TY - JOUR A1 - Schoknecht, Ute A1 - Kalbe, Ute A1 - Heisterkamp, I. A1 - Kretzschmar, M. A1 - Gartiser, S. A1 - Happel, O. A1 - Ilvonen, O. T1 - Release of substances from joint grouts based on various binder types and their ecotoxic effects N2 - Background: The leaching of substances and the ecotoxic effects of eluates were studied for joint grouts that are based on various types of binders. Eight products, two of them containing either epoxy resin, polybutadiene or polyurethane binders, or modifed cement, were investigated using harmonized leaching tests for construction products in combination with ecotoxicity tests on algae, daphnia, luminescent bacteria, fish eggs and mutagenicity in accordance with CEN/TR 17105. In addition to basic parameters, such as pH, TOC, and inorganic components, organic substances in the eluates were analysed by gas and liquid chromatography in combination with mass spectrometry. Quantitative analyses in combination with ecotoxicity data on selected substances were used to deduce which substances cause the observed ecotoxic effects. Results: Different patterns of ecotoxic effects were observed in joint grouts with different binder types. The most ecotoxic effects were observed in epoxy resin-based products, followed by polybutadiene-based products. Fewer ecotoxic effects were observed in polyurethane-based products and modifed cements. Some of these showed no ecotoxicity. Some of the substances in the eluates were identified and related to ecotoxic effects. 4-Tert-butylphenol and amines probably contributed to the ecotoxic effects of at least one of the epoxy resin-based renders, whereas cobalt is assumed to contribute to the toxic effect on algae of one of the polybutadiene-based products. However, only some of the leached substances could be identifed, and only some of the ecotoxic effects can be explained by the available information on the composition of eluates and known ecotoxic profiles of the identified substances. Conclusions: Ecotoxicity tests on eluates from leaching tests indicate whether environmentally hazardous substances can be leached from construction products. Combined ecotoxicity tests and chemical analysis of eluates from EU-wide harmonized leaching tests for construction products can provide information on substances that cause these effects. This supports the identifcation and development of environmentally friendly construction products. This study confirmed that ecotoxicity tests in accordance with CEN/TR 17105 are a tool well-suited to support the implementation of the European Commission’s zero pollution vision for 2050 and to reduce pollution to levels no longer considered harmful to health and natural ecosystems. KW - Joint grouts KW - Leaching KW - Ecotoxixity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562392 DO - https://doi.org/10.1186/s12302-022-00686-0 SN - 2190-4707 VL - 34 IS - 1 SP - 1 EP - 16 PB - Springer Nature CY - Berlin AN - OPUS4-56239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heisterkamp, I. A1 - Ratte, M. A1 - Schoknecht, Ute A1 - Gartiser, S. A1 - Kalbe, Ute A1 - Ilvonen, O. T1 - Ecotoxicological evaluation of construction products: inter-laboratory test with DSLT and percolation test eluates in an aquatic biotest battery N2 - Background A European inter-laboratory test with 29 participating laboratories investigated whether a battery of four ecotoxicological tests is suitable for assessing the environmental compatibility of construction products. For this purpose, a construction product was investigated with the dynamic surface leaching test (DIN CEN/TS 16637-2) and the percolation test (DIN CEN/TS 16637-3). The eluates were produced centrally by one laboratory and were tested by the participants using the following biotests: algae test (ISO 8692), acute daphnia test (ISO 6341), luminescent bacteria test (DIN EN ISO 11348), and fish egg test (DIN EN ISO 15088). As toxicity measures, EC50 and LID values were calculated. Results Toxic effects of the eluates were detected by all four biotests. The bacteria test was by far the most sensitive, followed by the algae test and the daphnia test; the fish egg test was the least sensitive for eluates of both leaching tests. The toxicity level of the eluates was very high in the bacteria, daphnia, and algae test, with lowest ineffective dilution values of LID = 70 to LID = 13,000 and corresponding EC50 values around or even below 1 volume percent. The reproducibility (approximated by interlaboratory variability) of the biotests was good (< 53%) to very good (< 20%), regardless of the toxicity level of the eluates. The reproducibility of the algae test was up to 80%, and thus still acceptable. Conclusion It can be confirmed that the combination of leaching and ecotoxicity tests is suitable to characterize with sufficient reproducibility the environmental impact posed by the release of hazardous substances from construction products. KW - Inter-laboratory test KW - Construction products KW - Leaching tests KW - Ecotoxicity tests KW - Grouts PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529198 DO - https://doi.org/10.1186/s12302-021-00514-x VL - 33 IS - 1 SP - Article number: 75 PB - Springer AN - OPUS4-52919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalbe, Ute A1 - Lehnik-Habrink, Petra A1 - Bandow, Nicole A1 - Sauer, Andreas T1 - Validation of European horizontal methods for the analysis of PAH, PCB and dioxins in sludge, treated biowaste and soil N2 - Draft standards for the determination of organic pollutants in the solid matter of environmental matrices such as sludge, treated biowaste and soil have been basically developed in the framework of the European standardization project HORIZONTAL. A research project financed by the German Federal Environment Agency was initiated to finalize some of these CEN standard drafts, since fully validated standard procedures are crucial for the evaluation of their reliability in the context of implementation in legislation on environmental health. Approach: Appropriate test materials (< 2mm particle size) were prepared and homogenized from contaminated soils, sludge and treated biowaste containing polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), dioxins, furans and dioxin-like-PCB and served, along with reference solutions, as the basis for international interlaboratory comparisons. Performance data of three analytical standard procedures were obtained by the statistical evaluation of results received from 11 to 29 participants per test material. Results: The overall variation coefficients of reproducibility (between-lab standard deviations) for the sum parameters were roughly between 10 and 35 %. The variation coefficients of repeatability (within-lab standard deviations) range between 3 % and 8 % and show no trend considering the substance groups or matrices. The highest coefficients of reproducibility were found for the analysis of PAHs, which were between 26 and 35 %, depending on the matrix, whereas 7-17 % reproducibility was observed for toxicity equivalents (TEQ) comprising dioxins, furans and dl-PCB. Conclusions: Overall, the results confirm that the procedures described in the Technical Specifications are fit for purpose for all three matrices and that the feasibility of the HORIZONTAL approach, to cover several matrices with one standard per analyte, was thereby proven. KW - Standardization KW - Analytical methods KW - Organic contaminants KW - Validation trial KW - Interlaboratory comparison PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479914 DO - https://doi.org/10.1186/s12302-019-0211-3 SN - 2190-4715 VL - 31 SP - 29, 1 EP - 10 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-47991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heisterkamp, I. A1 - Gartiser, S. A1 - Schoknecht, Ute A1 - Happel, O. A1 - Kalbe, Ute A1 - Kretzschmar, M. A1 - Ilvonen, O. T1 - Investigating the ecotoxicity of construction product eluates as multicomponent mixtures N2 - The release of hazardous compounds from construction products can harm human health and the environment. To improve the sustainability of construction materials, the leaching of substances from construction products and their potential environmental impact should be assessed. Twenty-seven construction products from different product groups were examined with a combination of standardized leaching tests (dynamic surface leaching test and percolation test) and biotests (algae, daphnia, fish egg, luminescent bacteria, umu and Ames fluctuation tests). To identify the released substances, extensive qualitative and quantitative chemical analyses were performed, including gas chromatographic and liquid chromatographic screening techniques. Results: Many of the tested eluates caused signifcant ecotoxic efects. Particularly high ecotoxicities were observed for grouts (lowest ineffective dilution (LID) up to 16384) and cork granules (LID up to 24578). The results of ecotoxicity tests allow the prioritization of the eluates that should be subjected to detailed chemical analyses. Organic screening by different methods and ranking the identifed substances based on recorded hazard classification is a suitable approach to identify the relevant toxic substances. Conclusions: Determining the ecotoxicity of eluates from construction products records the summary effect of all leachable substances. This instrument is especially useful for construction products of complex and largely unknown composition. The ecotoxicological and the chemical–analytical approach complement each other in an ideal way to characterize the potential hazard of eluates from construction products and to identify the environmentally hazardous components in these eluates. Our results confirm that the proposed harmonized methods for testing eluate toxicity are an adequate and applicable procedure to move toward a more sustainable way of building and to reduce toxic effects of construction products in their use phase in the environment. KW - Construction products KW - Building materials KW - Ecotoxicity KW - Biotests KW - Leaching KW - Eluates KW - Chemical analysis KW - Analytical screening techniques KW - Mixture toxicity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568864 DO - https://doi.org/10.1186/s12302-023-00711-w VL - 35 IS - 1 SP - 1 EP - 20 PB - Springer AN - OPUS4-56886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Vogel, Christian A1 - Kalbe, Ute T1 - Antimony and vanadium in incineration bottom ash – leaching behavior and conclusions for treatment processes N2 - Due to its large mineral fraction, incineration bottom ash (IBA) from municipal solid waste incineration is an interesting raw material that can be used for road construction or to produce secondary building materials. However, leaching chloride, sulfate, and potentially harmful heavy metals may cause problems in using IBA in civil engineering. Investigating leaching behavior is crucial for the assessment of the environmental compatibility of IBA applications. Various test procedures are available for that purpose. In the present study, a long-term leaching test of a wet-mechanically treated IBA was performed in a lysimeter for almost six years. While concentrations of chloride, sulfate and the majority of the heavy metals started to decrease rapidly with progressive liquid-to-solid ratio (L/S), antimony (Sb) and vanadium (V) behaved differently. At the beginning of the lysimeter test, the Sb and V concentrations were low, but after approximately one year of operation at an L/S ratio of around 0.8 L/kg, a steady increase was observed. It was shown that this increase is the result of low Ca concentrations due to the formation of CaCO3. With the data, the solubility products from Ca-antimonate and Ca-vanadate were calculated. The unusual leaching behavior of Sb and V should be kept in mind when considering field scenarios and evaluating the impact on the environment. KW - Bottom ash KW - Lysimeter KW - Leaching of waste materials KW - Secondary building materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534317 DO - https://doi.org/10.31025/2611-4135/2021.15115 SN - 2611-4135 VL - 16 SP - 75 EP - 81 PB - CISA CY - Padua AN - OPUS4-53431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Kalbe, Ute T1 - Measurement of the Environmental Impact of Materials N2 - This Special Issue, ‘Measurement of the Environmental Impact of Materials’, is focused on the impact that materials have on the environmental compartments of soil, water and air. Leaching and emission processes, including underlying mechanisms, are a recurring topic in most published articles in the present Special Issue. Contributions have come from three continents and numerous countries (USA, Germany, France, Latvia, Poland, Russia, Japan, Korea and Thailand) indicating the global dimension of the subject. KW - Leaching KW - Recycling KW - Nano-materials PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545099 DO - https://doi.org/10.3390/ma15062208 SN - 1996-1944 VL - 15 IS - 6 SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-54509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bandow, N. A1 - Aitken, M. D. A1 - Geburtig, Anja A1 - Kalbe, Ute A1 - Piechotta, Christian A1 - Schoknecht, Ute A1 - Simon, Franz-Georg A1 - Stephan, Ina T1 - Using Environmental Simulations to Test the Release of Hazardous Substances from Polymer-Based Products: Are Realism and Pragmatism Mutually Exclusive Objectives? N2 - The potential release of hazardous substances from polymer-based products is currently in the focus of environmental policy. Environmental simulations are applied to expose such products to selected aging conditions and to investigate release processes. Commonly applied aging exposure types such as solar and UV radiation in combination with water contact, corrosive gases, and soil contact as well as expected general effects on polymers and additional ingredients of polymer-based products are described. The release of substances is based on mass-transfer processes to the material surfaces. Experimental approaches to investigate transport processes that are caused by water contact are presented. For tailoring the tests, relevant aging exposure types and release quantification methods must be combined appropriately. Several studies on the release of hazardous substances such as metals, polyaromatic hydrocarbons, flame retardants, antioxidants, and carbon nanotubes from polymers are summarized exemplarily. Differences between natural and artificial exposure tests are discussed and demonstrated for the release of flame retardants from several polymers and for biocides from paints. Requirements and limitations to apply results from short-term artificial environmental exposure tests to predict long-term environmental behavior of polymers are presented. KW - Environmental simulations KW - Polymer-based products KW - Artificial weathering KW - Degradation KW - Leaching KW - Soil contact PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509310 DO - https://doi.org/10.3390/ma13122709 SN - 1996-1944 VL - 13 IS - 12 SP - Paper 2709, 22 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roesch, Philipp A1 - Schinnen, Andrea A1 - Riedel, Maren A1 - Sommerfeld, Thomas A1 - Sawal, G. A1 - Bandow, N. A1 - Vogel, Christian A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Investigation of pH-dependent extraction methods for PFAS in (fluoropolymer-based) consumer products: A comparative study between targeted and sum parameter analysis N2 - Here, we report a comparative study of different sum parameter analysis methods for the extraction of per- and polyfluoroalkyl substances (PFAS) from manufactured consumer products, which can be measured by combustion ion chromatography (CIC). Therefore, a hydrolysis-based extraction method was further developed, which accounts for the addition of hydrolyzable covalently bound polyfluoroalkylated side-chain polymers (SFPs) to the extractable organic fluorine portion of the mass balance proposed as "hydrolyzable organically bound fluorine" (HOF). To test this hypothesis, the method was applied to 39 different consumer products containing fluoropolymers or monomeric PFAS taken from four different categories: outdoor textiles, paper packaging, carpeting, and permanent baking sheets. We also evaluated the method's efficiency by extracting four synthesized fluorotelomer polyacrylate reference compounds. The total fluorine (TF) and extractable organically bound fluorine (EOF) values were measured through CIC using established protocols. The TF values ranged from sub-ppb to %-levels, depending on the compound class. All samples showed results for hydrolyzed organofluorine (HOF) between 0.03 and 76.3 μg/g, while most EOF values were lower (