TY - JOUR A1 - Agroui, K. A1 - Jaunich, Matthias A1 - Hadj Arab, A. T1 - Analysis techniques of polymeric encapsulant materials for photovoltaic modules: situation and perspectives JF - Energy Procedia N2 - The properties of the encapsulant are critical to the long-term performance of photovoltaic (PV) modules under the influence of sunlight including UV, elevated temperature, humidity and diffusion of oxygen. Encapsulation process represents a bout 40% of the whole PV module cost. The introduction of new non-EVA encapsulant material type "Low-Cost, High-Performance" should provide a solution to outdoor yellowing degradation problems. The emerging encapsulant materials exhibit a good compatibility with emerging PV solar cells for long term durability. This new generation of encapsulant materials has the advantage to improve e the PV module performances and long term durability for specific climate like desert regions. This scientific contribution presents an overview of the different encapsulant materials currently on the market, the general requirements of the emerging encapsulant materials and characterizations techniques for degradation, diagnostic and reliability lifetime estimation in the framework of Algerian renewable energy strategy. T2 - Africa-EU Renewable Energy Re search and Innovation Symposium, RERIS 2016 CY - Tlemcen, Algeria DA - 08.03.2016 KW - Solar cell KW - Polymer encapsulant KW - PV module KW - Encapsulation process KW - Analysis technique PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377186 DO - https://doi.org/10.1016/j.egypro.2016.07.171 SN - 1876-6102 VL - 2016 IS - 93 SP - 203 EP - 210 PB - Elsevier Ltd. AN - OPUS4-37718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Metasurface-Enhanced Photon Upconversion upon 1550 nm Excitation JF - Advanced Science News N2 - Photon upconversion upon 1550 nm excitation is of high relevance for applications in the third biological excitation window, for photovoltaics beyond current limitations, and enables appealing options in the field of glass Fiber telecommunications. Trivalent doped erbium ions (Er3+) are the material of choice for 1550 nm excited upconversion, however, they suffer from a low absorption cross-section and a low brightness. Therefore, the ability of Silicon metasurfaces to provide greatly enhanced electrical near-fields is employed to enable efficient photon upconversion even at low external Illumination conditions. Hexagonally shaped β-NaYF4:Er3+ nanoparticles are placed on large-area silicon metasurfaces designed to convert near-infrared (1550 nm) to visible light. More than 2400-fold enhanced photon upconversion luminescence is achieved by using this metasurface instead of a planar substrate. With the aid of optical simulations based on the finite-element method, this result is attributed to the coupling of the excitation source with metasurface resonances at appropriate incident angles. Analysis of the excitation power density dependence of upconversion luminescence and red-to-green-emission ratios enables the estimation of nanoscale near-field enhancement on the metasurface. The findings permit the significant reduction of required external excitation intensities for photon upconversion of 1550 nm light, opening perspectives in biophotonics, telecommunication, and photovoltaics. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Single enhancement KW - SWIR KW - Method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537193 DO - https://doi.org/10.1002/adom.202101285. SN - 2195-1071 VL - 9 IS - 24 SP - 2101285 PB - Wiley-VCH-GmbH AN - OPUS4-53719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahlawat, A. A1 - Seeger, Stefan A1 - Gottschalk, Martin A1 - Tuch, T. A1 - Wiedensohler, A. T1 - Observation of systematic deviations between Faraday cup aerosol electrometers for varying particle sizes and flow rates - results of the AEROMET FCAE workshop JF - Metrologia N2 - Condensation particle counters (CPCs) are widely used for the measurement of aerosol particle number concentrations in the size range from approximately 3 nm to 3 μm. For an SI-traceable calibration of the size-dependent counting efficiency, which is advisable on a regular basis and required in several applications, Faraday cup aerosol electrometers (FCAEs) are considered to be a suitable SI-traceable reference.While the volumetric aerosol inlet flowrate and the electrical current measurement in FCAEs can be related to respective SI references, inter-comparison exercises for FCAEs are still performed on a regular basis to establish reliable uncertainty budgets and to further investigate the influences of designs and operational parameters on comparability. This is strongly demanded in the international community of metrological institutes and aerosol calibration facilities around the world, which provide CPC calibrations. In the present study, the performance of FCAEs was investigated,using Ag test aerosol particles with a 30 nm particle diameter by varying the inlet flowrates from 0.5 l min−1 to 4 l min−1. From our experimental results, significant deviations were observed in FCAE currents at sample flowrates smaller than 1.5 l min−1. It is recommended that these discrepancies should be quantified before an FCAE is used for CPC calibration at low sample flowrates and small particle sizes in the sub-30 nm size range. KW - Faraday cup aerosol electrometer KW - CPC calibration KW - Inter-comparison KW - Aerosol measurement instruments PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531315 DO - https://doi.org/10.1088/1681-7575/ac0710 SN - 1681-7575 SN - 0026-1394 VL - 58 IS - 5 SP - 1 EP - 8 PB - Institute of Physics (IOP) CY - Bristol, UK AN - OPUS4-53131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Super resolution laser line scanning thermography JF - Optics and Lasers in Engineering N2 - In this paper we propose super resolution measurement and post-processing strategies that can be applied in thermography using laser line scanning. The implementation of these techniques facilitates the separation of two closely spaced defects and avoids the expected deterioration of spatial resolution due to heat diffusion. The experimental studies were performed using a high-power laser as heat source in combination with pulsed thermography measurements (step scanning) or with continuous heating measurements (continuous scanning). Our work shows that laser line step scanning as well as continuous scanning both can be used within our developed super resolution (SR) techniques. Our SR techniques make use of a compressed sensing based algorithm in post- processing, the so-called iterative joint sparsity (IJOSP) approach. The IJOSP method benefits from both - the sparse nature of defects in space as well as from the similarity of each measurement. In addition, we show further methods to improve the reconstruction quality e.g. by simple manipulations in thermal image processing such as by considering the effect of the scanning motion or by using different optimization algorithms within the IJOSP approach. These super resolution image processing methods are discussed so that the advantages and disadvantages of each method can be extracted. Our contribution thus provides new approaches for the implementation of super resolution techniques in laser line scanning thermography and informs about which experimental and post-processing parameters should be chosen to better separate two closely spaced defects. KW - Super resolution KW - Laser thermography KW - Compressed sensing KW - Laser scanning KW - Joint sparsity PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509796 DO - https://doi.org/10.1016/j.optlaseng.2020.106279 SN - 0143-8166 VL - 134 SP - 106279 PB - Elsevier Ltd. AN - OPUS4-50979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Laser excited super resolution thermal imaging for nondestructive inspection of internal defects JF - Scientific Reports N2 - A photothermal super resolution technique is proposed for an improved inspection of internal defects. To evaluate the potential of the laser-based thermographic technique, an additively manufactured stainless steel specimen with closely spaced internal cavities is used. Four different experimental configurations in transmission, reflection, stepwise and continuous scanning are investigated. The applied image post-processing method is based on compressed sensing and makes use of the block sparsity from multiple measurement events. This concerted approach of experimental measurement strategy and numerical optimization enables the resolution of internal defects and outperforms conventional thermographic inspection techniques. KW - Super Resolution KW - Laser Thermography KW - Non Destructive Testing KW - Comressed Sensing KW - Inverse Problem KW - Thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519016 DO - https://doi.org/10.1038/s41598-020-77979-y VL - 10 IS - 1 SP - 22357 PB - Springer Nature AN - OPUS4-51901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Thummerer, G. A1 - Breitwieser, S. A1 - Mayr, G. A1 - Lecompagnon, Julien A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Multi-dimensional reconstruction of internal defects in additively manufactured steel using photothermal super resolution combined with virtual wave based image processing JF - IEEE transactions on industrial informatics N2 - We combine three different approaches to greatly enhance the defect reconstruction ability of active thermographic testing. As experimental approach, laser-based structured illumination is performed in a step-wise manner. As an intermediate signal processing step, the virtual wave concept is used in order to effectively convert the notoriously difficult to solve diffusion-based inverse problem into a somewhat milder wavebased inverse problem. As a final step, a compressed-sensing based optimization procedure is applied which efficiently solves the inverse problem by making advantage of the joint sparsity of multiple blind measurements. To evaluate our proposed processing technique, we investigate an additively manufactured stainless steel sample with eight internal defects. The concerted super resolution approach is compared to conventional thermographic reconstruction techniques and shows an at least four times better spatial resolution. KW - Active thermography KW - Additive manufacturing KW - Stainless steel KW - ADMM KW - Block regularization KW - Internal defects KW - Joint sparsity KW - Laser excitation KW - Multi-dimensional reconstruction KW - Photothermal super resolution KW - Virtual waves PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525330 DO - https://doi.org/10.1109/tii.2021.3054411 SN - 1551-3203 SN - 1941-0050 VL - 17 IS - 11 SP - 7368 EP - 7378 PB - IEEE CY - New York, NY AN - OPUS4-52533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadian, A. A1 - Scheiber, D. A1 - Zhou, X. A1 - Gault, B. A1 - Darvishi Kamachali, Reza A1 - Romaner, L. A1 - Ecker, W. A1 - Dehm, G. A1 - Liebscher, C. H. T1 - Interstitial segregation has the potential to mitigate liquid metal embrittlement in iron JF - Advanced Materials N2 - The embrittlement of metallic alloys by liquid metals leads to catastrophic material failure and severely impacts their structural integrity. The weakening of grain boundaries by the ingress of liquid metal and preceding segregation in the solid are thought to promote early fracture. However, the potential of balancing between the segregation of cohesion-enhancing interstitial solutes and embrittling elements inducing grain boundary decohesion is not understood. Here, we unveil the mechanisms of how boron segregation mitigates the detrimental effects of the prime embrittler, zinc, in a Σ5 [0 0 1] tilt grain boundary in α −Fe (4 at.% Al). Zinc forms nanoscale segregation patterns inducing structurally and compositionally complex grain boundary states. Ab-initio simulations reveal that boron hinders zinc segregation and compensates for the zinc induced loss in grain boundary cohesion. Our work sheds new light on how interstitial solutes intimately modify grain boundaries, thereby opening pathways to use them as dopants for preventing disastrous material failure. KW - Materials Modelling KW - Liquid Metal Embrittlement KW - Alloy Safety KW - CALPHAD KW - Microstructure Design PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573576 DO - https://doi.org/10.1002/adma.202211796 SN - 0935-9648 IS - e2211796 PB - Wiley online library AN - OPUS4-57357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmed, R. A1 - Vaishampayan, A. A1 - Cuellar-Camacho, J. L. A1 - Wight, D. J. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang A1 - Grohmann, E. A1 - Haag, R. A1 - Wagner, O. T1 - Multivalent Bacteria Binding by Flexible Polycationic Microsheets Matching Their Surface Charge Density JF - Advance Material Interfaces N2 - Aiming at the overall negative surface charge of bacteria, a new strategy of antibacterial agents based on large polymer-modified graphene oxide (GO) sheets is assessed. The presented flexible, polycationic Sheets match the size and charge density of the Escherichia coli surface charge density (2 × 1014 cm−2). These matching parameters create an unspecific but very strong bacteria adsorber by multivalent, electrostatic attraction. Their interaction with bacteria is visualized via atomic force and confocal microscopy and shows that they effectively bind and wrap around E. coli cells, and thereby immobilize them. The incubation of Gram-negative and -positive bacteria (E. coli and methicillin-resistant Staphylococcus aureus, MRSA) with these polycationic sheets leads to the inhibition of proliferation and a reduction of the colony forming bacteria over time. This new type of antibacterial agent acts in a different mode of Action than classical biocides and could potentially be employed in medicinal, technical, or agriculture applications. The presented microsheets and their unspecific binding of cell interfaces could further be employed as adsorber material for bacterial filtration or immobilization for imaging, analysis, or sensor technologies. KW - Surface charge KW - Bacteria KW - Graphene oxide KW - Escherichia coli KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509651 DO - https://doi.org/10.1002/admi.201902066 VL - 7 IS - 15 SP - 1902066 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akbar, S. A1 - Hasanain, S.K. A1 - Ivashenko, O. A1 - Dutka, M.V. A1 - Akhtar, N. A1 - De Hosson, J.Th.M. A1 - Ali, Naveed A1 - Rudolf, P. T1 - Defect ferromagnetism in SnO2:Zn2+ hierarchical nanostructures: correlation between structural, electronic and magnetic properties JF - RSC Advances N2 - We report on the ferromagnetism of Sn1-xZnxO2 (x < 0.1) hierarchical nanostructures with various morphologies synthesized by a solvothermal route. A room temperature ferromagnetic and paramagnetic response was observed for all compositions, with a maximum in ferromagnetism for x = 0.04. The ferromagnetic behaviour was found to correlate with the presence of zinc on substitutional Sn sites and with a low oxygen vacancy concentration in the samples. The morphology of the nanostructures varied with zinc concentration. The strongest ferromagnetic response was observed in nanostructures with well-formed shapes, having nanoneedles on their surfaces. These nanoneedles consist of (110) and (101) planes, which are understood to be important in stabilizing the ferromagnetic defects. At higher zinc concentration the nanostructures become eroded and agglomerated, a phenomenon accompanied with a strong decrease in their ferromagnetic response. The observed trends are explained in the light of recent computational studies that discuss the relative stability of ferromagnetic defects on various surfaces and the role of oxygen vacancies in degrading ferromagnetism via an increase in free electron concentration. KW - Ferromagnetism KW - Nanostructures KW - Magnetic properties PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473014 DO - https://doi.org/10.1039/c9ra00455f SN - 2046-2069 VL - 9 IS - 7 SP - 4082 EP - 4091 PB - Royal Society of Chemistry AN - OPUS4-47301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Al-Falahat, A M A1 - Kardjilov, N A1 - Woracek, R A1 - Boin, M A1 - Markötter, Henning A1 - Kuhn, L T A1 - Makowska, M A1 - Strobl, M A1 - Pfretzschner, B A1 - Banhart, J A1 - Manke, I T1 - Temperature dependence in Bragg edge neutron transmission measurements JF - Journal of Applied Crystallography N2 - A systematic study has been carried out to investigate the neutron transmission signal as a function of sample temperature. In particular, the experimentally determined wavelength-dependent neutron attenuation spectra for a martensitic steel at temperatures ranging from 21 to 700°C are compared with simulated data. A theoretical description that includes the Debye–Waller factor in order to describe the temperature influence on the neutron cross sections was implemented in the nxsPlotter software and used for the simulations. The analysis of the attenuation coefficients at varying temperatures shows that the missing contributions due to elastic and inelastic scattering can be clearly distinguished: while the elastically scattered intensities decrease with higher temperatures, the inelastically scattered intensities increase, and the two can be separated from each other by analysing unique sharp features in the form of Bragg edges. This study presents the first systematic approach to quantify this effect and can serve as a basis , for example, to correct measurements taken during in situ heat treatments, in many cases being a prerequisite for obtaining quantifiable results. KW - Neutron Bragg edge imaging KW - Debye–Waller factor KW - Temperature-dependent neutron transmission KW - Super martensitic stainless steel PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556896 DO - https://doi.org/10.1107/S1600576722006549 VL - 55 IS - Pt 4 SP - 919 EP - 928 PB - International Union of Crystallography AN - OPUS4-55689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -