TY - JOUR A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - First of its kind: A test artifact for direct laser writing N2 - With femtosecond-laser direct writing (fs-LDW) maturing in all aspects as a manufacturing technology, a toolset for quality assurance must be developed. In this work we introduce a first of its kind test artifact. Test artifacts are standardized 3D models with specific geometric features to evaluate the performance of writing parameters. Test artifacts are already common in other 3D additive manufacturing technologies e.g. selective laser melting. The test artifact introduced in this work was developed in particular to accommodate the high geometrical resolution of fs-LDW structures and the limited possibilities to examine the resulting structure. Geometric accuracy, surface adhesion as well as confocal Raman spectroscopy results were considered when evaluating the design of the test artifact. We will explain the individual features and design considerations of our fs-LDW test artifact. The difference between two slicers, Cura and 3DPoli, and the implications on measured feature sizes and the general shape is quantified. The measured geometries are used to derive a general design guide for a specific combination of photoresists, laser power and scanning speed and to analyze the geometric accuracy of a structure produced using these guidelines. The shown test artifact is publicly available as STL file on GitHub (https://github.com/BAMresearch/2PP-TestArtifact) and in the supplement. KW - Laser direct writing KW - Multi photon lithography KW - Reference material KW - Raman spectroscopy KW - Confocal raman imaging KW - Slicers KW - Open data on zenodo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580951 DO - https://doi.org/10.1088/1361-6501/acc47a VL - 34 IS - 7 SP - 1 EP - 14 PB - IOP Science AN - OPUS4-58095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Taffe, A. T1 - Approach to the development of a model to quantify the quality of tendon localization in concrete using ultrasound N2 - Each engineering decision is based on a number of more or less accurate information. In assessment of existing structures, additional relevant information collected with on-site inspections facilitate better decisions. However, observed data basically represents the physical characteristic of interest with an uncertainty. This uncertainty is a measure of the inspection quality and can be quantified by expressing the measurement uncertainty. The internationally accepted rules for calculating measurement uncertainty are well established and can be applied straightforwardly in many practical cases. Nevertheless, the calculations require the occasionally time-consuming development of an individually suitable measurement model. This contribution attempts to emphasize proposals for modelling the non-destructive depth measurement of tendons in concrete using the ultrasonic echo technique. The proposed model can serve as guideline for the determination of the quality of the measured information in future comparable inspection scenarios. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Kapstadt, South Africa DA - 03.10.2022 KW - Reliability KW - Measurement Uncertainty KW - Non-Destructive Testing KW - Existing Concrete Structures PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559927 DO - https://doi.org/10.1051/matecconf/202236403007 SN - 2261-236X VL - 364 SP - 1 EP - 8 PB - EDP Sciences CY - Les Ulis, France AN - OPUS4-55992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Küttenbaum, Stefan A1 - Braml, T. A1 - Heinze, M. A1 - Kainz, C. A1 - Keuser, M. A1 - Kotz, P. A1 - Lechner, T. A1 - Maack, Stefan A1 - Reinke, K.-D. A1 - Schulze, S. A1 - Soukup, A. A1 - Stettner, C. A1 - Taffe, A. A1 - Wöstmann, Jens T1 - Guideline on NDT-supported reliability assessment of existing structures - Current developments in Germany N2 - Information about an existing structure can be collected at certain costs to evaluate the reliability and condition as realistically as necessary. This information can be relevant or irrelevant, true or biased, precise or imprecise. The incorporation of relevant and quality-assessed measured information into reliability reassessment offers the chance to extend remaining lifetimes and support decision making about optimal actions or maintenance strategies. This paper shows recent developments in a national research project that aims to produce a guideline on the NDT-based, structure-specific modification of partial safety factors. The general methodology, results from recalculations according to the Eurocodes and metrologically solvable testing tasks relevant in the recalculation of the concrete bridges are shown and compared with the non-destructive testing methods applicable to concrete bridges. A case study is used to demonstrate that as-built drawings, in this case of the positions of tendons and shear reinforcement, can be verified using the radar method. KW - Non-destructive testing KW - Concrete bridges KW - Partial safety factor modification PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584862 DO - https://doi.org/10.1002/cepa.2168 SN - 2509-7075 VL - 6 IS - 5 SP - 537 EP - 543 PB - Ernst & Sohn CY - Berlin AN - OPUS4-58486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin A1 - Borchardt-Giers, Kerstin A1 - Aßmann, Norman A1 - Niederleithinger, Ernst T1 - Low frequency ultrasonic pulse-echo datasets for object detection and thickness measurement in concrete specimens as testing tasks in civil engineering N2 - The dataset contains raw data gathered with the ultrasonic pulse-echo method on concrete specimens. The surfaces of the measuring objects were automatically scanned point by point. Pulse-echo measurements were performed at each of these measuring points. The test specimens represent two typical testing tasks in construction industry: the detection of objects and the determination of dimensions to describe the geometry of components. By automating the measurement process, the different test scenarios are examined with a high repeatability, precision and measuring point density. Longitu- dinal and transversal waves were used and the geometrical aperture of the testing system was varied. The low-frequency probes operate in a range of up to approximately 150 kHz. In addition to the specification of the geometrical dimensions of the individual probes, the directivity pattern and the sound field characteristics are provided. The raw data are stored in a universally readable format. The length of each time signal (A-scan) is two milliseconds and the sampling rate is two mega-samples per second. The provided data can be used for comparative studies in signal analysis, imag- ing and interpretation as well as for evaluation pur- poses in different, practically relevant testing scenarios. KW - Validation KW - Puls-echo method KW - Ultrasonic KW - Non-destructive testing KW - SAFT KW - Reconstruction algorithm PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575185 DO - https://doi.org/10.1016/j.dib.2023.109233 SN - 2352-3409 VL - 48 SP - 1 EP - 16 PB - Elsevier Inc. AN - OPUS4-57518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Niederleithinger, Ernst T1 - Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo N2 - Existing concrete structures were usually designed for lifetimes of several decades. The current and urgently required efforts to increase sustainability and protect the environment will likely result in extended service lives up to 100 years. To achieve such objectives, it is required to assess structures over their entire lifecycles. Non-destructive testing (NDT) methods can reliably support the assessment of existing structures during the construction, operational, and decommissioning phases. One of the most important and safety-relevant components of a prestressed concrete structure are the tendons. NDT methods such as the ultrasonic echo method are suitable for both the detection and the localization of the tendons, i.e., the measurement of their geometrical position inside the component. The uniqueness of structures, concrete heterogeneity, and varying amounts of secondary components such as the reinforcement represent obstacles in the application of these methods in practice. The aim of this contribution is to demonstrate a practicable procedure, that can be used in the field to determine the parameters required for the measuring data analysis without extensive knowledge about the investigated components. For this purpose, a polyamide reference specimen is used to show which steps are required to obtain reliable imaging information on the position of tendons from the measurement data. The procedure is then demonstrated on a concrete test specimen that covers various relevant and practice-oriented test scenarios, such as varying tendon depths and component thicknesses. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Validation KW - Non-destructive testing KW - Ultrasonic KW - Reconstruction KW - Concrete KW - Tendon duct PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559979 DO - https://doi.org/10.1051/matecconf/202236403007 SN - 2261-263X SP - 1 EP - 8 AN - OPUS4-55997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebauer, D. A1 - Gutiérrez, R, A1 - Marx, S. A1 - Butler, M. A1 - Grahl, K. A1 - Thiel, T. A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Pirskawetz, Stephan A1 - Breit, W. A1 - Schickert, M. A1 - Krüger, M. T1 - Interrelated dataset of rebound numbers, ultrasonic pulse velocities and compressive strengths of drilled concrete cores from an existing structure and new fabricated concrete cubes N2 - Two test series were examined using nondestructive measuring methods by six independent laboratories before determining their compressive strength. The nondestructive test methods used were the rebound hammer and ultrasonic pulse velocity measurement. Two types of geometries were investigated: drilled cores and cubes. The measurement procedure for each of these datasets is conditioned to the geometry and is therefore different. The first series consists of 20 drilled cores (approximately diameter/height = 10 cm/20 cm) from the 55-year-old Lahntal Viaduct near Limburg, Germany. After preparation in the first laboratory, the lateral surface of the drilled cores was tested with the rebound hammer using a given pattern. Every laboratory tested every drilled core at different locations. Ultrasonic measurements in transmission were performed repeatedly at predefined points on the flat surfaces of the specimen. The second series consisted of 25 newly manufactured concrete cubes of a mix with a target concrete strength class of C30/37. The edge length was 15 cm. Each laboratory received five specimens of this test series. Thus, contrary to the first series, each specimen was tested by only one laboratory. Two side faces of each cube were tested with the rebound hammer. In addition, ultrasonic measurements were performed by one laboratory. The time of flight was measured between the tested side faces of the rebound hammer at different positions. For both series, rebound hammers were used to determine the R-value as well as the Q-value. The rebound hammer models within the laboratories were always the same, while they differed between the laboratories. The ultrasonic measurements took place with different measurement systems and couplants. Finally, both specimen series were tested destructively for compressive strength. The dataset contains the raw data summarized in tabular form. In addition, relevant calculated data are included in some cases. For the ultrasonic measurements, the time of flight has already been converted into the ultrasonic velocity. Besides, in addition to the raw data of the compressive strength test (force, weight, and geometry values), the calculated compressive strengths and densities are also provided. KW - Nondestructive testing KW - Ultra sound KW - Rebound hammer KW - Existing structure KW - Civil engineering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574655 DO - https://doi.org/10.1016/j.dib.2023.109201 SN - 2352-3409 VL - 48 IS - 109201 SP - 1 EP - 13 PB - Elsevier Inc. AN - OPUS4-57465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bosc-Bierne, Gaby A1 - Ewald, Shireen A1 - Kreuzer, Oliver J. A1 - Weller, Michael G. T1 - Efficient Quality Control of Peptide Pools by UHPLC and Simultaneous UV and HRMS Detection N2 - Peptide pools consist of short amino acid sequences and have proven to be versatile tools in various research areas in immunology and clinical applications. They are commercially available in many different compositions and variants. However, unlike other reagents that consist of only one or a few compounds, peptide pools are highly complex products which makes their quality control a major challenge. Quantitative peptide analysis usually requires sophisticated methods, in most cases isotope-labeled standards and reference materials. Usually, this would be prohibitively laborious and expensive. Therefore, an approach is needed to provide a practical and feasible method for quality control of peptide pools. With insufficient quality control, the use of such products could lead to incorrect experimental results, worsening the well-known reproducibility crisis in the biomedical sciences. Here we propose the use of ultra-high performance liquid chromatography (UHPLC) with two detectors, a standard UV detector at 214 nm for quantitative analysis and a high-resolution mass spectrometer (HRMS) for identity confirmation. To be cost-efficient and fast, quantification and identification are performed in one chromatographic run. An optimized protocol is shown, and different peak integration methods are compared and discussed. This work was performed using a peptide pool known as CEF advanced, which consists of 32 peptides derived from cytomegalovirus (CMV), Epstein–Barr virus (EBV) and influenza virus, ranging from 8 to 12 amino acids in length. N2 - Peptidpools bestehen aus kurzen Aminosäuresequenzen und haben sich als vielseitige Werkzeuge in verschiedenen Forschungsbereichen der Immunologie und bei klinischen Anwendungen erwiesen. Sie sind in vielen verschiedenen Zusammensetzungen und Varianten im Handel erhältlich. Im Gegensatz zu anderen Reagenzien, die nur aus einer oder wenigen Verbindungen bestehen, sind Peptidpools jedoch hochkomplexe Produkte, was ihre Qualitätskontrolle zu einer großen Herausforderung macht. Die quantitative Peptidanalyse erfordert in der Regel ausgefeilte Methoden, in den meisten Fällen isotopenmarkierte Standards und Referenzmaterialien. Dies ist in der Regel sehr aufwändig und teuer. Daher wird ein Ansatz benötigt, der eine praktische und praktikable Methode zur Qualitätskontrolle von Peptidpools bietet. Bei unzureichender Qualitätskontrolle könnte die Verwendung solcher Produkte zu falschen Versuchsergebnissen führen, was das bekannte Problem der Reproduzierbarkeit in den biomedizinischen Wissenschaften noch verschärfen würde. Hier schlagen wir die Verwendung der Ultrahochleistungs-Flüssigkeitschromatographie (UHPLC) mit zwei Detektoren vor, einem Standard-UV-Detektor bei 214 nm für die quantitative Analyse und einem hochauflösenden Massenspektrometer (HRMS) für die Identitätsbestätigung. Um kosteneffizient und schnell zu sein, werden Quantifizierung und Identifizierung in einem einzigen chromatographischen Lauf durchgeführt. Es wird ein optimiertes Protokoll gezeigt, und es werden verschiedene Peak-Integrationsmethoden verglichen und diskutiert. Für diese Arbeit wurde ein Peptidpool verwendet, der als CEF advanced bekannt ist und aus 32 Peptiden besteht, die vom Cytomegalovirus (CMV), Epstein-Barr-Virus (EBV) und Influenzavirus stammen und zwischen 8 und 12 Aminosäuren lang sind. KW - Synthetic peptides KW - Quality control KW - Impurites KW - Byproducts KW - Degradation KW - Mass spectrometry KW - Orbitrap PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602299 DO - https://doi.org/10.3390/separations11050156 SN - 2297-8739 VL - 11 IS - 5 SP - 1 EP - 18 PB - MDPI CY - Basel AN - OPUS4-60229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered glass monoliths as supports for affinity columns N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 min. Due to the glass material’s excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nano-filtration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Affinity Extraction KW - Affinity Separation KW - Protein Purification KW - Down Stream Processing KW - Antibody Purification KW - Diagnostic Antibodies KW - Therapeutic Antibodies KW - Automated Purification KW - HPLC KW - FPLC KW - IgG determination KW - Concentration step KW - Monoclonal Antibodies KW - Polyclonal Antibodies KW - Human Plasma KW - Glass Support KW - Borosilicate Glass KW - Monolith KW - Sintered Material KW - Additive Manufacturing KW - Column holder KW - Construction KW - Open Science KW - Citizen Science KW - Protein A KW - Regeneration KW - High-Speed Separations KW - Robustness PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527581 DO - https://doi.org/10.3390/separations8050056 SN - 2297-8739 VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-52758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation Crosslinking - An Efficient Method for the Oriented Immobilization of Antibodies N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein A KW - Protein G KW - Immunoprecipitation KW - Immunocapture KW - Regeneration KW - Biosensor KW - Immunosensor KW - Affinity chromatography KW - Immunoaffinity extraction KW - Oriented immobilization KW - Immunoassay KW - Bioconjugation PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479786 DO - https://doi.org/10.3390/mps2020035 SN - 2409-9279 VL - 2 IS - 2 SP - 1 EP - 14 PB - MDPI CY - Basel, Switzerland AN - OPUS4-47978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Development of an Accurate and Robust Air-Coupled Ultrasonic Time-of-Flight Measurement Technique N2 - Ultrasonic time-of-flight (ToF) measurements enable the non-destructive characterization of material parameters as well as the reconstruction of scatterers inside a specimen. The time-consuming and potentially damaging procedure of applying a liquid couplant between specimen and transducer can be avoided by using air-coupled ultrasound. However, to obtain accurate ToF results, the waveform and travel time of the acoustic signal through the air, which are influenced by the ambient conditions, need to be considered. The placement of microphones as signal receivers is restricted to locations where they do not affect the sound field. This study presents a novel method for in-air ranging and ToF determination that is non-invasive and robust to changing ambient conditions or waveform variations. The in-air travel time was determined by utilizing the azimuthal directivity of a laser Doppler vibrometer operated in refracto-vibrometry (RV) mode. The time of entry of the acoustic signal was determined using the autocorrelation of the RV signal. The same signal was further used as a reference for determining the ToF through the specimen in transmission mode via cross-correlation. The derived signal processing procedure was verified in experiments on a polyamide specimen. Here, a ranging accuracy of <0.1 mm and a transmission ToF accuracy of 0.3μs were achieved. Thus, the proposed method enables fast and accurate non-invasive ToF measurements that do not require knowledge about transducer characteristics or ambient conditions. KW - Air-coupled ultrasound KW - Laser Doppler vibrometer KW - Refracto-vibrometry KW - Acousto-optic effect KW - Time-of-flight measurements KW - In-air ranging KW - Non-destructive testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544711 DO - https://doi.org/10.3390/s22062135 VL - 22 IS - 6 SP - 1 EP - 17 PB - MDPI CY - Basel, Switzerland AN - OPUS4-54471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -