TY - JOUR A1 - Cappella, Brunero A1 - Spaltmann, Dirk A1 - Gee, M. T1 - Editorial: Tribology and Atomic Force Microscopy - Towards Single Asperity Contact JF - Frontiers in Mechanical Engineering N2 - The concept behind this Research Topic (RT) was to collect works, in which Atomic Force Microscopy (AFM) techniques are employed to study tribological phenomena and to push the resolution of measurements towards single asperity contact. Thanks to the direct determination of sample height with sub-nanometer resolution and the possibility of measuring local friction, AFM can be employed after a tribotest to detect topography and friction changes at the nanometer scale. Recently, efforts are being expended to use AFM cantilevers as tribometers, i.e., as probes altering the volume of suitable samples, thereby measuring tip and/or sample wear and friction at the nano/microscale. Thus, single asperity contact, friction, and wear can be investigated. Since friction and wear at the macroscale are the result of asperities interactions, such experiments are of great importance for better understanding of tribological processes. KW - Nanotribology KW - Friction KW - Wear KW - Single asperity KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571037 DO - https://doi.org/10.3389/fmech.2022.853934 SN - 2297-3079 VL - 8 SP - 1 EP - 2 PB - Frontiers Media CY - Lausanne AN - OPUS4-57103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Micro- and nanowear of self-mated steel generated and studied with an AFM at the single asperity level JF - Frontiers in mechanical engineering N2 - We show for the first time tribotests performed with self-mated 100Cr6 steel, taking advantage of an AFM, employed as a tribometer for the tribotests as well as for the inspection of wear of both tribopartners. Emphasis is put on the morphology of the scars, on wear particles, and on wear of the “colloidal” particles glued on the AFM cantilever. Measurements demonstrate the possibility of characterizing single asperity events leading to very small wear. We highlight several phenomena, which are elementary key constituents of tribological processes. Such phenomena, probably occurring also at the macroscale, can be detected, identified, and characterized with high spatial and time resolution only at the nanoscale, thus giving insight into conditions and causes of their emergence. KW - Nanowear KW - Atomic force microscope KW - 100Cr6 (AISI 52100) steel KW - Wear particles KW - Single asperity contact KW - Particle transfer KW - Zero wear PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531389 DO - https://doi.org/10.3389/fmech.2021.722434 SN - 2297-3079 VL - 7 SP - 1 EP - 16 PB - Frontiers Media CY - Lausanne AN - OPUS4-53138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Friction and mechanical properties of AFM-scan-induced ripples in polymer films JF - Frontiers in mechanical engineering N2 - In the present paper, friction and mechanical properties of AFM-Scan-Induced ripple structures on films of polystyrene and poly-n-(butyl methacrylate) are investigated. Force volume measurements allow a quantitative analysis of the elastic moduli with nanometer resolution, showing a contrast in mechanical response between bundles and troughs. Additionally, analysis of the lateral cantilever deflection shows a clear correlation between friction and the sample topography. Those results support the theory of crack propagation and the formation of voids as a mechanism responsible for the formation of ripples. This paper also shows the limits of the presented measuring methods for soft, compliant, and small structures. KW - AFM KW - Polymer KW - Ripples KW - Mechanical properties KW - Friction PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532772 DO - https://doi.org/10.3389/fmech.2021.672898 SN - 2297-3079 VL - 7 SP - 1 EP - 8 PB - Frontiers Media CY - Lausanne AN - OPUS4-53277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahrbach, M. A1 - Friedrich, Sebastian A1 - Behle, H. A1 - Xu, Min A1 - Cappella, Brunero A1 - Brand, U. A1 - Peiner, E. T1 - Customized piezoresistive microprobes for combined imaging of topography and mechanical properties JF - Measurement: Sensors N2 - Customized piezoresistive cantilever microprobes with a deflection range of 120 μm and silicon tips of 100 μm height were operated in a Cypher AFM showing their functionality for measuring topography together with stiffness, adhesion, and viscoelastic properties of thin films. KW - Cantilever microprobe KW - Piezoresistive KW - Atomic force microscopy KW - Force-distance curves KW - Contact resonance KW - Lubricants PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524225 DO - https://doi.org/10.1016/j.measen.2021.100042 VL - 15 SP - 100042 PB - Elsevier Ltd. AN - OPUS4-52422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahrbach, M. A1 - Friedrich, Sebastian A1 - Cappella, Brunero A1 - Peiner, Erwin T1 - Calibrating a high-speed contact-resonance profilometer JF - Journal of Sensors and Sensor Systems N2 - A European EMPIR project, which aims to use large-scale piezoresistive microprobes for contact resonance applications, a well-established measurement mode of atomic force microscopes (AFMs), is being funded. As the probes used in this project are much larger in size than typical AFM probes some of the simplifications and assumptions made for AFM probes are not applicable. This study presents a guide on how to systematically create a model that replicates the dynamic behavior of microprobes, including air damping, nonlinear sensitivities, and frequency dependencies. The model is then verified by analyzing a series of measurements. KW - Piezoresistive cantilever KW - AFM KW - contact resonance PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509899 DO - https://doi.org/10.5194/jsss-9-179-2020 VL - 9 SP - 179 EP - 187 PB - Copernicus Publications AN - OPUS4-50989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Comparative analysis of error sources in the determination of wear volumes of oscillating ball-on-plane tests JF - Frontiers in Material Engineering N2 - The accurate determination of wear volumes is a prerequisite for the study of numerous tribological phenomena. Wear volumes can be measured with different techniques or else be calculated starting from some quantities measured from the wear scar. Advantages and drawbacks of the measuring techniques are shown by means of wear scars and calottes resulting from ball-on-plane tests with 100Cr6 specimens. When measuring wear volumes, white light interferometry results to be one of the most suitable techniques. When wear volumes are calculated, errors result mainly from two sources: (1) the arbitrary choice of one or few line profiles for the determination of the width and of the planimetric wear, and (2) approximations in the calculation, which are even necessary when values of the wear volumes of the single tribological partners and not only the total volume are of interest. The effect of both error sources on the accuracy in the determination of wear volumes is characterized and elucidated by examples. It is found that errors due to approximations are negligible when compared to errors due to the arbitrary choice of one line profile. KW - Error sources analysis KW - White light interferometry KW - Statistical analysis KW - AFM KW - Wear KW - Oscillating ball-on-disc test PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508407 DO - https://doi.org/10.3389/fmech.2020.00025 VL - 6 SP - Article 25 AN - OPUS4-50840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Study of micro- and nanoscale wetting properties of lubricants using AFM force-distance curves JF - Tribology letters N2 - Atomic force microscopy (AFM) plays an important role as a multifuntional tool in nanotribology.In the present work it was shown that the main features of force-distance curves on different lubricants have been characterized and the underlying phenomena could be explained. KW - Lubricants KW - Atomic force microscopy KW - Force-distance curves PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504631 DO - https://doi.org/10.1007/s11249-020-1275-3 SN - 1573-2711 VL - 68 IS - 1 SP - 1 EP - 12 PB - Springer CY - Cham AN - OPUS4-50463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Application of contact-resonance AFM methods to polymer samples JF - Beilstein Journal of Nanotechnology N2 - Contact-resonance AFM (CR-AFM) has been used in recent years for the measurement of mechanical properties. Compared with other techniques, CR-AFM has a much shorter acquisition time, compensating the incomplete theoretical understanding of the underlying physical phenomena. In the present paper, we propose a procedure, which allows to determine the elastic modulus of the sample as a parameter of the fit of the CR frequency as a function of the load. It is concluded that CR measurements are not appropriate for polymer samples. Major drawbacks are the bad resolution for moduli lower than ca. 10 GPa and the lack of a comprehensive physical model. KW - Atomic force microscopy KW - Contact resonance KW - Mechanical properties KW - Polymers KW - Wear PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515621 DO - https://doi.org/10.3762/bjnano.11.154 VL - 11 SP - 1714 EP - 1727 AN - OPUS4-51562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -