TY - JOUR A1 - Fornacon-Wood, C. A1 - Stühler, M. R. A1 - Gallizioli, C. A1 - Manjunatha, B. R. A1 - Wachtendorf, Volker A1 - Schartel, Bernhard A1 - Plajer, A. J. T1 - Precise construction of weather-sensitive poly(ester-alt-thioesters) from phthalic thioanhydride and oxetane N2 - We report the selective ring opening copolymerisation (ROCOP) of oxetane and phthalic thioanhydride by a heterobimetallic Cr(III)K catalyst precisely yielding semi-crystalline alternating poly(esteralt- thioesters) which show improved degradability due to the thioester links in the polymer backbone. KW - Sulfur containing polymers KW - Durability KW - Weathering KW - Synthesis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590762 DO - https://doi.org/10.1039/d3cc03315e SN - 1364-548X VL - 59 IS - 76 SP - 11353 EP - 11356 PB - RSC AN - OPUS4-59076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Yam A1 - Schartel, Bernhard T1 - It Takes Two to Tango: Synergistic Expandable Graphite–Phosphorus Flame Retardant Combinations in Polyurethane Foams N2 - Due to the high flammability and smoke toxicity of polyurethane foams (PUFs) during burning, distinct efficient combinations of flame retardants are demanded to improve the fire safety of PUFs in practical applications. This feature article focuses on one of the most impressive halogen-free combinations in PUFs: expandable graphite (EG) and phosphorus-based flame retardants (P-FRs). The synergistic effect of EG and P-FRs mainly superimposes the two modes of action, charring and maintaining a thermally insulating residue morphology, to bring effective flame retardancy to PUFs. Specific interactions between EG and P-FRs, including the agglutination of the fire residue consisting of expanded-graphite worms, yields an outstanding synergistic effect, making this approach the latest champion to fulfill the demanding requirements for flame-retarded PUFs. Current and future topics such as the increasing use of renewable feedstock are also discussed in this article. KW - Synergy KW - Phosphorus-containing flame retardant KW - Expandable graphite KW - Polyurethane foams PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551958 DO - https://doi.org/10.3390/polym14132562 SN - 2073-4360 VL - 14 IS - 13 SP - 2562 PB - MDPI AN - OPUS4-55195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Marschall, Niklas A1 - Meinel, Dietmar A1 - Böhning, Martin T1 - Relation of craze to crack length during slow crack growth phenomena in high‐density polyethylene N2 - The craze‐crack mechanism occurring in high‐density polyethylene (HDPE) causing slow crack growth and environmental stress cracking is investigated in detail with respect to the relation of crack length and the related craze zone. This is essential for the understanding of the resulting features of the formed fracture surface and their interpretation in the context of the transition from crack propagation to ductile shear deformation. It turns out that an already formed craze zone does not inevitably result in formation of a propagating crack, but could also undergo ductile failure. For the examination, the full notch creep test (FNCT) was employed with a subsequent advanced fracture surface analysis that was performed using various imaging techniques: light microscopy, laser scanning microscopy, scanning electron microscopy, and X‐ray micro computed tomography scan. FNCT specimens were progressively damaged for increasing durations under standard test conditions applying Arkopal, the standard surfactant solution, and biodiesel as test media were used to analyze the stepwise growth of cracks and crazes. From considerations based on well‐established fracture mechanics approaches, a theoretical correlation between the length of the actual crack and the length of the preceding craze zone was established that could be evidenced and affirmed by FNCT fracture surface analysis. Moreover, the yield strength of a HDPE material exposed to a certain medium as detected by a classic tensile test was found to be the crucial value of true stress to induce the transition from crack propagation due to the craze‐crack mechanism to shear deformation during FNCT measurements. Highlights - Progress of crack formation in high‐density polyethylene is analyzed by different imaging techniques - Determined growth rates depend on distinction between craze zone and crack - The ratio of the present crack to the anteceding craze zone is validated theoretically - The transition from crack propagation to ductile shear deformation is identified - An already formed craze zone may still fail by ductile mechanisms KW - Craze-crack mechanism KW - Environmental stress cracking (ESC) KW - Full notch creep test (FNCT) KW - Laser scanning microscopy (LSM) KW - Slow crack growth (SCG) KW - X-ray computed tomography (CT) PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601831 DO - https://doi.org/10.1002/pen.26698 SN - 1548-2634 VL - 64 IS - 6 SP - 2387 EP - 2403 PB - Wiley AN - OPUS4-60183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ji, Y. A1 - Becker, S. A1 - Lu, Z. A1 - Mezhov, Alexander A1 - von Klitzing, R. A1 - Schmidt, Wolfram A1 - Stephan, D. T1 - Effect of resting time on rheological properties of glass bead suspensions - Depletion and bridging force among particles N2 - The effect of resting time on the rheological properties of cement suspensions is generally explained by early formed structure and overconsumption of polycarboxylate superplasticizers (PCEs). In this paper, we propose that the influence of resting time on the rheological properties is closely related to size variation of non-absorbed PCE. To identify this, glass bead suspensions were prepared with various amounts of PCE and ionic solution, and their rheological properties were evaluated at various times. We found that the yield stress increases with time at higher PCE concentrations and higher ionic strength solutions. Adsorbed PCE during resting tends to bridge the particles rather than disperse them. In addition, it was found that hydrodynamic radius of PCE increased with resting time, and depletion forces resulting from non-absorbed PCE size changes correlate well with the increased yield stress. KW - Depletion force KW - Ionic stregth KW - PCE KW - Rheology KW - Resting time PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587193 DO - https://doi.org/10.1111/jace.19469 SN - 0002-7820 SN - 1551-2916 VL - 107 IS - 1 SP - 624 EP - 639 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-58719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haist, M. A1 - Link, J. A1 - Nicia, D. A1 - Leinitz, Sarah A1 - Baumert, C. A1 - von Bronk, T. A1 - Cotardo, D. A1 - Eslami Pirharati, M. A1 - Fataei, S. A1 - Garrecht, H. A1 - Gehlen, C. A1 - Hauschildt, I. A1 - Ivanova, I. A1 - Jesinghausen, S. A1 - Klein, C. A1 - Krauss, H.-W. A1 - Lohaus, L. A1 - Lowke, D. A1 - Mazanec, O. A1 - Pawelczyk, S. A1 - Pott, U. A1 - Radebe, N. W. A1 - Riedmiller, J. J. A1 - Schmid, H.-J. A1 - Schmidt, Wolfram A1 - Secrieru, E. A1 - Stephan, D. A1 - Thiedeitz, M. A1 - Wilhelm, M. A1 - Mechtcherine, V. T1 - Interlaboratory study on rheological properties of cement pastes and reference substances: comparability of measurements performed with different rheometers and measurement geometries N2 - This paper presents the results of an interlaboratory study of the rheological properties of cement paste and ultrasound gel as reference substance. The goal was to quantify the comparability and reproducibility of measurements of the Bingham parameters yield stress and plastic viscosity when measured on one specific paste composition and one particular ultrasound gel in different laboratories using different rheometers and measurement geometries. The procedures for both in preparing the cement paste and carrying out the rheological measurements on cement paste and ultrasound gel were carefully defined for all of the study’s participants. Different conversion schemes for comparing the results obtained with the different measurement setups are presented here and critically discussed. The procedure proposed in this paper ensured a reasonable comparability of the results with a coefficient of variation for the yield stress of 27% and for the plastic viscosity of 24%, despite the individual measurement series’ having been performed in different labs with different rheometers and measurement geometries. KW - Rheometry KW - Rheology KW - Interlaboratory test KW - Test setup KW - Testing procedure KW - Cement paste KW - Ultrasound gel PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511220 DO - https://doi.org/10.1617/s11527-020-01477-w SN - 1871-6873 VL - 53 IS - 4 SP - 92 PB - Rilem AN - OPUS4-51122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Kanjee, J. A1 - Motukwa, G. A1 - Olonade, K. A1 - Dodoo, A. T1 - A snapshot review of future‑oriented standards for cement, admixtures, and concrete: How Africa can spearhead the implementation of green urban construction materials N2 - The existing cement and concrete standards are not capable of making full use of the current technology capacity due to strong focus on conventional concrete and thus they are not fit for the current and future challenges of construction industry. The paper highlights shortcomings with regard to the implementation of the existing standards. It can be seen that future-oriented standards are generally required to contribute to a lower-carbon footprint of the industry. These changes are significantly more relevant in sub-Saharan Africa, due to the rapidly increasing urbanisation challenge and the enormous potentials to develop lower-carbon technologies than elsewhere in the world. KW - Future‑oriented standards KW - Green urban construction KW - Cement PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582563 DO - https://doi.org/10.1557/s43580-023-00563-9 SN - 2731-5894 VL - 4 IS - 8 SP - 557 EP - 565 PB - Springer International Publishing CY - Springer Nature Switzerland, Cham AN - OPUS4-58256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Tchetgnia Ngassam, Ines Leana A1 - Olonade, K. A. A1 - Mbugua, R. A1 - Kühne, Hans-Carsten T1 - Plant based chemical admixtures – potentials and effects on the performance of cementitious materials N2 - While today, engineers can choose from a wide range of rheology modifying admixtures, in some parts of the world, these are difficult to access, due to their complex processing. However, alternatives can be bio‐based polymers such as polysaccharides from various sources. These are easily accessible all over the world, do not demand for complicated processing, and typically they are more sustainable than many established materials, which are crude oil‐based. The paper presents the effects of acacia gum, cassava starch and the gum of triumfetta pendrata A. Rich on the rheological performance of cementitious systems. It is shown that acacia gum can be as efficient as polycarboxylate based superplasticisers, cassava starch can reduce the yield stress slightly with little effect on the plastic viscosity, and the gum of triumfet ta pendrata A. Rich increases the thixotropy of cement pastes with plasticizing polymers significantly. KW - Polysaccharides KW - Rheology KW - Cement KW - Chemical admixtures KW - Bio-based concrete PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476748 DO - https://doi.org/10.21809/rilemtechlett.2018.83 VL - 3 SP - 124 EP - 128 PB - RILEM S.A.R.L. CY - Paris AN - OPUS4-47674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. A1 - Becker, S. A1 - Leinitz, Sarah A1 - Schmidt, Wolfram A1 - von Klitzing, R. A1 - Stephan, D. T1 - Interaction of Different Charged Polymers with Potassium Ions and Their Effect on the Yield Stress of Highly Concentrated Glass Bead Suspensions N2 - The interaction of different charged polymers, namely anionic polycarboxylate superplasticizer (PCE) and neutral polyethylene glycol (PEG) with potassium ions, and their effect on the yield stress of highly concentrated glass bead suspension (GBS), were studied under different concentrations of potassium ions ([K+]). It was found that, compared to the neutral PEG, the negatively charged PCE can be adsorbed on glass beads (GB), and then decreases the yield stress of GBS. The increasing concentration of free polymer in the interstitial liquid phase with the increased polymer dosage leads to the higher yield stress of GBS, which may be caused by the higher Depletion force. In addition, this effect is also related to the charge density of the polymer and the [K+] in the solution. Along with the increase in [K+], the yield stress of GBS increases significantly with the addition of PCE, but this cannot be observed with PEG, which indicates that potassium ions can interact with negatively charged PCE instead of the neutral PEG. At last, the interparticle Forces between two single GB with adsorbed PCE in solutions containing [K+] and PCE were measured by colloidal probe atomic force microscopy to better understand the interaction of the charged polymer with counterions. KW - Yield stress KW - Free polymer KW - Charge density KW - Depletion force KW - Potassium ions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506015 DO - https://doi.org/10.3390/ma13071490 SN - 1996-1944 VL - 13 IS - 7 SP - 1490, 1 EP - 1490, 16 PB - MDPI AN - OPUS4-50601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM I 42.5 R used for Priority Program DFG SPP 2005 “Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials” N2 - A thorough characterization of starting materials is the precondition for further research, especially for cement, which contains various phases and presents quite a complex material for fundamental scientific investigation. In the paper at hand, the characterization data of the reference cement CEM I 42.5 R used within the priority program 2005 of the German Research Foundation (DFG SPP 2005) are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The data were collected based on tests conducted by nine research groups involved in this cooperative program. For all data received, the mean values and the corresponding errors were calculated. The results shall be used for the ongoing research within the priority program. KW - Portland cement KW - Characterization KW - DFG SPP 2005 PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500849 DO - https://doi.org/10.1016/j.dib.2019.104699 SN - 2352-3409 VL - 27 SP - 104699 PB - Elsevier Inc. AN - OPUS4-50084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Metzsch-Zilligen, E. A1 - Großhauser, M. A1 - Pfaendner, R. A1 - Schartel, Bernhard T1 - Rapid mass calorimeter as a high-throughput screening method for the development of flame-retarded TPU N2 - The rapid mass calorimeter (RMC) was used as a screening tool based on accelerated fire testing to assess flame-retarded thermoplastic polyurethane (TPU). The reliability of RMC results was proven with the cone calorimeter as reference fire test. The influence of melamine cyanurate (MC) concentration on the fire performance of TPU was investigated, along with some flame-retardant combinations such as MC with aluminium diethylphosphinate (AlPi), aluminium trihydrate (ATH), and melamine polyphosphate (MPP). The two-stage burning behaviour of TPU was investigated in detail; the first stage corresponds mainly to the hard segments' decomposition and has a much lower effective heat of combustion (EHC) than the second stage, in which mainly the soft segments decompose and an intensive liquid pool fire is observed in the cone calorimeter set-up. In addition to fire testing with the cone calorimeter, RMC, and UL 94 flammability tests, the decomposition of the materials was investigated using thermogravimetric analysis coupled with infrared spectrometry (TGeFTIR). TPU/MC/AlPi shows the most promising results, achieving V-0 classification in UL 94 and reducing the extreme peak heat release rate (PHRR) of the liquid pool fire from 3154 kW/m2 to 635 kW/m2. Using MC/AlPi/MPP enhances the latter PHRR reduction further. The decomposition products identified in the gas phase via TGeFTIR reveal specific MCeAlPi eMPP interactions, as they differ from products seen in systems with MC/AlPi or MC/MPP. Correlations between RMC and cone calorimeter results were examined and presented in the final part of the paper. Several characteristics correlate strongly, pointing out that RMC is a reliable high-throughput fire testing method to screen multicomponent flame-retardant solutions in TPU. KW - Thermoplastic polyurethane KW - Flame retardancy KW - Rapid mass calorimeter KW - High throughput screening PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456982 SN - 0141-3910 SN - 1873-2321 VL - 156 SP - 43 EP - 58 PB - Elsevier Ltd. AN - OPUS4-45698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -