TY - JOUR A1 - Bakir, Nasim A1 - Artinov, Antoni A1 - Gumenyuk, Andrey A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical simulation on the origin of solidification cracking in laser welded thick-walled structures JF - Metals N2 - One of the main factors affecting the use of lasers in the industry for welding thick structures is the process accompanying solidification cracks. These cracks mostly occurring along the welding direction in the welding center, and strongly affect the safety of the welded components. In the present study, to obtain a better understanding of the relation between the weld pool geometry, the stress distribution and the solidification cracking, a three-dimensional computational fluid dynamic (CFD) model was combined with a thermo-mechanical model. The CFD model was employed to analyze the flow of the molten metal in the weld pool during the laser beam welding process. The weld pool geometry estimated from the CFD model was used as a heat source in the thermal model to calculate the temperature field and the stress development and distributions. The CFD results showed a bulging region in the middle depth of the weld and two narrowing areas separating the bulging region from the top and bottom surface. The thermo-mechanical simulations showed a concentration of tension stresses, transversally and vertically, directly after the solidification during cooling in the region of the solidification cracking. T2 - 27TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS - METAL 2018 CY - Brno, Czech Republic DA - 23.05.2018 KW - Laser beam welding KW - Weld pool KW - Full penetration KW - Finite element method (FEM) KW - CFD model KW - Numerical simulation KW - Solidification cracking PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-450595 DO - https://doi.org/10.3390/met8060406 SN - 2075-4701 VL - 8 IS - 6 SP - 406, 1 EP - 15 PB - MDPI CY - Basel, Switzerland AN - OPUS4-45059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. A1 - De Beats, P. A1 - Sukumaran, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias A1 - Vleugels, J. T1 - Effect of carbon content on the microstructure and mechanical properties of NbC-Ni based cermets JF - Metals N2 - The aim of this work was to correlate the overall carbon contents in NbC-Ni, NbC-Ni-VC and NbC-Ni-Mo starting powders with the resulting microstructure, hardness, and fracture toughness of Ni-bonded NbC cermets. KW - Niobium carbide KW - Cermet KW - Hardmetal KW - Liquid phase sintering KW - Carbon KW - Hardness PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444608 DO - https://doi.org/10.3390/met8030178 SN - 2075-4701 VL - 8 IS - 3 SP - Article 178, 1 EP - 13 PB - MDPI AN - OPUS4-44460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vollert, F. A1 - Dixneit, Jonny A1 - Gibmeier, J. ED - Marais, D. ED - Holden, T.M. ED - Venter, A.M. T1 - Effect of Residual Stress Relaxation due to Sample Extraction on the Detectability of Hot Crack Networks in LTT Welds by means of µCT T2 - Mechanical stress evaluation by neutron and synchrotron radiation, , MECA SENS 2017 N2 - Investigations on weldability often deal with hot cracking as one of the most prevalent failure mechanisms during weld fabrication. The modified varestraint transvarestraint hot cracking test (MVT) is well known to assess the hot cracking susceptibility of materials. The shortcoming of this approach is that the information is only from the very near surface region which inhibits access to the characteristic of the hot crack network in the bulk. Here, we report about an alternative approach to monitor the entire 3D hot crack network after welding by means of microfocus X-ray computer tomography (µCT). However, to provide sufficient high spatial resolution small samples must be sectioned from the MVT-welded joint. The sampling is accompanied by local relaxation of the residual stress distributions that are induced by welding, which can have an impact on the crack volumes prior to the sampling. The studies were carried out to investigate the hot cracking susceptibility of low transformation temperature filler materials (LTT). As high compression residual stresses up to -600 MPa in the area of the crack networks were determined by means of the contour method, stress relaxation caused by sectioning for µCT sample extraction can affect the detectability of the cracks later on. X-ray diffraction studies revealed surface residual stress relaxations up to about 400 MPa due to cutting. To investigate this effect, the specimens with hot cracks were subjected to a load test with known stress states. The results clearly show that local stress relaxations will have a strong impact on the volume images reconstructed from tomography analysis. This effect must be considered during hot crack assessment on basis of µCT data. T2 - 9th International Conference on Mechanical Stress Evaluation by Neutron and Synchrotron Radiation (MECA SENS 2017) CY - Skukuza Rest Camp, South Africa DA - 19.09.2017 KW - LTT Weld Filler Materials KW - µCT-analysis KW - Hot Cracks KW - Welding PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456765 SN - 978-1-945291-66-1 DO - https://doi.org/10.21741/9781945291678-13 SN - 2474-395X VL - 4 SP - 85 EP - 90 AN - OPUS4-45676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Assessing the predictive capability of numerical additive manufacturing simulations via in-situ distortion measurements on a LMD component during build-up JF - ScienceDirect N2 - Due to rapid, localized heating and cooling, distortions accumulate in additive manufactured laser metal deposition (LMD) components, leading to a loss of dimensional accuracy or even cracking. Numerical welding simulations allow the prediction of these deviations and their optimization before conducting experiments. To assess the viability of the simulation tool for the use in a predictive manner, comprehensive systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to Cluster these products in new assembly oriented product families for the optimization. KW - Laser metal deposition KW - Directed Energy Deposition KW - DED KW - Welding Simulation KW - Digital Image Correlation KW - Cimensional Accuracy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502567 DO - https://doi.org/10.1016/j.procir.2018.08.069 VL - 74 SP - 158 EP - 162 PB - Elsevier AN - OPUS4-50256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Uhlmann, E. A1 - Hinzmann, D. A1 - Kropidlowski, K. A1 - Meier, P. A1 - Prasol, L. A1 - Woydt, Mathias T1 - Increased tool performance with niobium carbide based cutting materials in dry cylindrical turning JF - Procedia CIRP N2 - In the present work it was shown that in contrast to WC tools NbC cutting tools show constant material removal VW at increased cutting speed vc combined with a higher process reliability. KW - Niobium carbide (NbC) KW - Tungsten carbide (WC) KW - Tool wear KW - Cylindrical turning PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465968 DO - https://doi.org/10.1016/j.procir.2018.08.238 SN - 2212-8271 VL - 77 SP - 541 EP - 544 PB - Elsevier AN - OPUS4-46596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Hannemann, Andreas A1 - Kannengießer, Thomas ED - Seefeldt, Marc T1 - In-situ determination of critical welding stresses during assembly of thick-walled components made of high-strength steel T2 - Residual stresses 2018, ECRS-10 N2 - The performance and safety of welded high-strength low-alloyed steel (HSLA) components are substantially affected by the stresses occurring during and after welding fabrication, especially if welding shrinkage and distortion are severely restrained. The surrounding structure of the whole component affects loads in the far-field superimposing with welding stresses in the near-field of the weld. In this study a unique testing facility was used to restrain shrinkage and bending while analyse multiaxial far-field loads (max. 2 MN) during assembly of thick-walled component. A novel approach for the assessment of the in-situ-measured far-field data in combination with the actual weld geometry was elaborated. For the first time, analyses of the global bending moments of restrained welds based on the neutral axis of the actual weld load bearing section were achieved. Hence, far-field measurements offered the possibility to determine critical near-field stresses of the weld crosssections for the entire joining process. This work presents the approach for far-to-near field in-situ determination of stresses in detail for the 2-MN-testing system based on an extensive experimental work on HSLA steel welds, which demonstrates sources and consequences of these high local welding stresses. Thus, it was clarified, why the first weld beads are crucial regarding welding stresses and cold cracking, which is well known, but has never been measured so far. Accompanying analyses using X-ray diffraction (XRD) after welding show effects on local residual stress distributions. These analyses indicated viable prospects for stress reduction during assembly of thick-walled HSLA steel components. T2 - European Conference on Residual Stresses 2018 - ECRS-10 CY - Leuven, Belgium DA - 11.09.2018 KW - Residual stress KW - Welding KW - Large-scale test KW - X-ray diffraction KW - HSLA steel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-466053 SN - 978-1-9452-9188-3 SN - 978-1-9452-9189-0 DO - https://doi.org/10.21741/9781945291890-30 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 191 EP - 196 PB - Materials Research Forum LLC CY - Millersville, PA, USA AN - OPUS4-46605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Kersting, R. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Laser-plasma-cladding as a hybrid metal deposition-technology applying a SLM-produced copper plasma nozzle T2 - 10th CIRP Conference on Photonic Technologies N2 - Laser-Metal-Deposition (LMD) and Plasma-Transferred-Arc (PTA) are well known Technologies which can be used for cladding purposes. The prime objective in combining LMD and PTA as a Hybrid Metal Deposition-Technology (HMD) is to achieve high Deposition rates at low thermal Impact. Possible applications are coatings for wear protection or repair welding for components made of steel. The two energy sources (laser and Plasma arc) build a Joint process Zone and are configurated to constitute a stable process at laser powers between 0.4-1 kW (defocused) and Plasma currents between 75-200 A. Stainless steel 316L serves as filler material. For this HMD process, a Plasma Cu-nozzle is designed and produced by powder bed based Selective Laser Melting. The potential of the HMD Technology is investigated and discussed considering existing process. This paper demonstrates how the interaction of the two energy sources effects the following application-relevant properties: Deposition rate, powder Efficiency and energy Input. T2 - LANE 2018 CY - Fürth, Germany DA - 3.09.2018 KW - Laser-metal-deposition KW - Plasma-transferred-arc KW - SLM printed plasma torch KW - Laser-plasma hybrid PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-470999 UR - 10.1016/j.procir.2018.08.020 DO - https://doi.org/10.1016/j.procir.2018.08.020 SN - 2212-8271 VL - CIRP 74 SP - 738 EP - 742 PB - Sciencedirect CY - Berlin AN - OPUS4-47099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, Fritz A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Hilgenberg, Kai T1 - Numerical simulation of the weld pool dynamics during pulsed laser welding using adapted heat source models JF - Procedia CIRP N2 - A transient simulation including the impact of the laser energy, the melting of the metal and the development of the weld pool was conducted to observe the evolution of the vapor capillary and the solidification of the melt in pulsed laser beam welding of AISI 304 steel. The phase field method was implemented to investigate the evolution and behavior of the liquid-gas interface during welding and to describe the condensed and vapor phases. The effects of phase transition, recoil pressure, thermo-capillary and natural convection, vaporization and temperature dependent material properties were taken into account. A Gaussian-like heat source under consideration of the Fresnel absorption model was used to model the energy input of the laser beam. The heat source model was extended by a newly developed empirical approach of describing multiple beam reflections in the keyhole. To validate this new model, the numerical results were compared to experimental data and good agreement regarding the size and shape of the weld pool was observed. T2 - LANE Conference 2018 CY - Fürth, Germany DA - 03.09.2018 KW - Pulsed laser beam welding KW - Weld pool dynamics KW - Multiple reflections KW - Vaporization PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458749 DO - https://doi.org/10.1016/j.procir.2018.08.044 SN - 2212-8271 VL - 74 SP - 679 EP - 682 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-45874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Weld pool shape observation in high power laser beam welding JF - Procedia CIRP N2 - The geometry of the melt pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. In this study, a butt configuration of 15 mm thick structural steel and transparent quartz glass was used to observe the weld pool geometry by means of high-speed camera and an infrared camera recording. The observations show that the dimensions of the weld pool vary depending on the depth. The areas close to the weld pool surface take a teardrop-shape. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a 3D transient thermal-fluid numerical simulation was performed to obtain the weld pool shape and to understand the formation mechanism of the observed bulging effect. The model takes into account the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. The numerical results showed good accordance and were furthermore used to improve the understanding of the experimentally observed bulging effect. T2 - LANE Conference 2018 CY - Fürth, Germany DA - 03.09.2018 KW - High power laser beam welding KW - Weld pool shape KW - Bulging KW - Numerical process simulation PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458759 DO - https://doi.org/10.1016/j.procir.2018.08.043 SN - 2212-8271 VL - 74 SP - 683 EP - 686 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-45875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, Naresh A1 - Thiede, Tobias A1 - Bruno, Giovanni T1 - Residual Stresses in Selective Laser Melted Samples of a Nickel Based Superalloy T2 - Residual Stresses 2018 ECRS-10 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459818 SN - 978-1-94529-189-0 SN - 978-1-94529-188-3 DO - https://doi.org/10.21741/9781945291890-41 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 259 EP - 264 PB - Materials Research Forum LLC CY - Millersville, PA 17551, USA AN - OPUS4-45981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -