TY - JOUR A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Ritzer, Tobias A1 - Kruschwitz, Sabine T1 - Combining Signal Features of Ground-Penetrating Radar to Classify Moisture Damage in Layered Building Floors N2 - To date, the destructive extraction and analysis of drilling cores is the main possibility to obtain depth information about damaging water ingress in building floors. The time- and costintensive procedure constitutes an additional burden for building insurances that already list piped water damage as their largest item. With its high sensitivity for water, a ground-penetrating radar (GPR) could provide important support to approach this problem in a non-destructive way. In this research, we study the influence of moisture damage on GPR signals at different floor constructions. For this purpose, a modular specimen with interchangeable layers is developed to vary the screed and insulation material, as well as the respective layer thickness. The obtained data set is then used to investigate suitable signal features to classify three scenarios: dry, damaged insulation, and damaged screed. It was found that analyzing statistical distributions of A-scan features inside one B-scan allows for accurate classification on unknown floor constructions. Combining the features with multivariate data analysis and machine learning was the key to achieve satisfying results. The developed method provides a basis for upcoming validations on real damage cases. KW - Radar KW - Material Moisture KW - Non-destructive testing KW - Signal Features KW - Civil Engineering KW - Machine Learning PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533606 DO - https://doi.org/10.3390/app11198820 VL - 11 IS - 19 SP - 8820 PB - MDPI AN - OPUS4-53360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seher, Julia A1 - Fröba, M. T1 - Shape matters: The effect of particle morphology on the fast-charging performance of LiFePO4/C nanoparticle composite electrodes N2 - For the successful use of lithium-ion batteries in automotive applications, reliable availability of high storage capacity and very short recharging times are essential. In order to develop the perfect battery for a certain application, structure–property relationships of each active material must be fully understood. LiFePO4 is of great interest due to its fast-charging capability and high stability regarding its thermal resistance and chemical reactivity. The anisotropic lithium-ion diffusion through the LiFePO4 crystal structure indicates a strong dependence of the electrochemical performance of a nanostructured active material on particle morphology. In this paper, the relationship of the particle morphology and fast-charging capability of LiFePO4/C core/shell nanoparticles in half-cells was studied. For this purpose, a new multistep synthesis strategy was developed. It involves the combination of a solvothermal synthesis followed by an in situ polymer coating and thermal calcination step. Monodisperse rodlike LiFePO4 nanoparticles with comparable elongation along the b-axis (30–50 nm) and a varying aspect ratio c/a (2.4–6.9) were obtained. A strong correlation of the fast-charging capability with the aspect ratio c/a was observed. When using LiFePO4 nanoparticles with the smallest aspect ratio c/a, the best electrochemical performance was received regarding the specific capacity at high C-rates and the cycling stability. A reduction of the aspect ratio c/a by 30% (3.6 to 2.4) was found to enhance the charge capacity at 10 C up to an order of magnitude (7.4–73 mA h·g–1). KW - LiFePO4 KW - Schnellladung KW - Nanoparticles KW - Carbon KW - Chemical synthesis KW - Electrochemical cells KW - Materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533004 DO - https://doi.org/10.1021/acsomega.1c03432 SN - 2470-1343 VL - 6 IS - 37 SP - 24062 EP - 24069 PB - American Chemical Society CY - Washington, DC AN - OPUS4-53300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Process-related influences and correlations in wire arc additive manufacturing of high-strength steels N2 - High-strength fine-grained structural steels have great potential for weight-optimized, efficient structures in many modern steel applications. Further advances in efficiency can be achieved through additive manufacturing and bionic design. Commercial high-strength filler materials for wire arc additive manufacturing (WAAM) are already provided by the consumable producers. Today, application would be strictly limited due to absence of quantitative findings or any guidelines for the industry regarding welding-related stresses and component safety during manufacturing and service. Hence, process- and material-related influences and design-related restraint conditions associated with formation of residual stresses and cold cracking risk are investigated. The aim is the accessibility of special WAAM self-restraining cold cracking tests and easy applicable processing recommendations, enabling an economical, fit-for-purpose and crack-safe WAAM of high-strength steels. This first study focuses on determination of interactions between WAAM process parameters, resulting layer geometry, microstructure and residual stresses, analyzed via X-ray diffraction. Defined reference specimens are automated welded using a special WAAM solid wire (yield strength >820 MPa). Geometric properties can be specifically adjusted by wire feed and welding speed, but cannot be varied arbitrarily, since a high heat input causes local overheating, inadmissible changes of microstructure and mechanical properties, defects and comparable high tensile residual stresses. T2 - 22. Werkstofftechnischen Kolloquium der TU Chemnitz CY - Online meeting DA - 24.03.2021 KW - Residual stresses KW - Additive Manufacturing KW - High-strength steel PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533300 DO - https://doi.org/10.1088/1757-899X/1147/1/012002 VL - 1147 SP - 012002 PB - IOP Publishing Ltd AN - OPUS4-53330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wittmar, J. A1 - Ohle, Corina A1 - Kunte, Hans-Jörg A1 - Brand, I. T1 - Effect of Ectoine on the Conformation and Hybridization of dsDNA in Monolayer Films: A Spectroelectrochemical Study N2 - Lack of long-time stability of dsDNA-based supramolecular assemblies is an important issue that hinders their applications. In this work, 20 base pairs long dsDNA fragments [(dCdG)20 65%] composed of 65% dCdG and 35% dAdT nucleotides were tethered via a thiol to the surface of a gold electrode. The selfassembled (dCdG)20 -65% monolayer was immersed in solutions containing ectoine, a compatible solute. Electrochemical results showed that these monolayers were stable for one month. In situ IR spectroscopy indicated that ectoine interacts weakly with the phosphate-ribose backbone, dehydrating the phosphate groups and stabilizing the A-DNA conformation. This structural reorganization led to a reorientation of nucleic acid base pairs and a local disruption of the double-helix structure. However, the conformation and orientation of the dsDNA fragment was stable in the KW - Ectoine KW - dsDAN monolayer KW - A-DNA conformation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533346 DO - https://doi.org/10.1002/celc.202100816 SN - 2196-0216 VL - 8 IS - 20 SP - 3844 EP - 3854 PB - Wiley-VCH GmbH AN - OPUS4-53334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Friction and mechanical properties of AFM-scan-induced ripples in polymer films N2 - In the present paper, friction and mechanical properties of AFM-Scan-Induced ripple structures on films of polystyrene and poly-n-(butyl methacrylate) are investigated. Force volume measurements allow a quantitative analysis of the elastic moduli with nanometer resolution, showing a contrast in mechanical response between bundles and troughs. Additionally, analysis of the lateral cantilever deflection shows a clear correlation between friction and the sample topography. Those results support the theory of crack propagation and the formation of voids as a mechanism responsible for the formation of ripples. This paper also shows the limits of the presented measuring methods for soft, compliant, and small structures. KW - AFM KW - Polymer KW - Ripples KW - Mechanical properties KW - Friction PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532772 DO - https://doi.org/10.3389/fmech.2021.672898 SN - 2297-3079 VL - 7 SP - 1 EP - 8 PB - Frontiers Media CY - Lausanne AN - OPUS4-53277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Sprengel, Maximilian A1 - Pirling, T. A1 - Kromm, Arne A1 - Bruno, Giovanni T1 - The importance of subsurface residual stress in laser powder bed fusion IN718 N2 - The residual stress (RS) in laser powder bed fusion (LPBF) IN718 alloy samples produced using a 67°-rotation scan strategy is investigated via laboratory X-ray diffraction (XRD) and neutron diffraction (ND). The location dependence of the strain-free (d₀) lattice spacing in ND is evaluated using a grid array of coupons extracted from the far-edge of the investigated specimen. No compositional spatial variation is observed in the grid array. The calculated RS fields show considerable non-uniformity, significant stress gradients in the region from 0.6 to 2 mm below the surface, as well as subsurface maxima that cannot be accounted for via XRD. It is concluded that failure to determine such maxima would hamper a quantitative determination of RS fields by means of the stress balance method. KW - Laser powder bed fusion KW - Neutron and X-ray diffraction KW - Residual stress analysis KW - Strain-free lattice references KW - Stress balance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532707 DO - https://doi.org/10.1002/adem.202100895 SN - 1615-7508 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Athman, Rukeia A1 - Rädler, Jörg A1 - Löhmann, Oliver A1 - Ariza, Angela A1 - Muth, Thilo T1 - The BAM Data Store N2 - As a partner in several NFDI consortia, the Bundesanstalt für Materialforschung und -prüfung (BAM, German federal institute for materials science and testing) contributes to research data standardization efforts in various domains of materials science and engineering (MSE). To implement a central research data management (RDM) infrastructure that meets the requirements of MSE groups at BAM, we initiated the Data Store pilot project in 2021. The resulting infrastructure should enable researchers to digitally document research processes and store related data in a standardized and interoperable manner. As a software solution, we chose openBIS, an open-source framework that is increasingly being used for RDM in MSE communities. The pilot project was conducted for one year with five research groups across different organizational units and MSE disciplines. The main results are presented for the use case “nanoPlattform”. The group registered experimental steps and linked associated instruments and chemicals in the Data Store to ensure full traceability of data related to the synthesis of ~400 nanomaterials. The system also supported researchers in implementing RDM practices in their workflows, e.g., by automating data import and documentation and by integrating infrastructure for data analysis. Based on the promising results of the pilot phase, we will roll out the Data Store as the central RDM infrastructure of BAM starting in 2023. We further aim to develop openBIS plugins, metadata standards, and RDM workflows to contribute to the openBIS community and to foster RDM in MSE. T2 - 1st Conference on Research Data Infrastructure DA - 12.09.2023 KW - Research Data Infrastructure KW - Electronic Lab Notebook (ELN) KW - openBIS KW - Research Data Management PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596032 DO - https://doi.org/10.52825/CoRDI.v1i.229 VL - 1 SP - 1 EP - 5 AN - OPUS4-59603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Xin A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Distributed acoustic sensing to monitor ground motion/movement at multi-frequency bands N2 - A novel distributed acoustic sensing technique is proposed that exploits both phase and amplitude of the Rayleigh backscattered light to quantify the environmental variation. The system employs a wavelength-scanning laser and an imbalanced Mach-Zehnder interferometer to acquire the reflection spectra and the phase of the detected light, respectively. Fading-free and low-frequency measurements are realized via the crosscorrelation of the reflection spectra. The discrete crosscorrelation is used to circumvent the nonlinear frequency sweeping of the laser. Based on the phase of the backscattered light, it is possible to quantify fast environmental variations. The whole system requires no hardware modification of the existing system and its functionality is experimentally validated. The proposed system has the potential to monitor ground motion/movement at very low frequency band like subsidence around mining areas and at high frequency band like earthquakes and vibrations induced by avalanches. KW - Distributed acoustic sensing KW - DAS KW - Distributed fiber optic sensing KW - Ground motion detection KW - Subsidence monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596129 DO - https://doi.org/10.1109/JLT.2024.3358495 SP - 1 EP - 8 PB - Optical Society und IEEE Photonics Society AN - OPUS4-59612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trogadas, P. A1 - Cho, J. I. S. A1 - Rasha, L. A1 - Lu, X. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Manke, I. A1 - Shearing, P. R. A1 - Brett, D. J. L. A1 - Coppens, M. O. T1 - A nature-inspired solution for water management in flow fields for electrochemical devices N2 - A systematic, nature-inspired chemical engineering approach is employed to solve the issue of flooding in electrochemical devices. The mechanism of passive water transport utilized by lizards living in arid environments is leveraged to design flow-fields with a microchannel structure on their surface, through which capillary pressure rapidly removes the water generated in the electrochemical device. This water management strategy is implemented in proton exchange membrane fuel cells (PEMFCs) with a lunginspired flow-field, which ensures uniform distribution of reactants across the catalyst layer. Jointly, this nature-inspired approach results in flood-free, stable operation at 100% RH and a B60% increase in current (B1.9 A cm-2) and peak power density (B650 mW cm−2) compared to current PEMFCs with a flood-prone, serpentine flow-field (B0.8 A cm-2 and 280 mW cm-2, respectively). This significant advance allows for PEMFC operation at fully humidified conditions. KW - Neutron imaging KW - X-ray tomography KW - Fuel cell PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596662 DO - https://doi.org/10.1039/d3ee03666a VL - 17 SP - 2007 EP - 2017 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kapoor, M. A1 - Overgaard Christensen, Ch. A1 - Wittrup Schmidt, J. A1 - Dalsgaard Sørensen, J. A1 - Thöns, Sebastian T1 - Decision analytic approach for the reclassification of concrete bridges by using elastic limit information from proof loading N2 - Reclassification of bridges, i.e., a change in load rating, using reliability-based methods and a direct update with proof load information has been presented by many authors. However, bridge reclassification has hardly been studied from a decision analytic perspective, i.e., with quantification of the risks and benefits of different classification choices, and the expected benefit gain from proof loading. We derive, explain and exemplify a decision analytic approach for bridge reclassification along with models for (1) elastic and ultimate capacity and their adaptation with proof load information, (2) proof load information with classification outcomes accounting for target reliabilities and, (3) utilities including socio-economic benefits from reclassification. The approach and models are exemplified with a case study based on reclassification of bridges with a low existing classification. Decision rules, for practical use by a highway authority to find the optimal classification, are identified and documented based on: (1) the measurement of the capacity at elastic limit by proof loading, (2) the bridge reclassification benefits, and, (3) the required annual reliability level. From a Value of Information analysis, it is concluded that the proof load information is highly valuable for reclassification in cases of high socio-economic benefits and high reliability requirements. KW - Proof loading KW - Structural reliability KW - Value of information KW - Decision analysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596845 DO - https://doi.org/10.1016/j.ress.2022.109049 SN - 0951-8320/ VL - 232 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-59684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -