TY - JOUR A1 - El Houssami, M. A1 - Försth, M. A1 - Fredriksson, H. A1 - Drean, V. A1 - Guillaume, E. A1 - Hofmann-Böllinghaus, Anja A1 - Sandinge, A. T1 - Fire safety of interior materials of buses N2 - This study provides an analysis on the fire safety of passengers and the fire protection of coaches and buses. A brief review of major bus fire incidents, an overview of current regulations in Europe, and their limitations are presented. The study finds that the current small-scale fire test methods described in UN ECE Reg No. 118 need to be replaced by test methods that can assess the reaction to fire of materials when exposed to ignition sources of varying sizes. To address these shortcomings, the study proposed an expert recommendation to update the material fire safety requirements and testing for buses. Additional measures are proposed, derived from objectives and strategies applied in other transport sectors, and can be tested through existing European and international standards, which are widely used by several industries. These measures aim to extend the time with tenable conditions for a safe evacuation in case of fire, reduce the degree of damage to buses, reduce the risk for fast and excessive thermal exposure on modern energy carriers needed for a more sustainable transport sector. KW - Fire KW - Bus interior materials KW - Rregulations PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575700 DO - https://doi.org/10.1002/fam.3134 SN - 1099-1018 SP - 1 EP - 15 PB - Wiley CY - London AN - OPUS4-57570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manes, M. A1 - Sauca, A. A1 - El Houssami, M. A1 - Andersson, P. A1 - McIntyre, C. A1 - Campbell, R. A1 - Rush, D. A1 - Hofmann-Böllinghaus, Anja A1 - Wagner, P. A1 - Leene, M. A1 - Oberhagemann, D. A1 - Jomaas, G. A1 - Grone, F. A1 - Guillaume, E. T1 - Closing Data Gaps and Paving the Way for Pan-European Fire Safety Efforts: Part II—Terminology of Fire Statistical Variables N2 - A well-defined terminology of fire-related variables is important for correct analyses and supporting knowledge-based decisions regarding the evaluation of building fires at the European level. After developing an overview of current practices for fire statistics in Part I, the terminology used and the data collected by the EU Member States and eight other countries regarding fire incidents, property damage and human losses were mapped to increase awareness of their practice and support a comprehensive assessment of several fire statistical datasets. A questionnaire was distributed to relevant authorities responsible for the collection, elaboration/analysis, and fire statistical data publications to define and select the essential variables for an appropriate fire assessment and fire incident description. Based on the results of the questionnaire able to identify the essential fire statistical variables and a detailed analysis of current definitions adopted in the fire statistics of the EU Member States and other countries, a common terminology is proposed to collect the necessary data in the EU Member States and obtain meaningful datasets based on standardised terms and definitions. The results will generate essential outputs to move towards harmonised fire statistics at the EU level and contribute to an appropriate analysis able to improve fire prevention and fire mitigation in building fires. KW - Fire statistics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575725 DO - https://doi.org/10.1007/s10694-023-01408-5 SN - 1572-8099 SP - 1 EP - 32 PB - Springer CY - Heidelberg AN - OPUS4-57572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geoerg, Paul A1 - Schumann, Jette A1 - Holl, Stefan A1 - Holl, Maik A1 - Hofmann-Böllinghaus, Anja T1 - The influence of individual impairments in crowd dynamics N2 - The importance of empirical relations to quantify the movement of pedestrians through a facility has increased during the last decades since performance-based design methods became more common. Bottlenecks are of special interest because of their importance for egress routes and as they result in a reduced capacity. The empirical relations as the density-dependent movement speed or flow rate were derived by studies under laboratory conditions, which were usually conducted with populations of homogeneous characteristics forbetter control of influencing variables. If individual characteristics of a crowd become more heterogeneous, individuals were forced to adapt their individual movement and control individual manoeuvring. These unintended interactions lead to a different shape of the fundamental empirical relations. Here, we present results from a movement study under well-controlled boundary conditions in which participants with and without different characteristics of disabilities participated. To consider the effect of different heterogeneities on the capacity of a facility, fundamental diagrams are generated using the Voronoi method. If participants with visible disabilities (such as using assistive devices) are part of a crowd, significant differences relating to the shape of the empirical Relations and the capacities are found. This indicates that the heterogeneity of a Population leads to an increased interpersonal interaction which results in influenced movement characteristics. KW - Engineering egress data KW - Heterogeneity KW - Human behaviour KW - Movement characteristics KW - Pedestrian dynamics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508943 DO - https://doi.org/10.1002/fam.2789 SN - 0308-0501 VL - 45 IS - 4 SP - 529 EP - 542 PB - Wiley Online Libary CY - New Jersey, USA AN - OPUS4-50894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan T1 - Systematic ranking of filaments regarding their particulate emissions during fused filament fabrication 3D printing by means of a proposed standard test method N2 - The diversity of fused filament fabrication (FFF) filaments continues to grow rapidly as the popularity of FFF-3D desktop printers for the use as home fabrication devices has been greatly increased in the past decade. Potential harmful emissions and associated health risks when operating indoors have induced many emission studies. However, the lack of standardization of measurements impeded an objectifiable comparison of research findings. Therefore, we designed a chamber-based standard method, i.e., the strand printing method (SPM), which provides a standardized printing procedure and quantifies systematically the particle emission released from individual FFF-3D filaments under controlled conditions. Forty-four marketable filament products were tested. The total number of emitted particles (TP) varied by approximately four orders of magnitude (1E9 ≤ TP ≤ 1E13), indicating that origin of polymers, manufacturer-specific additives, and undeclared impurities have a strong influence. Our results suggest that TP characterizes an individual filament product and particle emissions cannot be categorized by the polymer type (e.g., PLA or ABS) alone. The user's choice of a filament product is therefore decisive for the exposure to released particles during operation. Thus, choosing a filament product awarded for low emissions seems to be an easily achievable preemptive measure to prevent health hazards. KW - Emission test method KW - FFF-printing KW - Particle emission KW - Indoor air quality KW - FFF-filament PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545087 DO - https://doi.org/https://doi.org/10.1111/ina.13010 SN - 1600-0668 VL - 32 IS - 3 SP - 1 EP - 12 PB - Wiley CY - Hoboken, New Jersey, USA AN - OPUS4-54508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan A1 - Röllig, Mathias T1 - Improving the comparability of FFF-3D printing emission data by adjustment of the set extruder temperature N2 - Fused filament fabrication (FFF) is a material extrusion-based technique often used in desktop 3D printers. Polymeric filaments are melted and are extruded through a heated nozzle to form a 3D object in layers. The extruder temperature is therefore a key parameter for a successful print job but also one of the main emission driving factors as harmful pollutants (e.g., ultrafine particles) are formed by thermal polymer degradation. The awareness of potential health risks has increased the number of emission studies in the past years. However, studies usually refer their calculated emission data to the printer set extruder temperature for comparison purposes. In this study, we used a thermocouple and an infrared camera to measure the actual extruder temperature and found significant temperature deviations to the displayed set temperature among printer models. Our result shows that printing the same filament feedstocks with three different printer models and with identical printer set temperature resulted in a variation in particle emission of around two orders of magnitude. A temperature adjustment has reduced the variation to approx. one order of magnitude. Thus, it is necessary to refer the measured emission data to the actual extruder temperature as it poses a more accurate comparison parameter for evaluation of the indoor air quality in user scenarios or for health risk assessments. KW - Ultrafine particles KW - Infrared thermography KW - Thermocouple KW - Indoor air quality KW - FFF-3D printer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572842 DO - https://doi.org/10.1016/j.aeaoa.2023.100217 VL - 18 SP - 100217 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bucar, K. A1 - Malet, J. A1 - Stabile, L. A1 - Pražnikar, J. A1 - Seeger, Stefan A1 - Žitnik, M. T1 - Statistics of a Sharp GP2Y Low-Cost Aerosol PM Sensor Output Signals N2 - In this work, we characterise the performance of a Sharp optical aerosol sensor model GP2Y1010AU0F. The sensor was exposed to different environments: to a clean room, to a controlled atmosphere with known aerosol size distribution and to the ambient atmosphere on a busy city street. During the exposure, the output waveforms of the sensor pulses were digitised, saved and a following offline analysis enabled us to study the behaviour of the sensor pulse-by-pulse. A linear response of the sensor on number concentration of the monosized dispersed PSL particles was shown together with an almost linear dependence on particle diameters in the 0.4 to 4 micrometer range. The gathered data about the sensor were used to predict its response to an ambient atmosphere, which was observed simultaneously with a calibrated optical particle counter. KW - Aerosol KW - Partikel KW - Aerosolsensor KW - Luftgüte KW - Umweltmessung PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517466 DO - https://doi.org/10.3390/s20236707 SN - 1424-8220 VL - 20 IS - 23 SP - 6707 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Anderson, J. A1 - Boström, L. A1 - Chiva, R. A1 - Guillaume, E. A1 - Colwell, S. A1 - Hofmann-Böllinghaus, Anja A1 - Toth, P. T1 - European approach to assess the fire performance of façades N2 - Several attempts have been made in the past to develop a European harmonized testing and assessment method for façades before the European commission decided to publish a call for tender on the topic. A project consortium from five countries (Sweden, UK, France, Germany and Hungary) applied to the call for tender and was contracted to develop a European approach to assess the fire performance of façades. 24 sub-contractors and 14 stakeholder entities were part of the project. The objective of the European project was to address a request from the Standing Committee of Construction (SCC) to provide EC Member States regulators with a means to regulate the fire performance of façade systems based on a European Approach agreed by SCC. The initial stages of this Project were focused on establishing a Register of the regulatory requirements in all Member States in relation to the fire Performance of façade systems, and to identify those Member States who have regulatory requirements for the fire performance façade systems which go beyond the current EN 13501 (reaction to fire and fire resistance) classification systems and to collate the details of these additional requirements. After having confirmed the regulatory needs a testing and classification methodology based on BS 8414 and DIN 4102-20 was developed to address the identified key performance and classification characteristics. This paper is a short overview of results the two-year development work, which Final Report published by the European Commission in 2018. KW - Facade KW - Regulation KW - Testing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530501 DO - https://doi.org/10.1002/fam.2878 SN - 1099-1018 VL - 45(5) IS - Special issue: Facade fire safety SP - 598 EP - 608 PB - Wiley CY - Oxford AN - OPUS4-53050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahlawat, A. A1 - Seeger, Stefan A1 - Gottschalk, Martin A1 - Tuch, T. A1 - Wiedensohler, A. T1 - Observation of systematic deviations between Faraday cup aerosol electrometers for varying particle sizes and flow rates - results of the AEROMET FCAE workshop N2 - Condensation particle counters (CPCs) are widely used for the measurement of aerosol particle number concentrations in the size range from approximately 3 nm to 3 μm. For an SI-traceable calibration of the size-dependent counting efficiency, which is advisable on a regular basis and required in several applications, Faraday cup aerosol electrometers (FCAEs) are considered to be a suitable SI-traceable reference.While the volumetric aerosol inlet flowrate and the electrical current measurement in FCAEs can be related to respective SI references, inter-comparison exercises for FCAEs are still performed on a regular basis to establish reliable uncertainty budgets and to further investigate the influences of designs and operational parameters on comparability. This is strongly demanded in the international community of metrological institutes and aerosol calibration facilities around the world, which provide CPC calibrations. In the present study, the performance of FCAEs was investigated,using Ag test aerosol particles with a 30 nm particle diameter by varying the inlet flowrates from 0.5 l min−1 to 4 l min−1. From our experimental results, significant deviations were observed in FCAE currents at sample flowrates smaller than 1.5 l min−1. It is recommended that these discrepancies should be quantified before an FCAE is used for CPC calibration at low sample flowrates and small particle sizes in the sub-30 nm size range. KW - Faraday cup aerosol electrometer KW - CPC calibration KW - Inter-comparison KW - Aerosol measurement instruments PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531315 DO - https://doi.org/10.1088/1681-7575/ac0710 SN - 1681-7575 SN - 0026-1394 VL - 58 IS - 5 SP - 1 EP - 8 PB - Institute of Physics (IOP) CY - Bristol, UK AN - OPUS4-53131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hofmann-Böllinghaus, Anja A1 - Klippel, Andrea A1 - Gnutzmann, Tanja A1 - Kaudelka, Sven A1 - Rabe, Frederik T1 - Influence of modern plastic furniture on the fire development in fires in homes: large-scale fire tests in living rooms N2 - About 80% of all fire fatalities in Germany occur because of fires in homes. It has been known for some time that modern materials (synonym for materials consisting mostly of synthetic polymers) tend to burn differently from older materials (synonym for materials consisting mostly of fibrous cellulosic substances) and it has been acknowledged that the amount of combustible plastics in homes has increased significantly over the last decades. To investigate the influence of modern furniture and ventilation conditions of fires in homes, a series of four large-scale tests in two Living rooms (LRs) with adjacent rooms (ARs) was performed by BAM and the Frankfurt fire service. Two LRs, one with older furniture and one with modern furniture, were tested twice each. Each test started with the ignition of a paper cushion on an upholstered chair. The influence of modern materials on the fire development was investigated, as well as the influence of the ventilation on the fire development. In all settings, an upholstered chair was the first burning item. Results of the test series show that fires in rooms with modern furniture develop faster than fires in rooms with older furniture. This is true for temperature development in the rooms as well as for smoke production. KW - Room fire KW - Furniture KW - Modern KW - Gas analysis KW - Smoke PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527568 DO - https://doi.org/10.1002/fam.2934 VL - 45 IS - 1 SP - 155 EP - 166 PB - Wiley CY - London AN - OPUS4-52756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geoerg, Paul A1 - Polzin, Robert Malte A1 - Schumann, Jette A1 - Holl, Stefan A1 - Hofmann-Böllinghaus, Anja T1 - Small-scale studies on evacuation characteristics of pedestrians with physical, mental or age-related disabilities N2 - Evaluation of evacuation process is common separated by two phases: pre-movement and movement-phase. Individual capabilities of pedestrians have an impact on both and therefore on the time required for safe escape. In view of evaluating the evacuation process, characteristics of realistic movements of pedestrians involved are needed, but so far such data are mainly available for individuals with unrestricted evacuation capabilities only. Due to the lack of available data, parameter studies in an assisted living for people with disabilities were performed to explore the movement during evacuation. Preparation times for assistance (n = 10), unimpeded walking speeds (n = 34) depending on the assistance devices in the plane as well as walking speeds on stairs (n = 11) were focussed. Time to prepare an assistance device for utilisation depends significantly on the kind of device type. Further on, practical experience in handling the devices for assistance has an impact on the preparation time. In contrast to the results of the preparation times, any relation on assistance devices were investigated for the unimpeded walking speed in the plane. A remarkable decrease of walking speed on stairs was observed which is independent from the utilised assistance device. The presented data improve and extend the insufficient engineering data base and raised up questions regarding the complexity of considering pedestrians movement with impairments in evacuation planning. T2 - 3rd European Symposium on Fire Safety Science CY - Nancy, France DA - 12.09.2018 KW - Human behaviour KW - Egress KW - Evacuation KW - Pedestrians with disabilities KW - Engineering data PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-466463 DO - https://doi.org/10.1088/1742-6596/1107/7/072006 SN - 1742-6596 VL - 1107 IS - 072006 SP - 1 EP - 6 PB - IOP Publ. CY - Bristol AN - OPUS4-46646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -