TY - JOUR A1 - Mezhov, Alexander A1 - Kulisch, D. A1 - Goncharov, A. A1 - Zhutovsky, S. T1 - A Comparative Study of Factors Influencing Hydration Stoppage of Hardened Cement Paste N2 - There is no consensus on which hydration stoppage method is optimal to preserve the microstructure and mineral composition of samples, especially considering the specific aspects of different testing methods, such as TGA, MIP, or XRD. This paper presents a quantitative comparison between the most popular hydration stoppage strategies and parameters such as the sample piece size, the soaking time in a solvent, and the type, as examined on cement paste hydrated for 7 days. It was found that the carbonation appears either for samples smaller than 2.36 mm and bigger than 4.75 mm or samples soaked in a solvent for longer than 1 h. Fast solvent replacement leads to ettringite diminution and total pore volume increase. Among others, solvent replacement with subsequent gentle heating under a vacuum was found to be the most efficient, whereas it was experimentally demonstrated that isopropyl alcohol stops hydration faster than ethanol and acetone. KW - Hydration stoppage KW - Solvent replacement KW - Soaking time KW - Sample piece size PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582430 DO - https://doi.org/10.3390/su15021080 VL - 15 IS - 2 SP - 1 EP - 21 PB - MDPI CY - Basel, Switzerland. AN - OPUS4-58243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiedeitz, M. A1 - Schmidt, Wolfram A1 - Härder, M. A1 - Kränkel, T. T1 - Performance of rice husk ash as supplementary cementitious material after production in the field and in the lab N2 - Supplementary cementitious materials (SCM) can reduce the total amount of Portland cement clinker in concrete production. Rice husk ashes (RHA) can be converted from an agricultural by-product to a high-performance concrete constituent due to a high amount of reactive silica with pozzolanic properties if they are burnt under controlled conditions. The way and duration of combustion, the cooling process as well as the temperature have an effect on the silica form and thus, the chemical and physical performance of the RHA. Various studies on the best combustion technique have been published to investigate the ideal combustion techniques. Yet, the process mostly took place under laboratory conditions. Investigating the difference between the performance of RHA produced in a rural environment and laboratory conditions is useful for the assessment and future enhancement of RHA production, and its application both as building material, for example in rural areas where it is sourced in large quantities, and as additive for high performance concrete. Thus, the paper presents a comparison between RHA produced under rudimentary conditions in a self-made furnace in the rural Bagamoyo, Tanzania and under controlled laboratory conditions at the Technical University of Munich, Germany, with different combustion methods and temperatures. In a second step, RHA was ground to reach particle size distributions comparable to cement. In a third step, cement pastes were prepared with 10%, 20% and 40% of cement replacement, and compared to the performance of plain and fly ash blended cement pastes. The results show that controlled burning conditions around 650 °C lead to high reactivity of silica and, therefore, to good performance as SCM. However, also the RHA burnt under less controlled conditions in the field provided reasonably good properties, if the process took place with proper burning parameters and adequate grinding. The knowledge can be implemented in the field to improve the final RHA performance as SCM in concrete. KW - Rice husk ash KW - Agricultural by-product KW - Supplementary cementitious material KW - Waste management KW - Carbon dioxide emissions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568953 DO - https://doi.org/10.3390/ma13194319 SN - 1996-1944 VL - 13 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-56895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Munsch, Sarah A1 - Telong, Melissa A1 - Schmidt, Wolfram A1 - Bintz, Thilo A1 - Fladt, Matthias A1 - Stelzner, Ludwig T1 - The NMR core analyzing TOMograph: A multi-functional tool for non-destructive testing of building materials N2 - NMR is becoming increasingly popular for the investigation of building materials as it is a non-invasive technology that does not require any sample preparation nor causes damage to the material. Depending on the specific application it can offer insights into properties like porosity and spatial saturation degree as well as pore structure. Moreover it enables the determination of moisture transport properties and the (re-)distribution of internal moisture into different reservoirs or chemical phases upon damage and curing. However, as yet most investigations were carried out using devices originally either designed for geophysical applications or the analysis of rather homogeneous small scale (< 10 mL) samples. This paper describes the capabilities of an NMR tomograph, which has been specifically optimized for the investigation of larger, heterogeneous building material samples (diameters of up to 72 mm, length of up to 700 mm) with a high flexibility due to interchangeable coils allowing for a high SNR and short echo times (50 - 80 m s). KW - Fire spalling KW - Moisture transport KW - Concrete KW - Cement hydration KW - Sensitivity KW - Supplementary cementitous materials KW - Frost salt attack PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573755 DO - https://doi.org/10.1016/j.mrl.2023.03.004 SN - 2097-0048 VL - 3 IS - 3 SP - 207 EP - 219 PB - Elsevier B.V. AN - OPUS4-57375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönsee, Eric A1 - Hüsken, Götz A1 - Jeyifous, Olubunmi Anthony A1 - Mezhov, Alexander A1 - Strangfeld, Christoph T1 - Calculating rheological properties of fresh mortar for additive manufacturing based on experimental, multi-sensor data N2 - Additive manufacturing of concrete structures is a novel and emerging technology. Freecontouring in civil engineering, which allows for entirely new designs, is a significant advantage. Inthe future, lower construction costs are expected with increased construction speeds and decreasingrequired materials and workers. However, architects and civil engineers rely on a certain quality ofexecution to fulfil construction standards. Although several techniques and approaches demonstratethe advantages, quality control during printing is highly challenging and rarely applied. Due to thecontinuous mixing process commonly used in 3D concrete printing, it is impossible to exclude varia-tions in the dry mixture or water content, and a test sample cannot be taken as a representative samplefor the whole structure. Although mortar properties vary only locally, a defect in one layer duringprinting could affect the entire integrity of the whole structure . Therefore, real-time process monitor-ing is required to record and document the printing process.At the Bundesanstalt für Materialforschung und -prüfung (BAM) a new test rig for the additive man-ufacturing of concrete is built. The primary purpose is measuring and monitoring the properties of amortar during the printing process.The following study investigates an approach for calculating yield stress and plastic viscosity based onexperimentally recorded pressure data. The calculations assume that fresh mortar behaves as a Bing-ham fluid and that the Buckingham-Reiner-equation is applicable. A test setup consisting of rigid pipeswith integrated pressure sensors at different positions is utilized.Monitoring the printing process with different sensors is crucial for the quality control of an ongoingprocess. T2 - Non-Traditional Cement and Concrete 2023 Conference CY - Brno, Czech Republic DA - 25.06.2023 KW - 3DCP KW - Monitoring KW - Additive manufacturing KW - Rheology KW - Bingham fluid KW - Concrete printing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598179 DO - https://doi.org/10.4028/p-EV4gPv SN - 1662-0356 VL - 145 SP - 131 EP - 139 PB - Trans Tech Publications CY - Baech AN - OPUS4-59817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pott, U. A1 - Crasselt, Claudia A1 - Fobbe, N. A1 - Haist, M. A1 - Heinemann, M. A1 - Hellmann, S. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Lei, L. A1 - Li, R. A1 - Link, J. A1 - Lowke, D. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Nicia, D. A1 - Plank, J. A1 - Reißig, S. A1 - Schäfer, T. A1 - Schilde, C. A1 - Schmidt, Wolfram A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Strybny, B. A1 - Ukrainczyk, N. A1 - Wolf, J. A1 - Xiao, P. A1 - Stephan, D. T1 - Characterization data of reference materials used for phase II of the priority program DFG SPP 2005 “Opus Fluidum Futurum –Rheology of reactive, multiscale, multiphase construction materials” N2 - A thorough characterization of base materials is the prereq- uisite for further research. In this paper, the characterization data of the reference materials (CEM I 42.5 R, limestone pow- der, calcined clay and a mixture of these three components) used in the second funding phase of the priority program 2005 of the German Research Foundation (DFG SPP 2005) are presented under the aspects of chemical and min- eralogical composition as well as physical and chemical properties. The data were collected based on tests performed by up to eleven research groups involved in this cooperative program. KW - Portland cement KW - Limestone powder KW - Calcined clay KW - Sustainable cement KW - DFG SPP 2005 PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569913 DO - https://doi.org/10.1016/j.dib.2023.108902 VL - 47 SP - 1 EP - 19 PB - Elsevier AN - OPUS4-56991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. C. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Schmid, M. A1 - Kißling, P. A. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM III/A 42.5N used for priority program DFG SPP 2005 "Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials" N2 - Two types of cements were selected as the reference cement in the priority program 2005 of the German Research Foundation (DFG SPP 2005). A thorough characterization of CEM I 42.5 R has been made in a recent publication. In this paper, the characterization data of the other reference cement CEM III/A 42.5 N are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The characterization data of the slag, which is the second main constituent of this specific cement besides the clinker, are presented independently. For all data received, the mean values and the corresponding errors were calculated. The data shall be used for the ongoing research within the priority program. Also, researchers from outside this priority program can benefit from these data if the same materials are used. KW - Cement KW - Slag KW - Characterization KW - DFG SPP 2005 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568980 DO - https://doi.org/10.1016/j.dib.2020.105524 SN - 2352-3409 VL - 30 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-56898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klippel, A. A1 - Hofmann-Böllinghaus, Anja A1 - Gnutzmann, Tanja A1 - Piechnik, K. T1 - Reaction-to-fire testing of bus interior materials: Assessing burning behaviour and smoke gas toxicity N2 - Although fire safety regulations for buses have been adapted in recent years regarding, for example, fire detection and engine fire suppression systems, the changes in regulations for bus interior materials are minimal. A comparison of fire safety regulations for interior materials in other transport sectors for trains, ships or aircraft reveals a much lower level of requirements for bus materials. Although repeated bus accidents as well as fire statistics show the danger a bus fire can pose to passengers. In particular, the combination of a fire incident and passengers with reduced mobility led to severe disasters in Germany and other European countries. To enhance the fire safety for passengers, the interior bus materials are crucial as the fire development in the bus cabin determines whether escape and rescue is possible. Against this background, bus interior materials were tested in different fire test scenarios. Measurement of a wide variety of parameters, for example, the mass loss, ignition time, smoke gas composition, heat release rate among others were carried out. Tested materials complied to the newest set of requirements. For this purpose, interior materials and their components had to be identified according to their chemical structure. Parts of the tests were funded by BASt (Federal Highway Research Institute) in the project 82.0723/2018. Experimental results show reaction-to-fire behaviour which lead to very limited times for escape and rescue in case of fire in a bus cabin. Based on the studies on fire behaviour and toxicity assessment, recommendations for improved fire safety regulations for interior materials could be made. KW - Burning behaviour KW - Bus interior materials KW - Cone calorimeter KW - DIN tube furnace KW - FTIR spectroscopy KW - Reference values KW - Smoke toxicity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576085 DO - https://doi.org/10.1002/fam.3108 SN - 1099-1018 VL - 47 IS - 5 SP - 665 EP - 680 PB - Wiley CY - New York, NY AN - OPUS4-57608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Piechnik, Kira A1 - Hofmann, Anja A1 - Klippel, Andrea T1 - Self‐ignition of forest soil samples demonstrated through hot storage tests N2 - AbstractThe increasing threat of forest fires on a global scale is not only a matter of concern due to the potential harm they may cause to both human and animal life but also due to their significant role in exacerbating climate change. In light of these circumstances, one might inquire as to whether forest soil can self‐ignite and, if so, under what conditions and at what temperatures this phenomenon may occur. This question is being addressed in the German pilot “Fire science of wildfires and safety measures” of the EU project TREEADS, and the first results are presented below. The importance of basic research into the self‐ignition of forest soil cannot be underestimated, as it provides crucial knowledge to prevent forest fires and protect human and animal health. Furthermore, mitigating the occurrence of forest fires can also play a role in reducing greenhouse gas emissions, contributing to global efforts to combat climate change. The procedure of the hot storage test is an effective means of determining whether a material can self‐ignite. During the investigation of six soil samples, it was found that five of them were indeed capable of self‐ignition. In addition to determining whether the material ignites, the modified hot storage test also analyzed the resulting smoke gases and measured their concentration. The research question of whether regional forest soil is capable of self‐ignition can be answered with yes based on these initial tests. Further experiments are needed to determine if self‐ignition causes forest fires. KW - FTIR KW - Hot storage KW - Ignition KW - Soil KW - Wildfire PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594617 DO - https://doi.org/10.1002/fam.3198 VL - 48 IS - 4 SP - 495 EP - 507 PB - Wiley AN - OPUS4-59461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manes, M. A1 - El Houssami, M. A1 - Campbell, R. A1 - Sauca, A. A1 - Rush, D. A1 - Hofmann-Böllinghaus, Anja A1 - Andersson, P. A1 - Wagner, P. A1 - Veeneklaas, J. A1 - van Hees, P. A1 - Guillaume, E. T1 - Closing Data Gaps and Paving the Way for Pan-European Fire Safety Efforts: Part I—Overview of Current Practices for Fire Statistics N2 - The analysis of the current state of fire statistics and data collection in Europe and other countries is needed to increase awareness of how fire incidents affect buildings and to support pan-European fire prevention and fire mitigation measures. The terminology and data collected regarding fire incidents in buildings in the EU Member States were mapped to obtain meaningful datasets to determine common terminology, collection methodology, and data interpretation system. An extensive literature review showed that fire data collection systems have been instrumental in informing firefighting strategies, evidence-based planning, prevention, and educational programmes. Differences and similarities between fire data collection systems were also investigated. The amount and quality of the information in fire statistical recording systems appear to be influenced by the complexity and structure with which the data are collected. The analysis also examined the existing fire statistics in the EU Member States and a few other countries. Finally, a detailed investigation of the number of fires, fire deaths, and injuries from 2009 to 2018 in several countries was examined based on data from a report by CTIF. The trends showed differences attributable to the existing fire statistical practices in terms of terminology and data collection, and interpretation. Part II proposes a common terminology for selected fire statistical variables. The results provide relevant information regarding fire safety at the European level and should be used to guide the development of more uniform fire statistics across Europe. KW - Fire statistics KW - European project PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575711 DO - https://doi.org/10.1007/s10694-023-01415-6 SN - 1572-8099 SP - 1 EP - 44 PB - Springer CY - Heidelberg AN - OPUS4-57571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El Houssami, M. A1 - Försth, M. A1 - Fredriksson, H. A1 - Drean, V. A1 - Guillaume, E. A1 - Hofmann-Böllinghaus, Anja A1 - Sandinge, A. T1 - Fire safety of interior materials of buses N2 - This study provides an analysis on the fire safety of passengers and the fire protection of coaches and buses. A brief review of major bus fire incidents, an overview of current regulations in Europe, and their limitations are presented. The study finds that the current small-scale fire test methods described in UN ECE Reg No. 118 need to be replaced by test methods that can assess the reaction to fire of materials when exposed to ignition sources of varying sizes. To address these shortcomings, the study proposed an expert recommendation to update the material fire safety requirements and testing for buses. Additional measures are proposed, derived from objectives and strategies applied in other transport sectors, and can be tested through existing European and international standards, which are widely used by several industries. These measures aim to extend the time with tenable conditions for a safe evacuation in case of fire, reduce the degree of damage to buses, reduce the risk for fast and excessive thermal exposure on modern energy carriers needed for a more sustainable transport sector. KW - Fire KW - Bus interior materials KW - Rregulations PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575700 DO - https://doi.org/10.1002/fam.3134 SN - 1099-1018 SP - 1 EP - 15 PB - Wiley CY - London AN - OPUS4-57570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -