1 - An amorphous Lewis-acidic zirconium chlorofluoride as HF shuttle: C–F bond activation and formation N2 - An exceptional HF transfer reaction by C–F bond activation of fluoropentane and a subsequent hydrofluorination of alkynes at room temperature is reported. An amorphous Lewis-acidic Zr chlorofluoride serves as heterogeneous catalyst, which is characterised by an eightfold coordination environment at Zr including chlorine atoms. The studies are seminal in establishing sustainable fluorine chemistry. KW - ZCF KW - Heterogeneous catalysis KW - C-F bond activation KW - HF-shuttle PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582249 DO - https://doi.org/10.1039/D3CC03164K SN - 1359-7345 VL - 59 IS - 75 SP - 11224 EP - 11227 PB - RSC CY - Cambridge AN - OPUS4-58224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vollpracht, A. A1 - Gluth, Gregor A1 - Rogiers, B. A1 - Uwanuakwa, I. D. A1 - Phung, Q. T. A1 - Villagran Zaccardi, Y. A1 - Thiel, C. A1 - Vanoutrive, H. A1 - Etcheverry, J. M. A1 - Gruyaert, E. A1 - Kamali-Bernard, S. A1 - Kanellopoulos, A. A1 - Zhao, Z. A1 - Martins, I. M. A1 - Rathnarajan, S. A1 - De Belie, N. T1 - Report of RILEM TC 281-CCC: insights into factors affecting the carbonation rate of concrete with SCMs revealed from data mining and machine learning approaches N2 - The RILEM TC 281–CCC ‘‘Carbonation of concrete with supplementary cementitious materials’’ conducted a study on the effects of supplementary cementitious materials (SCMs) on the carbonation rate of blended cement concretes and mortars. In this context, a comprehensive database has been established, consisting of 1044 concrete and mortar mixes with their associated carbonation depth data over time. The dataset comprises mix designs with a large variety of binders with up to 94% SCMs, collected from the literature as well as unpublished testing reports. The data includes chemical composition and physical properties of the raw materials, mix-designs, compressive strengths, curing and carbonation testing conditions. Natural carbonation was recorded for several years in many cases with both indoor and outdoor results. The database has been analysed to investigate the effects of binder composition and mix design, curing and preconditioning, and relative humidity on the carbonation rate. Furthermore, the accuracy of accelerated carbonation testing as well as possible correlations between compressive strength and carbonation resistance were evaluated. One approach to summerise the physical and chemical resistance in one parameter is the ratio of water content to content of carbonatable CaO (w/CaOreactive ratio). The analysis revealed that the w/CaOreactive ratio is a decisive factor for carbonation resistance, while curing and exposure conditions also influence carbonation. Under natural exposure conditions, the carbonation data exhibit significant variations. Nevertheless, probabilistic inference suggests that both accelerated and natural carbonation processes follow a square-root-of-time behavior, though accelerated and natural carbonation cannot be converted into each other without corrections. Additionally, a machine learning technique was employed to assess the influence of parameters governing the carbonation progress in concretes. KW - Carbonation KW - Supplementary cementitious materials KW - Concrete PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-614388 DO - https://doi.org/10.1617/s11527-024-02465-0 SN - 1871-6873 SN - 1359-5997 VL - 57 IS - 9 SP - 1 EP - 33 PB - Springer Nature AN - OPUS4-61438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -