TY - JOUR A1 - Sprengel, Maximilian A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Evans, Alexander A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Pirling, T. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Triaxial Residual Stress in Laser Powder Bed Fused 316L: Effects of Interlayer Time and Scanning Velocity N2 - The triaxial distribution of the residual stress in laser powder bed fused austenitic steel 316L was determined by X-ray and neutron diffraction. The residual stress analysis results were linked to the thermal history of the specimens, which were manufactured with varying inter-layer-times and scanning velocities. A clear link between the in-process temperature of the specimens and the residual stress was found, based on in-situ monitoring data. KW - Stainless Steel KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542620 DO - https://doi.org/10.1002/adem.202101330 SP - 1 EP - 13 PB - Wiley-VCH GmbH AN - OPUS4-54262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Werner, Tiago A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Kruse, Julius A1 - Benedetti, Matteo T1 - Determination of fatigue crack propagation thresholds using small-scale specimens N2 - The damage tolerance approach is widely used in the design and estimation of inspection intervals of safety-relevant metallic components subject to fatigue loading. The approach relies on the knowledge of the fatigue crack propagation characteristics, wherein a relevant role is played by the fatigue crack propagation threshold. Nevertheless, the use of material data determined by testing on conventional specimens is not straightforward in the case of thin-walled components such as turbine blades or additively manufactured parts, in which the local variation of material properties in highly stressed regions must be considered. In these cases, the possibility of investigating the fatigue crack propagation properties on a limited portion of material is crucial. For this purpose, a new test procedure has been developed for small-scale specimens which allows the determination of the intrinsic fatigue crack propagation threshold and the near-threshold regime. The validity and limitations of the method are demonstrated on the high strength steel S960QL, along with a comparison with data determined by testing on conventional geometries. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Fatigue crack propagation threshold KW - Small-scale specimens KW - High strength steel KW - Crack-tip constraint KW - Damage tolerance PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544967 DO - https://doi.org/10.1016/j.prostr.2022.03.031 SN - 2452-3216 VL - 38 SP - 300 EP - 308 PB - Elsevier B.V. AN - OPUS4-54496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heßmann, Jennifer A1 - Bachmann, Marcel A1 - Hilgenberg, Kai T1 - Numerical and experimental investigation of controlled weld pool displacement by electromagnetic forces for joining dissimilar materials N2 - In order to reduce CO2 emissions, an increasing interest in lightweight construction exists in the automotive industry, especially the multi-material-design approach. The main construction materials here are steels and aluminium alloys. Due to their different physical material properties and limited mutual solubility, these two materials cannot be joined thermally without difficulty. This paper presents a new joining approach for dissimilar materials. It uses electromagnetic displacement of a laser-generated melt pool to produce overlap joints between 1 mm steel (1.0330) and 2 mm aluminium alloy (EN AW 5754). Contactless induced Lorentz forces are generated by an alternating current (AC) magnet system. The controlled displacement of the aluminium alloy melt into the hole of the overlying steel sheet is investigated through numerical and experimental studies. The numerical results are compared with cross sections and thermocouple measurements. For the first time, it is possible to achieve a reproducible controlled melt pool displacement on thin sheets to produce overlap joints between dissimilar materials. KW - Displacement KW - Laser beam welding KW - Dissimilar materials KW - Joining technology KW - Electromagnetic field KW - Lorentz force KW - Numerical investigation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516640 DO - https://doi.org/10.3390/met10111447 VL - 10 IS - 11 SP - 1447 EP - 1462 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Localized dispersing of TiB2 and TiN particles via pulsed laser radiation for improving the tribological performance of hot stamping tools N2 - The aim of this study is to increase the tribological performance of hot stamping tools by using a laser implantation process. This technique allows the fabrication of separated, elevated and dome-shaped microfeatures on the tool surface in consequence of a localized dispersing of ceramic particles via pulsed laser radiation. Hence, the topography and material properties of the tool are modified, which influences the tribological interactions at the blank-die interface. However, an appropriate selection of ceramic particles is an essential prerequisite, in order to obtain tailored and highly wear resistant surface features. In this regard, different titanium-based hard particles (TiB2 and TiN) were laser-implanted on hot working tool specimens and subsequently tested by means of a modified pin-on-disk test regarding to their wear and friction behavior. KW - Surface modification KW - Tribology KW - Laser implantation KW - Hot working tool steel KW - Hot stamping PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514171 DO - https://doi.org/10.1016/j.procir.2020.09.069 VL - 94 SP - 901 EP - 904 PB - Elsevier B.V. AN - OPUS4-51417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempf, Andreas A1 - Kruse, Julius A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Correlation between quasistatic und fatigue properties of additively manufactured AlSi10Mg using Laser Powder Bed Fusion N2 - In order to find a resource efficient approach for the fatigue lifetime prediction of laser powder bed fusion (L-PBF) processed AlSi10Mg material, results of tensile and fatigue tests were compared. The specimens were manufactured with three different L-PBF machines and studied in different heat treatment conditions (as-built, annealed, T6 heat treated). The investigations showed that the high attainable tensile strength properties after the manufacturing process are not beneficial in the high cycle fatigue (HCF) regime. In contrast, the applied heat treatments, which lead typically to a decrease of ultimate tensile strength, improved dramatically the fatigue behavior. Additionally, a clear correlation between the elongation at fracture and HCF resistance has been found for individual heat treatment conditions. This empiric relationship provides an estimation of the fatigue resistance in the presence of material defects and can be implemented in part and process approvals. T2 - FATIGUE DESIGN 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - AlSi10Mg KW - Tensile properties KW - Fatigue properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544921 DO - https://doi.org/10.1016/j.prostr.2022.03.009 SN - 2452-3216 VL - 38 SP - 77 EP - 83 PB - Elsevier B.V. AN - OPUS4-54492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -