TY - JOUR A1 - Lee, Mihyun A1 - Wiesli, Luzia A1 - Schreiber, Frank A1 - Ivask, Angela Ivask A1 - Ren, Qun T1 - Quantitative Assessment of Microbial Transmission onto Environmental Surfaces Using Thermoresponsive Gelatin Hydrogels as a Finger Mimetic under In Situ-Mimicking Conditions N2 - Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions. The HydroTouch test employs gelatin as a finger mimetic, facilitating testing with pathogenic bacteria under controlled conditions. The thermoresponsive sol–gel transition of gelatin allows easy recovery and quantification of bacteria before and after testing. The HydroTouch test demonstrates that methicillin-resistant Staphylococcus aureus has a high transmission efficiency of ≈16% onto stainless steel, compared to <3% for Escherichia coli or Pseudomonas aeruginosa. Polyurethane surfaces exhibit strong resistance to bacterial contamination with a transmission efficiency of ≈0.6%, while polytetrafluoroethylene shows a transmission efficiency approximately four times higher than polyurethane. Additionally, quaternary ammonium-based antimicrobial coatings reduce the transmission efficiency of live bacteria on stainless steel to ≈4% of the original level. The HydroTouch test provides a reliable method for assessing pathogen transmission on various surfaces under semi-dry settings, supporting the development of effective antimicrobial, anti-transmission coatings to reduce healthcare-associated infections. KW - Antimicrobial surfaces KW - Biocides KW - Antimicrobial resistance KW - Standardization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624566 DO - https://doi.org/10.1002/adhm.202403790 SN - 2192-2659 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-62456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kanaris, Orestis A1 - Schreiber, Frank T1 - Refuse in order to resist: metabolic bottlenecks reduce antibiotic susceptibility N2 - The growth of pathogenic bacteria in the host is a prerequisite for infectious diseases. Antibiotic drugs are used to impair bacterial growth and thereby treat infections. In turn, growth of bacteria is underpinned by their primary metabolism. Thus,it has long been recognized that the activity of antibiotics is determined by the metabolic state of cells. However, only recently researchers have begun to systematically interrogate the links between metabolism and resistance. In their recent study, Lubrano and colleagues (Lubranoet al, 2025) apply an elegant CRISPR-based approach to the model bacterium Escherichia coli to systematically screen the effect of 15,120 mutations in genes that encode for 346 proteins which are required for growth of E. coli (also referred to as ‘essential proteins’). The authors identified a multitude of mutations that reduce the susceptibility against two antibiotics related to two very distinct chemical classes; the β-lactam antibiotic carbenicillin and the aminoglycoside gentamicin. Strikingly, the majority of the identified mutations are directly linked to primary metabolism. The work highlights the importance of metabolism in order to understand antibiotic resistance mechanisms and the ecology and evolution of antibiotic resistance. In addition, the work provides leads to design metabolism-based intervention strategies to mitigate antibiotic resistance. KW - Metabolism KW - Antibiotic resistance PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626608 DO - https://doi.org/10.1038/s44320-025-00089-2 SN - 1744-4292 VL - 21 IS - 3 SP - 211 EP - 213 AN - OPUS4-62660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nordholt, Niclas A1 - O'Hara, Kate A1 - Resch-Genger, Ute A1 - Blaskovich, M. A1 - Rühle, Bastian A1 - Schreiber, Frank T1 - A fluorescently labelled quaternary ammonium compound (NBD-DDA) to study resistance mechanisms in bacteria N2 - Quaternary ammonium compounds (QACs) are widely used as active agents in disinfectants, antiseptics, and preservatives. Despite being in use since the 1940s, there remain multiple open questions regarding their detailed mode-of-action and the mechanisms, including phenotypic heterogeneity, that can make bacteria less susceptible to QACs. To facilitate studies on resistance mechanisms towards QACs, we synthesized a fluorescent quaternary ammonium compound, namely N-dodecyl-N,N-dimethyl-[2-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]ethyl]azanium-iodide (NBD-DDA). NBD-DDA is readily detected by flow cytometry and fluorescence microscopy with standard GFP/FITC-settings, making it suitable for molecular and single-cell studies. As a proof-of-concept, NBD-DDA was then used to investigate resistance mechanisms which can be heterogeneous among individual bacterial cells. Our results reveal that the antimicrobial activity of NBD-DDA against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa is comparable to that of benzalkonium chloride (BAC), a widely used QAC, and benzyl-dimethyl-dodecylammonium chloride (BAC12), a mono-constituent BAC with alkyl-chain length of 12 and high structural similarity to NBD-DDA. Characteristic time-kill kinetics and increased tolerance of a BAC tolerant E. coli strain against NBD-DDA suggest that the mode of action of NBD-DDA is similar to that of BAC. As revealed by confocal laser scanning microscopy (CLSM), NBD-DDA is preferentially localized to the cell envelope of E. coli, which is a primary target of BAC and other QACs. Leveraging these findings and NBD-DDA‘s fluorescent properties, we show that reduced cellular accumulation is responsible for the evolved BAC tolerance in the BAC tolerant E. coli strain and that NBD-DDA is subject to efflux mediated by TolC. Overall, NBD-DDA’s antimicrobial activity, its fluorescent properties, and its ease of detection render it a powerful tool to study resistance mechanisms of QACs in bacteria and highlight its potential to gain detailed insights into its mode-of-action. KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563811 DO - https://doi.org/10.3389/fmicb.2022.1023326 SN - 1664-302X IS - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valentin, J. A1 - Straub, H. A1 - Pietsch, Franziska A1 - Lemare, M. A1 - Ahrens, C. A1 - Schreiber, Frank A1 - Webb, J. A1 - van der Mei, H. A1 - Ren, Q. T1 - Role of the flagellar hook in the structural development and antibiotic tolerance of Pseudomonas aeruginosa biofilms N2 - Pseudomonas aeruginosa biofilms exhibit an intrinsic resistance to antibiotics and constitute a considerable clinical threat. In cystic fibrosis, a common feature of biofilms formed by P. aeruginosa in the airway is the occurrence of mutants deficient in flagellar motility. This study investigates the impact of flagellum deletion on the structure and antibiotic tolerance of P. aeruginosa biofilms, and highlights a role for the flagellum in adaptation and cell survival during biofilm development. Mutations in the flagellar hook protein FlgE influence greatly P. aeruginosa biofilm structuring and antibiotic tolerance. Phenotypic analysis of the flgE knockout mutant compared to the wild type (WT) reveal increased fitness under planktonic conditions, reduced initial adhesion but enhanced formation of microcolony aggregates in a microfluidic environment, and decreased expression of genes involved in exopolysaccharide formation. Biofilm cells of the flgE knock-out mutant display enhanced tolerance towards multiple antibiotics, whereas its planktonic cells show similar resistance to the WT. Confocal microscopy of biofilms demonstrates that gentamicin does not affect the viability of cells located in the inner part of the flgE knock-out mutant biofilms due to reduced penetration. These findings suggest that deficiency in flagellar proteins like FlgE in biofilms and in cystic fibrosis infections represent phenotypic and evolutionary adaptations that alter the structure of P. aeruginosa biofilms conferring increased antibiotic tolerance. KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541113 DO - https://doi.org/10.1038/s41396-021-01157-9 SN - 1751-7370 VL - 16 IS - 4 SP - 1176 EP - 1186 PB - Springer Nature AN - OPUS4-54111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Franziska, Pietsch A1 - Nordholt, Niclas A1 - Heidrich, Gabriele A1 - Schreiber, Frank T1 - Prevalent Synergy and Antagonism Among Antibiotics and Biocides in Pseudomonas aeruginosa N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the effects of combinations of antibiotics (meropenem, gentamicin, and ciprofloxacin) and substances used as biocides or antiseptics [octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, Povidone-iodine, silver nitrate (AgNO3), and Ag-nanoparticles] on the planktonic growth rate of Pseudomonas aeruginosa. Combination effects were investigated in growth experiments in microtiter plates at different concentrations and the Bliss interaction scores were calculated. Among the 21 screened combinations, we find prevalent combination effects with synergy occurring six times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). In conclusion, antibiotics and biocides or antiseptics exert physiological combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and potentially for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g., wound care and coated biomaterials). KW - Synergy KW - Antagonism KW - Suppression KW - Biocides KW - Antibiotics KW - Pseudomonas aeruginosa PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520845 DO - https://doi.org/10.3389/fmicb.2020.615618 VL - 11 SP - Article 615618 PB - Frontiers CY - Lausanne AN - OPUS4-52084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valentin, Jules D. P. A1 - Altenried, Stefanie A1 - Varadarajan, Adithi R. A1 - Ahrens, Christian H. A1 - Schreiber, Frank A1 - Webb, Jeremy S. A1 - van der Mei, Henny C. A1 - Ren, Qun T1 - Identification of Potential Antimicrobial Targets of Pseudomonas aeruginosa Biofilms through a Novel Screening Approach N2 - Pseudomonas aeruginosa is an opportunistic pathogen of considerable medical importance, owing to its pronounced antibiotic tolerance and association with cystic fibrosis and other life-threatening diseases. The aim of this study was to highlight the genes responsible for P. aeruginosa biofilm tolerance to antibiotics and thereby identify potential new targets for the development of drugs against biofilm-related infections. By developing a novel screening approach and utilizing a public P. aeruginosa transposon insertion library, several biofilm-relevant genes were identified. The Pf phage gene (PA0720) and flagellin gene (fliC) conferred biofilm-specific tolerance to gentamicin. Compared with the reference biofilms, the biofilms formed by PA0720 and fliC mutants were completely eliminated with a 4-fold-lower gentamicin concentration. Furthermore, the mreC, pprB, coxC, and PA3785 genes were demonstrated to play major roles in enhancing biofilm tolerance to gentamicin. The analysis of biofilm-relevant genes performed in this study provides important novel insights into the understanding of P. aeruginosa antibiotic tolerance, which will facilitate the detection of antibiotic resistance and the development of antibiofilm strategies against P. aeruginosa. KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Pseudomonas aeruginosa PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570205 DO - https://doi.org/10.1128/spectrum.03099-22 SP - 1 EP - 5 PB - ASM Journals AN - OPUS4-57020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chacón, Luz A1 - Kuropka, B. A1 - González-Tortuero, E. A1 - Schreiber, Frank A1 - Rojas-Jiménez, K. A1 - Rodríguez-Rojas, A. T1 - Mechanisms of low susceptibility to the disinfectant benzalkonium chloride in a multidrug-resistant environmental isolate of Aeromonas hydrophila N2 - Excessive discharge of quaternary ammoniumdisinfectants such as benzalkonium chloride (BAC) into aquatic systems can trigger several physiological responses in environmental microorganisms. In this study, we isolated a less-susceptible strain of Aeromonas hydrophila to BAC, designated as INISA09, froma wastewater treatment plant in Costa Rica. We characterized its phenotypic response upon exposure to three di􀀀erent concentrations of BAC and characterizedmechanisms related to its resistance using genomic and proteomic approaches. The genome of the strain, mapped against 52 di􀀀erent sequenced A. hydrophila strains, consists of approximately 4.6Mb with 4,273 genes. We found a massive genome rearrangement and thousands of missense mutations compared to the reference strain A. hydrophila ATCC 7966. We identified 15,762 missense mutations mainly associated with transport, antimicrobial resistance, and outer membrane proteins. In addition, a quantitative proteomic analysis revealed a significant upregulation of several efflux pumps and the downregulation of porins when the strain was exposed to three BAC concentrations.Other genes related tomembrane fatty acid metabolism and redox metabolic reactions also showed an altered expression. Our findings indicate that the response of A. hydrophila INISA09 to BAC primarily occurs at the envelop level, which is the primary target of BAC. Our study elucidates the mechanisms of antimicrobial susceptibility in aquatic environments against a widely used disinfectant and will help better understand howbacteria can adapt to biocide pollution. To our knowledge, this is the first study addressing the resistance to BAC in an environmental A. hydrophila isolate. We propose that this bacterial species could also serve as a new model to study antimicrobial pollution in aquatic environments. KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578555 DO - https://doi.org/10.3389/fmicb.2023.1180128 SN - 1664-302X VL - 14 SP - 1 EP - 18 PB - Frontiers SA CY - Lausanne AN - OPUS4-57855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Selina B. I. A1 - Täschner, Tom A1 - Nordholt, Niclas A1 - Schreiber, Frank T1 - Differential Selection for Survival and for Growth in Adaptive Laboratory Evolution Experiments With Benzalkonium Chloride N2 - Biocides are used to control microorganisms across different applications, but emerging resistance may pose risks for those applications. Resistance to biocides has commonly been studied using adaptive laboratory evolution (ALE) experiments with growth at subinhibitory concentrations linked to serial subculturing. It has been shown recently that Escherichia coli adapts to repeated lethal stress imposed by the biocide benzalkonium chloride (BAC) by increased survival (i.e., tolerance) and not by evolving the ability to grow at increased concentrations (i.e., resistance). Here, we investigate the contributions of evolution for tolerance as opposed to resistance for the outcome of ALE experiments with E. coli exposed to BAC. We find that BAC concentrations close to the half maximal effective concentration (EC50, 4.36 μg mL−1) show initial killing (~40%) before the population resumes growth. This indicates that cells face a two‐fold selection pressure: for increased survival and for increased growth. To disentangle the effects of both selection pressures, we conducted two ALE experiments: (i) one with initial killing and continued stress close to the EC50 during growth and (ii) another with initial killing and no stress during growth. Phenotypic characterization of adapted populations showed that growth at higher BAC concentrations was only selected for when BAC was present during growth. Whole genome sequencing revealed distinct differences in mutated genes across treatments. Treatments selecting for survival‐only led to mutations in genes for metabolic regulation (cyaA) and cellular structure (flagella fliJ), while treatments selecting for growth and survival led to mutations in genes related to stress response (hslO and tufA). Our results demonstrate that serial subculture ALE experiments with an antimicrobial at subinhibitory concentrations can select for increased growth and survival. This finding has implications for the design of ALE experiments to assess resistance risks of antimicrobials in different scenarios such as disinfection, preservation, and environmental pollution. KW - Antimicrobial resistance KW - Bacteria KW - Standardization KW - Biocides PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-615496 DO - https://doi.org/10.1111/eva.70017 VL - 17 IS - 10 SP - 1 EP - 11 PB - Wiley AN - OPUS4-61549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nikolic, Nela A1 - Dal Co, Alma A1 - Kiviet, Daniel J. A1 - Bergmiller, Tobias A1 - Littmann, Sten A1 - Kuypers, Marcel M. M. A1 - Ackermann, Martin A1 - Schreiber, Frank T1 - Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations N2 - While we have good understanding of bacterial metabolism at the population level, we know little about the metabolic behavior of individual cells: do single cells in clonal populations sometimes specialize on different metabolic pathways? Such metabolic specialization could be driven by stochastic gene expression and could provide individual cells with growth benefits of specialization. We measured the degree of phenotypic specialization in two parallel metabolic pathways, the assimilation of glucose and arabinose. We grew Escherichia coli in chemostats, and used isotope-labeled sugars in combination with nanometer-scale secondary ion mass spectrometry and mathematical modeling to quantify sugar assimilation at the single-cell level. We found large variation in metabolic activities between single cells, both in absolute assimilation and in the degree to which individual cells specialize in the assimilation of different sugars. Analysis of transcriptional reporters indicated that this variation was at least partially based on cell-to-cell variation in gene expression. Metabolic differences between cells in clonal populations could potentially reduce metabolic incompatibilities between different pathways, and increase the rate at which parallel reactions can be performed. KW - Metabolism KW - Escherichia coli KW - Phenotypic diversity KW - Phenotypic heterogeneity PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-438873 UR - http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007122 DO - https://doi.org/10.1371/journal.pgen.1007122 SN - 1553-7404 VL - 13 IS - 12 SP - e1007122, 1 EP - e1007122, 24 PB - Public Library of Science CY - Cambridge, United Kingdom AN - OPUS4-43887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drexler, A.-K. A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Hodžić, E. A1 - Pastore, S. A1 - Domitner, J. A1 - Rhode, Michael A1 - Sommitsch, C. A1 - Böllinghaus, Thomas T1 - Effect of Tensile Loading and Temperature on the Hydrogen Solubility of Steels at High Gas Pressure N2 - The hydrogen solubility in ferritic and martensitic steels is affected by hydrostatic stress, pressure, and temperature. In general, compressive stresses decrease but tensile stresses increase the hydrogen solubility. This important aspect must be considered when qualifying materials for high‐pressure hydrogen applications (e.g., for pipelines or tanks) by using autoclave systems. In this work, a pressure equivalent for compensating the effect of compressive stresses on the hydrogen solubility inside of closed autoclaves is proposed to achieve solubilities that are equivalent to those in pipelines and tanks subjected to tensile stresses. Moreover, it is shown that the temperature effect becomes critical at low temperatures (e.g., under cryogenic conditions for storing liquid hydrogen). Trapping of hydrogen in the microstructure can increase the hydrogen solubility with decreasing temperature, having a solubility minimum at about room temperature. To demonstrate this effect, the generalized law of the hydrogen solubility is parameterized for different steels using measured contents of gaseous hydrogen. The constant parameter sets are verified and critically discussed with respect to the high‐pressure hydrogen experiments. KW - Hydrogen KW - Solubility KW - Temperature KW - Tensile loading KW - Analytical calculation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586701 DO - https://doi.org/10.1002/srin.202300493 SN - 1611-3683 SP - 1 EP - 9 PB - Wiley AN - OPUS4-58670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -