TY - JOUR A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Artzt, K. A1 - Haubrich, J. A1 - Sevostianov, I. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Micromechanical behavior of annealed Ti-6Al-4V produced by Laser Powder Bed Fusion N2 - The micromechanical behavior of an annealed Ti-6Al-4V material produced by Laser Powder Bed Fusion was characterized by means of in-situ synchrotron X-ray diffraction during a tensile test. The lattice strain evolution was obtained parallel and transversal to the loading direction. The elastic constants were determined and compared with the conventionally manufactured alloy. In the plastic regime, a lower plastic anisotropy exhibited by the lattice planes was observed along the load axis (parallel to the building direction) than in the transverse direction. Also, the load transfer from α to β phase was observed, increasing global ductility of the material. The material seems to accumulate a significant amount of intergranular strain in the transverse direction. KW - Additive manufacturing KW - Ti-6Al-4V KW - Anisotropy KW - Intergranular strain KW - Synchrotron X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547406 DO - https://doi.org/10.1080/26889277.2022.2063763 VL - 2 IS - 1 SP - 186 EP - 201 PB - Taylor & Francis AN - OPUS4-54740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Farahbod-Sternahl, L. A1 - Serrano Munoz, Itziar A1 - Léonard, F. A1 - Haberland, C. A1 - Bruno, Giovanni T1 - 3D Computed Tomography Quantifies the Dependence of Bulk Porosity, Surface Roughness, and Re-Entrant Features on Build Angle in Additively Manufactured IN625 Lattice Struts N2 - Layer-by-layer additive manufacturing (AM) by means of laser-powder bed Fusion (L-PBF) offers many prospects regarding the design of lattice structures used, for example, in gas turbines. However, defects such as bulk porosity, Surface roughness, and re-entrant features are exacerbated in nonvertical structures, such as tilted struts. The characterization and quantification of these kinds of defects are essential for the correct estimation of fracture and fatigue properties. Herein, cylindrical struts fabricated by L-PBF are investigated by means of X-ray computed tomography (XCT), with the aim of casting light on the dependence of the three kinds of defects (bulk porosity, surface roughness, and re-entrant features) on the build angle. Innovative analysis methods are proposed to correlate shape and position of pores, to determine the angular-resolved Surface roughness, and to quantify the amount of re-entrant surface features, q. A meshing of the XCT surface enables the correlation of q with the classical Surface roughness Pa. This analysis leads to the conclusion that there is a linear correlation between q and Pa. However, it is conjectured that there must be a threshold of surface roughness, below which no re-entrant features can be build. KW - Additive manufacturing KW - Laser powder bed fusion KW - Computed tomography KW - Surface roughness analysis KW - Re-entrant surface feature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534728 DO - https://doi.org/10.1002/adem.202100689 IS - 2100689 SP - 1 EP - 8 PB - Wiley-VCH Verlag AN - OPUS4-53472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauzon, C. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Dubiez-Le Goff, S. A1 - Murugesan, S. A1 - Bruno, Giovanni A1 - Hryha, E. T1 - Residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion as a function of process atmosphere and component design N2 - The influence of the process gas, laser scan speed, and sample thickness on the build-up of residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion was studied. Pure argon and helium, as well as a mixture of those (30% helium), were employed to establish process atmospheres with a low residual Oxygen content of 100 ppm O2. The results highlight that the subsurface residual stresses measured by X-ray diffraction were significantly lower in the thin samples (220 MPa) than in the cuboid samples (645 MPa). This difference was attributed to the shorter laser vector length, resulting in heat accumulation and thus in-situ stress relief. The addition of helium to the process gas did not introduce additional subsurface residual stresses in the simple geometries, even for the increased scanning speed. Finally, larger deflection was found in the cantilever built under helium (after removal from the baseplate), than in those produced under argon and an argon-helium mixture. This result demonstrates that complex designs involving large scanned areas could be subjected to higher residual stress when manufactured under helium due to the gas’s high thermal conductivity, heat capacity, and thermal diffusivity. KW - Additive manufacturing KW - Ti-6Al-4V KW - Residual stress KW - Process atmosphere KW - Helium PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534209 DO - https://doi.org/10.1016/j.addma.2021.102340 VL - 47 SP - 2340 PB - Elsevier B.V. AN - OPUS4-53420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fardan, Ahmed A1 - Fazi, Andrea A1 - Peng, Ru Lin A1 - Mishurova, Tatiana A1 - Thuvander, Mattias A1 - Bruno, Giovanni A1 - Brodin, Håkan A1 - Hryha, Eduard T1 - Fine-Tuning Melt Pools and Microstructures: Taming Cracks in Powder Bed Fusion—Laser Beam of a non-weldable Ni-base Superalloy N2 - Powder Bed Fusion – Laser Beam (PBF-LB) of high γ’ strengthened Ni-base superalloys, such as CM247LC, is of great interest for high temperature applications in gas turbines. However, PBF-LB of CM247LC is challenging due to the high cracking susceptibility during PBF-LB processing (solidification cracking) and heat treatment (strain age cracking, mostly caused by residual stresses). This study focuses on understanding the impact of process parameters on microstructure, residual stresses and solidification cracking. Laser power (P), speed (v) and hatch spacing (h) were varied while the layer thickness (t) was fixed. The melt pool size and shape were found to be key factors in minimizing solidification cracking. Narrower and shallower melt pools, achieved using a low line energy density (LED = P/v ≤ 0.1 J/mm), gave low crack densities (0.7 mm/mm2). A tight hatch spacing (h = 0.03 mm) resulted in reduced lack of fusion porosity. Electron backscatter diffraction investigations revealed that parameters giving finer microstructure with 〈100〉crystallographic texture had low crack densities provided they were processed with a low LED. Atom probe tomography elucidated early stages of spinodal decomposition in the as-built condition, where Cr and Al cluster separately. The extent of spinodal decomposition was found to be affected by the LED and the hatch spacing. Samples with low LED and small hatch spacing showed higher degrees of spinodal decomposition. X-ray diffraction residual stress investigations revealed that the residual stress is proportional to the volumetric energy density (VED = P/(v. h. t)). Although low residual stresses can be achieved by using low VED, there is a high risk of lack of fusion. Hence, other parameters such as modified scan strategy, build plate pre-heating and pulsed laser mode, must be further explored to minimize the residual stresses to reduce the strain age cracking susceptibility. KW - Additive manufacturing KW - X-ray CT KW - Non-weldable superalloy KW - Solidification cracking PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597340 DO - https://doi.org/10.1016/j.mtla.2024.102059 SN - 2589-1529 VL - 34 IS - 102059 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-59734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabo Rios, Alberto A1 - Mishurova, Tatiana A1 - Cordova, Laura A1 - Persson, Mats A1 - Bruno, Giovanni A1 - Olevsky, Eugene A1 - Hryha, Eduard T1 - Ex-situ characterization and simulation of density fluctuations evolution during sintering of binder jetted 316L N2 - Efficient density evolution during sintering of the as-printed component is vital to reach full densification and required properties of binder jet (BJT) components. However, due to the high porosity and brittle nature of the green compact, analysis of the microstructure development during sintering is very difficult, resulting in lack of understanding of the densification process. Density development from green state (57 ± 1.6 %) up to full density (99 ± 0.3 %) was characterized by high-resolution synchrotron X-Ray computed tomography (SXCT) on BJT 316L samples from ex-situ interrupted sintering tests. Periodicity of density fluctuations along the building direction was revealed for the first time and was related to the layer thickness of ~ 42 μm during printing that decreased down to ~ 33 μm during sintering. Sintering simulations, utilizing a continuum sintering model developed for BJT, allowed to replicate the density evolution during sintering with a mean error of 2 % and its fluctuation evolution from green (1.66 %) to sintered (0.56 %) state. Additionally, simulation of extreme particle size segregation (1 μm to 130 μm) suggested that non-optimized printing could lead to undesirable density fluctuation amplitude rapid increase (~10 %) during sintering. This might trigger the nucleation of defects (e.g., layer delamination, cracking, or excessive residual porosity) during the sintering process. KW - Additive manufacturing KW - Synchrotron X-ray CT KW - Binder Jetting KW - Sintering KW - FEM Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594389 DO - https://doi.org/10.1016/j.matdes.2024.112690 SN - 0264-1275 VL - 238 SP - 1 EP - 18 PB - Elsevier AN - OPUS4-59438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - The residual stress in as‑built Laser Powder Bed Fusion IN718 alloy as a consequence of the scanning strategy induced microstructure N2 - The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2°) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS. KW - Additive manufacturing KW - LPBF KW - Residual stress KW - Inconel 718 KW - Kernel average misorientation KW - Texture PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511769 DO - https://doi.org/10.1038/s41598-020-71112-9 VL - 10 IS - 1 SP - 14645 AN - OPUS4-51176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artzt, K. A1 - Mishurova, Tatiana A1 - Bauer, P.-P. A1 - Gussone, J. A1 - Barriobero-Vila, P. A1 - Evsevleev, Sergei A1 - Bruno, Giovanni A1 - Requena, G. A1 - Haubrich, J. T1 - Pandora’s Box–Influence of Contour Parameters on Roughness and Subsurface Residual Stresses in Laser Powder Bed Fusion of Ti-6Al-4V N2 - The contour scan strategies in laser powder bed fusion (LPBF) of Ti-6Al-4V were studied at the coupon level. These scan strategies determined the surface qualities and subsurface residual stresses. The correlations to these properties were identified for an optimization of the LPBF processing. The surface roughness and the residual stresses in build direction were linked: combining high laser power and high scan velocities with at least two contour lines substantially reduced the surface roughness, expressed by the arithmetic mean height, from values as high as 30 μm to 13 μm, while the residual stresses rose from ~340 to about 800 MPa. At this stress level, manufactured rocket fuel injector components evidenced macroscopic cracking. A scan strategy completing the contour region at 100 W and 1050 mm/s is recommended as a compromise between residual stresses (625 MPa) and surface quality (14.2 μm). The LPBF builds were monitored with an in-line twin-photodiode-based melt pool monitoring (MPM) system, which revealed a correlation between the intensity quotient I2/I1, the surface roughness, and the residual stresses. Thus, this MPM system can provide a predictive estimate of the surface quality of the samples and resulting residual stresses in the material generated during LPBF. KW - Additive manufacturing KW - Ti-6Al-4V KW - Contour scan strategy KW - Surface roughness KW - Melt pool monitoring KW - Residual stress KW - Synchrotron X-ray diffraction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510585 DO - https://doi.org/10.3390/ma13153348 VL - 13 IS - 15 SP - 3348 AN - OPUS4-51058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Sydow, B. A1 - Thiede, Tobias A1 - Sizova, I. A1 - Ulbricht, Alexander A1 - Bambach, M. A1 - Bruno, Giovanni T1 - Residual Stress and Microstructure of a Ti-6Al-4V Wire Arc Additive Manufacturing Hybrid Demonstrator N2 - Wire Arc Additive Manufacturing (WAAM) features high deposition rates and, thus, allows production of large components that are relevant for aerospace applications. However, a lot of aerospace parts are currently produced by forging or machining alone to ensure fast production and to obtain good mechanical properties; the use of these conventional process routes causes high tooling and material costs. A hybrid approach (a combination of forging and WAAM) allows making production more efficient. In this fashion, further structural or functional features can be built in any direction without using additional tools for every part. By using a combination of forging basic geometries with one tool set and adding the functional features by means of WAAM, the tool costs and material waste can be reduced compared to either completely forged or machined parts. One of the factors influencing the structural integrity of additively manufactured parts are (high) residual stresses, generated during the build process. In this study, the triaxial residual stress profiles in a hybrid WAAM part are reported, as determined by neutron diffraction. The analysis is complemented by microstructural investigations, showing a gradient of microstructure (shape and size of grains) along the part height. The highest residual stresses were found in the transition Zone (between WAAM and forged part). The total stress range showed to be lower than expected for WAAM components. This could be explained by the thermal history of the component. KW - Additive manufacturing KW - Neutron diffraction KW - Residual stress KW - Hybrid manufacturing KW - WAAM KW - Ti-6Al-4V PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508245 DO - https://doi.org/10.3390/met10060701 VL - 10 IS - 6 SP - 701 PB - MDPI AN - OPUS4-50824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Schneider, J. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Using SXRR to Probe the Nature of Discontinuities in SLM Additive Manufactured Inconel 718 Specimens N2 - The utilization of additive manufacturing (AM) to fabricate robust structural components relies on understanding the nature of internal anomalies or discontinuities, which can compromise the structural integrity. While some discontinuities in AM microstructures stem from similar mechanisms as observed in more traditional processes such as casting, others are unique to the AM process. Discontinuities in AM are challenging to detect, due to their submicron size and orientation dependency. Toward the goal of improving structural integrity, minimizing discontinuities in an AM build requires an understanding of the mechanisms of formation to mitigate their occurrence. This study utilizes various techniques to evaluate the shape, size, nature and distribution of discontinuities in AM Inconel 718, in a non-hot isostatic pressed (HIPed) as-built, non-HIPed and direct age, and HIPed with two step age samples. Non-destructive synchrotron radiation refraction and transmission radiography (SXRR) provides additional information beyond that obtained with destructive optical microscopy. SXRR was able to distinguish between voids, cracks and lack of melt in, due to its sensitivity to the orientation of the discontinuity. KW - Additive manufacturing KW - X-ray refraction radiography KW - INCONEL 718 KW - Selective laser melting PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509836 DO - https://doi.org/10.1007/s11661-020-05847-5 SN - 1543-1940 VL - 51 IS - 8 SP - 4146 EP - 4157 PB - Springer AN - OPUS4-50983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - X-ray refraction distinguishes unprocessed powder from empty pores in selective laser melting Ti-6Al-4V N2 - For the first time, X-ray refraction techniques are proven for the identification of void formation in Ti-6Al-4V parts produced by selective laser melting. The topology and volume fraction of pores are measured in samples produced with different laser energy density. Unique X-ray refraction methods identify different kinds of defects, characteristic to the regions below and above the Optimum laser energy density, namely unprocessed powder (unmolten powder particles, balling effect, and Fusion defects) from empty keyhole pores. Furthermore, it is possible to detect small inhomogeneities (voids or cracks) with sizes below the spatial resolution of optical microscopy and X-ray computed tomography. KW - Additive manufacturing KW - X-ray refraction KW - Microscopy KW - X-ray computed tomography KW - Porosity PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434041 DO - https://doi.org/10.1080/21663831.2017.1409288 SN - 2166-3831 VL - 6 IS - 2 SP - 130 EP - 135 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-43404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -