TY - JOUR A1 - Sobol, Oded A1 - Straub, F. A1 - Wirth, Thomas A1 - Holzlechner, G. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Real Time Imaging of Deuterium in a Duplex Stainless Steel Microstructure by Time-of-Flight SIMS N2 - For more than one century, hydrogen assisted degradation of metallic microstructures has been identified as origin for severe technical component failures but the mechanisms behind have not yet been completely understood so far. Any in-situ observation of hydrogen transport phenomena in microstructures will provide more details for further elucidation of these degradation mechanisms. A novel experiment is presented which is designed to elucidate the permeation behaviour of deuterium in a microstructure of duplex stainless steel (DSS). A hydrogen permeation cell within a TOF-SIMS instrument enables electrochemical charging with deuterium through the inner surface of the cell made from DSS. The outer surface of the DSS permeation cell exposed to the vacuum has been imaged by TOF-SIMS vs. increasing time of charging with subsequent chemometric treatment of image data. This in-situ experiment showed evidently that deuterium is permeating much faster through the ferrite phase than through the austenite phase. Moreover, a direct proof for deuterium enrichment at the austenite-ferrite interface has been found. KW - Characterization and analytical techniques KW - Corrosion KW - Imaging technique KW - Mass spectrometry PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-353872 UR - http://www.nature.com/articles/srep19929 DO - https://doi.org/10.1038/srep19929 SN - 2045-2322 VL - 6 IS - 19929 SP - 1 EP - 7 PB - nature publishing group CY - London, United Kingdom AN - OPUS4-35387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jordan, T. A1 - Askar, Enis A1 - Holtappels, Kai A1 - Deeg, S. A1 - Jopen, M. A1 - Stoll, U. A1 - Reinecke, E.-A. A1 - Krause, U. A1 - Beyer, M. A1 - Markus, D. T1 - Stand der Kenntnisse und Technik bezüglich Wasserstoffsicherheit N2 - Die Einführung von Wasserstoff als sicherer Energieträger braucht eine robuste Wissensbasis, darauf aufgebaute Werkzeuge zur Auslegung und Sicherheitsbewertung von Wasserstofftechnologien und ein international harmonisiertes Regelwerk. Viele der innovativen Technologien implizieren Wasserstoff bei hohen Drücken und/oder kryogenen Temperaturen, mit denen in verteilten Anwendungen erstmalig private Nutzer in Kontakt kommen. Um überkonservative, teure Sicherheitslösungen zu vermeiden, gleichzeitig aber die Einsetzbarkeit und Sicherheit von Wasserstoffanwendungen zu demonstrieren und die Akzeptanz für die Technologie aufrecht zu halten, muss auch die Sicherheitsforschung mit den Trends der technologischen Entwicklung Schritt halten, oder sie besser noch antizipieren. So beschreibt dieser Überblicksartikel nicht nur den gegenwärtigen Stand der Kenntnisse und Technik bezüglich Wasserstoffsicherheit, sondern auch ihre Weiterentwicklung. KW - Alternative Energieträger KW - Explosionsschutz KW - Flüssigwasserstoff KW - Unfallszenarien KW - Wasserstoffspeicherung KW - Sicherheitsbewertung KW - Regelsetzung KW - Gefährdungs- und Risikobeurteilung PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593629 DO - https://doi.org/10.1002/cite.202300141 SN - 0009-286X VL - 96 IS - 1-2 SP - 1 EP - 20 PB - Wiley-VCH AN - OPUS4-59362 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shikomba, Nikanor A1 - Böllinghaus, Thomas A1 - Konert, Florian A1 - Sobol, Oded A1 - Blasón Gonzalez, Sergio A1 - Ohijeagbon, Idehai Olayemi A1 - Krafft, Eike A1 - Staudt, Thorsten T1 - Resistance of welded low-alloyed pressure vessel and pipeline steels in gaseous hydrogen N2 - Green hydrogen has become an essential energy carrier to achieve a climate-neutral economy. The production, storage, transport and usage of green hydrogen require safe and sustainable facilities and systems. The present contribution provides a procedure guideline to investigate the compatibility of steel welds for pressurised gaseous hydrogen applications under quasi-static mechanical loads, utilising the slow strain rate test and hollow specimen technique. Exemplarily, a weld of the low-alloyed steel P355NL1 was investigated and compared to an X65 weld. The results indicate that the base metal exhibits a higher ductility than the weld metal for both steels. Generally, hydrogen-exposed specimens exhibited a reduced strain, as compared to reference specimens. The hydrogen degradation, evaluated by the hydrogen embrittlement index, was more pronounced in the weld metal compared to the base P355NL1 material, whereas the X65 exhibited a larger hydrogen degradation of the base material than in the weld metal. Fractographic analysis of the test specimens revealed that hydrogen causes a transition from ductile to brittle features. Generally, the results of this study indicate a mild but significant degradation of the mechanical properties in terms of the ductility of the welds in the respective pressurised hydrogen atmosphere. KW - Hydrogen-assisted cracking KW - Welded joint KW - Slow strain rate test KW - Hollow Specimen KW - Structural steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634138 DO - https://doi.org/10.1007/s40194-025-02074-7 SN - 0043-2288 SP - 1 EP - 15 PB - Springer CY - Berlin AN - OPUS4-63413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachet, G. A1 - Wei, S. A1 - Tehranchi, Ali A1 - Dong, X. A1 - Lestang, J. A1 - Zhang, A. A1 - Sun, B. A1 - Zaefferer, S. A1 - Gault, B. A1 - Ponge, D. A1 - Raabe, D. ED - Tehranchi, Ali T1 - Protection of metal interfaces against hydrogen-assisted cracking N2 - Enabling a hydrogen economy requires the development of materials resistant to hydrogen embrittlement (HE). More than 100 years of research have led to several mechanisms and models describing how hydrogen interacts with lattice defects and leads to mechanical property degradation. However, solutions to protect materials from hydrogen are still scarce. Here, we investigate the role of interstitial solutes in protecting critical crystalline defects sensitive to hydrogen. Ab initio calculations show that boron and carbon in solid solutions at grain boundaries can efficiently prevent hydrogen segregation. We then realized this interface protection concept on martensitic steel, a material strongly prone to HE, by doping the most sensitive interfaces with different concentrations of boron and carbon. These segregations, in addition to stress relaxations, critically reduce the hydrogen ingress by half, leading to an unprecedented resistance against HE. This tailored interstitial segregation strategy can be extended to other metallic materials susceptible to hydrogen-induced interfacial failure. KW - Hydrogen embrittlement KW - interstitial PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650881 DO - https://doi.org/10.1038/s41467-025-67310-6 SN - 2041-1723 VL - 16 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-65088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kozachynskyi, Volodymyr A1 - Staubach, Dario A1 - Esche, Erik A1 - Biegler, Lorenz T. A1 - Repke, Jens-Uwe T1 - Parameter estimation in dynamic multiphase liquid–liquid equilibrium systems N2 - Modeling dynamic systems with a variable number of liquid phases is a challenging task, especially in scenarios where the model is designed for optimization tasks such as parameter estimation. Although there exist methods to model the appearance and disappearance of liquid phases in dynamic systems, they usually require integer variables. In this work, the smoothed continuous approach (SCA) is developed for use with a large number of solvers, since it relies only on continuous variables. To demonstrate the applicability of the new method, the SCA is then applied to model the batch esterification of acetic acid with 1-propanol to water and propyl acetate, and to estimate the reaction parameters. Since the mixture may separate into two liquid phases during the course of the reaction, the parameters are estimated with information on the liquid compositions of both separated liquid phases, which improves the accuracy of the parameter estimates and opens new possibilities for optimal experimental design. KW - Parameter Estimation KW - Uncertainty KW - Dynamic Modeling PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650059 DO - https://doi.org/10.1016/j.compchemeng.2025.109485 SN - 0098-1354 VL - 206 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-65005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - European Food Safety Authority (EFSA), A1 - European Centre for Disease Prevention and Control (ECDC), A1 - European Chemicals Agency (ECHA), A1 - European Environment Agency (EEA), A1 - European Medicines Agency (EMA), A1 - European Commission's Joint Research Centre (JRC), T1 - Scientific report - Impact of the use of azole fungicides, other than as human medicines, on the development of azole‐resistant Aspergillus spp. N2 - The use of azoles in the European Union and European Economic Area (EU/EEA) other than as human medicines has raised concerns about emergence and spread of azole‐resistant Aspergillus species. EU agencies, with the support of JRC, reviewed the evidence and provided conclusions and recommendations on this topic. Although incomplete, data from 2010 to 2021 showed that around 120,000 tonnes of azoles were sold in EU/EEA for uses other than as human medicines. The majority are used as plant protection products (119,000 tonnes), with a stable temporal trend. Evidence supported a link between environmental azole exposure and cross‐resistance selection to medical azoles in Aspergillus species (primarily shown for A. fumigatus). Prevalence of azole‐resistant A. fumigatus in human A. fumigatus infections ranges from 0.7% to 63.6% among different disease presentations and geographic regions; mortality rates range from 36% to 100% for invasive aspergillosis (IA). It was concluded that azole usage outside the human domain is likely or very likely to contribute to selection of azole‐resistant A. fumigatus isolates that could cause severe disease like IA. Environmental hotspots for resistance selection were identified, including stockpiling of agricultural waste and their possible use as soil amendment/fertiliser for certain agricultural crops (for plant protection products) and freshly cut wood (for biocides). Recommendations were formulated on measures to prevent and control selection of azole resistance in A. fumigatus, including implementation of good agricultural/horticultural practices, proper agricultural and wood waste storage and management, and on approval of new azole fungicides or renewal of existing fungicides. Recommendations on topics to be covered by studies provided when submitting applications for the approval of azole fungicides were listed. For the evaluation of such studies within the approval procedure, a preliminary framework for risk assessment was developed and should be further refined. Data gaps and uncertainties were identified, alongside with respective recommendations to address them. KW - Antimicrobial surfaces KW - Biocides KW - Antimicrobial resistance KW - Azoles KW - Fungi KW - Wood preservatives PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652175 DO - https://doi.org/10.2903/j.efsa.2025.9200 SN - 1831-4732 VL - 23 IS - 1 SP - 1 EP - 35 PB - Wiley CY - Hoboken, NJ AN - OPUS4-65217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Albizu, Natalia A1 - Schaffernicht, Erik A1 - Lilienthal, Achim J. T1 - GNN-DM: A Graph Neural Network Framework for Real-World Gas Distribution Mapping N2 - Gas distribution mapping (GDM) is essential for industrial safety and environmental monitoring, as it enables real-time hazard detection and air quality assessment. Traditional GDM methods, such as kernel-based techniques, struggle to reconstruct complex gas plume dynamics accurately. While deep learning has shown promise for GDM, two critical challenges hinder its practical use: the scarcity of available training data and the incompatibility of conventional architectures with irregular sensor layouts. To address these limitations, we propose GNN-DM, a graph neural network-based model for GDM that incorporates the relational structure of sensor networks to infer high-resolution maps from minimal, irregular inputs. The model is pretrained on synthetic gas dispersion data generated from measured wind data and fine-tuned on two industrial datasets collected on a ferry car deck and in a hot rolling mill. Compared with established GDM techniques, GNN-DM achieves higher accuracy on synthetic and real-world data, highlighting the potential of graph-based learning for practical gas mapping applications. KW - Environmental monitoring KW - Sensor networks KW - Transfer learning KW - Deep learning PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647363 DO - https://doi.org/10.1109/JSEN.2025.3617158 SN - 1530-437X VL - 25 IS - 22 SP - 42171 EP - 42179 PB - Institute of Electrical and Electronics Engineers (IEEE) AN - OPUS4-64736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grzelec, Małgorzata A1 - Haas, Sylvio A1 - Helman-Ważny, Agnieszka T1 - Application of scanning small-angle X-ray scattering in the identification of sheet formation techniques in historical papers N2 - Among writing substrates produced historically in different regions of the world, paper is one of the most complex materials. Its complexity results not only from a variety of highly processed ingredients, which can be used in its production, but also from a variety of methods in which these materials are combined to form the fibrillar network referred to as paper. While material identification methods are well established in the analysis of historical papers, the identification of manufacturing technologies is still an under-researched topic, that requires the development of appropriate methods and measurement protocols. This paper reports on the results of a research project aimed at the application of synchrotron scanning small angle X-ray scattering (SAXS) method in the characterization of paper structure, with emphasis on the assessment of fibrillar orientation as a marker characteristic for different, historical papermaking technologies. The main objective of this study consists of the development of a measurement protocol involving the SAXS technique complemented by other analytical methods in the characterization of the fibrous paper structure. KW - SAXS KW - Paper analysis KW - Papermaking technology KW - Fiber orientation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651594 DO - https://doi.org/10.1007/s00339-024-08157-4 SN - 0947-8396 VL - 131 IS - 1 SP - 1 EP - 16 PB - Springer Science and Business Media LLC AN - OPUS4-65159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graebner, Maraike A1 - Giese, Marcel A1 - Lorenz, Svenja A1 - Treutler, Kai A1 - Schröpfer, Dirk A1 - Wesling, Volker A1 - Kannengießer, Thomas T1 - Wear resistance of modified NiMoCrSi claddings in relation to the resulting surface machinability via ultrasonic-assisted milling N2 - In the field of plastics processing, extruder screws are subjected to significant wear stresses. The extruder screw is the main wear component in those production machines and is usually coated with intermetallic wear protection alloys composed of Ni-based alloys, specifically Colmonoy C56 PTA (NiMoCrSi). There is a growing demand for providing an economic machinability of these alloys to achieve defined contours with a sufficient surface integrity. Recent investigations exhibit promising results applying ultrasonic milling for such hard-to-cut materials. The Colmonoy C56 is modified by various alloying additions Ti, Nb, Mo, Hf, and Al, and then cladded on a steel S355 via Plasma Transferred Arc process. The effect of alloying additions on the microstructure is analyzed regarding their resistance to abrasive and adhesive wear. With Miller test ASTM G75 the influence of alloying elements on resistance to abrasive wear for two abrasive materials is investigated (high-grade corundum F220 and quartz powder). The wear loss is not increased for additions of Nb and Ti compared to the base material C56. Modifications with Hf or Al reduces the resistance to abrasive wear and significantly increases material loss. The extruder screw is also subject to adhesive wear, which can be quantified by means of the pin-roll test. It is demonstrated that the addition of Hf, for example, contributes to a reduction in wear loss. Aim of the investigations is to find suitable modifications for the wear claddings of C56 for a sufficient machineability, without compemising the wear resistant. The machinability is considerably affected by the alloy additions, and is determined using ultrasonic-assisted milling. The addition of hafnium reduces machinability, i.e. significantly increases cutting forces. The incorporation of Nb exhibits a significant reduction of cutting forces, and results in reduced tool wear and an enhanced of surface integrity (roughness, density of defects, residual stresses). KW - Colmonoy C56 KW - PTA welding KW - Adhesive wear KW - Abrasive wear KW - Ultrasonic-assisted milling process KW - Surface integrity KW - Service life and efficiency KW - Substitution of critical raw materials PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651530 DO - https://doi.org/10.1016/j.wear.2025.205830 SN - 0043-1648 VL - 571 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-65153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vöse, Markus A1 - Fedelich, Bernard A1 - Otto, F. A1 - Eggeler, G. T1 - Micromechanical modeling of creep damage in a copper-antimony alloy N2 - A micromechanical model of creep induced grain boundary damage is proposed, which allows for the simulation of creep damage in a polycrystal with the finite element method. Grain boundary cavitation and sliding are considered via a micromechanically motivated cohesive zone model, while the grains creep following the slip system theory. The model has been calibrated with creep test data from pure Cu single crystals and a coarse-grained polycrystalline Cu-Sb alloy. The test data includes porosity measurements and estimates of grain boundary sliding. Finally, the model has been applied to Voronoi models of polycrystalline structures. In particular the influence of grain boundary sliding on the overall creep rate is demonstrated. T2 - ECF20 - 20th European conference on fracture CY - Trondheim, Norway DA - 28.06.2014 KW - Creep damage KW - Grain boundary sliding KW - Cohesive zone KW - Micromechanical model KW - Polycrystal PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-309914 DO - https://doi.org/10.1016/j.mspro.2014.06.006 SN - 2211-8128 VL - 3 SP - 21 EP - 26 PB - Curran CY - Red Hook, NY, USA AN - OPUS4-30991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -