TY - JOUR A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Würth, Christian A1 - Tavernaro, Isabella A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on Absolute Photoluminescence Quantum Yield Measurements of Solid Light Converting Phosphors with Three Commercial Integrating Sphere Setups N2 - Scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter to characterize the performance of these materials is the photoluminescence/fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. To identify and quantify the sources of uncertainty of absolute measurements of Φf of scattering samples, the first interlaboratory comparison (ILC) of three laboratories from academia and industry was performed by following identical measurement protocols. Thereby, two types ofcommercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring the Φf of transparent and scattering dye solutions and solid phosphors, namely, YAG:Ce optoceramics of varying surface roughness, used as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While the Φf values of the liquid samples matched between instruments, Φf measurements of the optoceramics with different blanks revealed substantial differences. The ILC results underline the importance of the measurement geometry, sample position, and blank for reliable Φf data of scattering the YAG:Ce optoceramics, with the blank’s optical properties accounting for uncertainties exceeding 20%. KW - Nano KW - Fluorescence KW - Reference material KW - Luminescence KW - Quantitative spectroscopy KW - Particle KW - Quantum yield KW - Quality assurance KW - Phosphor KW - Converter material KW - Lifetime KW - Interlaboratory comparison KW - Method KW - Uncertainty PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600945 DO - https://doi.org/10.1021/acs.analchem.4c00372 SN - 0003-2700 SP - 6730 EP - 6737 PB - ACS Publications AN - OPUS4-60094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Casperson, Ralf A1 - Knöppchen, Andreas A1 - Pohl, Rainer A1 - Zimne, Lutz A1 - Bode, Johannes A1 - Hollesch, Martin T1 - Manufacturing of reference defects for NDT using low-energy EDM N2 - For non-destructive testing (NDT) appropriate reference blocks are required in order to verify and calibrate a testing procedure. At BAM a special electric discharge machining (EDM) system has been developed which is able to manufacture artificial defects having a width down to 30 μm. Especially in the case of austenitic materials conventional EDM leads to a transformation of austenite to martensite. The martensite transformation causes a higher sensitivity of electromagnetic NDT methods (e. g. eddy current testing) at the artificial defects compared to natural defects of same size. The EDM system developed at BAM uses very low energy to avoid this material transformation. A side effect of the low-energy EDM is a lower surface roughness compared to conventional EDM. The artificial defects manufactured at BAM are measured optically and delivered with a certificate. A comparison of artificial defects shows the influence of material transformation on NDT and how differently the quality of the artificial defects can be. T2 - 19th World Conference on Non-Destructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Reference defect KW - EDM KW - Electric discharge machining KW - Artificial defect PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365995 SN - 978-3-940283-78-8 VL - 157 SP - 1 EP - 10 PB - German Society for Non-Destructive Testing (DGZfP e.V.) CY - Berlin, Germany AN - OPUS4-36599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Chianese, Carmela A1 - Hajhariri, Aliasghar A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, Valerio T1 - Modeling the performance of multilayer insulation in cryogenic tanks undergoing external fire scenarios N2 - Multilayer Insulation (MLI) is frequently used in vacuum conditions for the thermal insulation of cryogenic storage tanks. The severe consequences of the degradation of such materials in engulfing fire scenarios were recently evidenced by several large-scale experimental tests. In the present study, an innovative modelling approach was developed to assess the performance of heat transfer in polyester-based MLI materials for cryogenic applications under fire conditions. A specific layer-by-layer approach was integrated with an apparent kinetic thermal degradation model based on thermogravimetric analysis results. The modeling results provided a realistic simulation of the experimental data obtained by High-Temperature Thermal Vacuum Chamber tests reproducing fire exposure conditions. The model was then applied to assess the behavior of MLI systems for liquid hydrogen tanks in realistic fire scenarios. The results show that in intense fire scenarios degradation occurs rapidly, compromising the thermal insulation performances of the system within a few minutes. KW - Multilayer Insulation KW - Cryogenic Vessels KW - Liquefied Hydrogen KW - Liquefied Natural Gas KW - Safety KW - Fire PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599418 DO - https://doi.org/10.1016/j.psep.2024.04.061 SN - 0957-5820 VL - 186 SP - 1169 EP - 1182 PB - Elsevier B.V. AN - OPUS4-59941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Taghavi Kalajahi, Sara A1 - Misra, Archismita A1 - Koerdt, Andrea T1 - Nanotechnology to mitigate microbiologically influenced corrosion (MIC) N2 - Microbiologically influenced corrosion (MIC) is a crucial issue for industry and infrastructure. Biofilms are known to form on different kinds of surfaces such as metal, concrete, and medical equipment. However, in some cases the effect of microorganisms on the material can be negative for the consistency and integrity of the material. Thus, to overcome the issues raised by MIC on a system, different physical, chemical, and biological strategies have been considered; all having their own advantages, limitations, and sometimes even unwanted disadvantages. Among all the methods, biocide treatments and antifouling coatings are more common for controlling MIC, though they face some challenges. They lack specificity for MIC microorganisms, leading to cross-resistance and requiring higher concentrations. Moreover, they pose environmental risks and harm non-target organisms. Hence, the demand for eco-friendly, long-term solutions is increasing as regulations tighten. Recently, attentions have been directed to the application of nanomaterials to mitigate or control MIC due to their significant antimicrobial efficiency and their potential for lower environmental risk compared to the conventional biocides or coatings. Use of nanomaterials to inhibit MIC is very new and there is a lack of literature review on this topic. To address this issue, we present a review of the nanomaterials examined as a biocide or in a form of a coating on a surface to mitigate MIC. This review will help consolidate the existing knowledge and research on the use of nanomaterials for MIC mitigation. It will further contribute to a better understanding of the potential applications and challenges associated with using nanomaterials for MIC prevention and control. KW - Microbiologically influenced corrosion (MIC) KW - Biofilm KW - Biofouling KW - Nanobiocide KW - Nanocoating PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599335 DO - https://doi.org/10.3389/fnano.2024.1340352 VL - 6 SP - 1 EP - 25 AN - OPUS4-59933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmar, Stefan A1 - Ruhl, Aki S. A1 - Altmann, Korinna A1 - Jekel, Martin T1 - Settling Velocities of Small Microplastic Fragments and Fibers N2 - There is only sparse empirical data on the settling velocity of small, non-buoyant microplastics thus far, although it is an important parameter governing their vertical transport within aquatic environments. This study reports the settling velocities of 4031 exemplary microplastic particles. Focusing on the environmentally most prevalent particle shapes, irregular microplastic fragments of four different polymer types (9–289 µm) as well as five discrete length fractions (50–600 µm) of common nylon and polyester fibers were investigated, respectively. All settling experiments were carried out in quiescent water using a specialized optical imaging setup. The method has been previously validated in order to minimize disruptive factors, e.g. thermal convection or particle interactions, and thus enable the precise measurements of the velocities of individual microplastic particles (0.003–9.094 mm/s). Based on the obtained data, ten existing models for predicting a particle’s terminal settling velocity were assessed. It is concluded that models, which were specifically deduced from empirical data on larger microplastics, fail to provide accurate predictions for small microplastics. Instead, a different approach is highlighted as a viable option for computing settling velocities across the microplastics continuum in terms of size, density and shape. KW - Microplastics KW - Microplastic fibers KW - Settling velocity KW - Sinking velocity KW - Sedimentation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597455 DO - https://doi.org/10.1021/acs.est.3c09602 SN - 0013-936X VL - 58 IS - 14 SP - 6359 EP - 6369 PB - American Chemical Society (ACS) AN - OPUS4-59745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mustapha, S. A1 - Yilmaz, Bengisu A1 - Heimann, Jan A1 - Brence, Blaz A1 - Prager, Jens T1 - Guided Waves Propagation in Composite Overwrapped Pressure Vessel N2 - The application of composite overwrapped pressure vessels (COPV) to store hydrogen and other compressed gases, especially when operating at high pressures, imposed the need for an innovative and reliable approach to ensure the safe operation of the system. Continuous structural health monitoring (SHM) based on ultrasonic guided waves (GWs) is a promising approach due to the ability of the wave to propagate for long distances and go around complex structures, moreover the high sensitivity to various failure modes such as delamination, matrix cracking and debonding. In this study, we scrutinize the behavior of (GWs) within the COPV using a network of PZT elements that are used for excitation and sensing. A laser doppler vibrometer (LDV) was also used to scan the surface of the vessel in various directions. L(0,1) and L(0,2) were observed in the captured signal. The L(0, 2) appeared to be a dominant mode in the COPV and was capable of propagating along the entire length and maintaining a good signal-to-noise ratio. The L(0,2) mode maintained the same phase velocity when it is captured at various excitation angles (0, 45, and 90 degrees). The reduced effect of the orthotropy of the materials on the propagating waves is an important result as it will reduce the complexity in data processing when performing damage identification. T2 - 13th. European Conference on Non-Destructive Testing (ECNDT) CY - Lisbon, Portugal DA - 03.07.2023 KW - Composite Overwrapped Pressure Vessels KW - Guided Waves KW - Laser Doppler Vibrometer KW - Structural Health Monitoring KW - Sensors Placement PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591081 DO - https://doi.org/10.58286/28068 SN - 2941-4989 VL - 1 IS - 1 SP - 1 EP - 6 PB - NDT.net CY - Mayen AN - OPUS4-59108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Charmi, Amir A1 - Mustapha, Samir A1 - Yilmaz, Bengisu A1 - Heimann, Jan A1 - Prager, Jens T1 - A Machine Learning Based-Guided Wave Approach for Damage Detection and Assessment in Composite Overwrapped Pressure Vessels N2 - The applications of composite overwrapped pressure vessels (COPVs) in extreme conditions, such as storing hydrogen gases at very high pressure, impose new requirements related to the system's integrity and safety. The development of a structural health monitoring (SHM) system that allows for continuous monitoring of the COPVs provides rich information about the structural integrity of the component. Furthermore, the collected data can be used for different purposes such as increasing the periodic inspection intervals, providing a remaining lifetime prognosis, and also ensuring optimal operating conditions. Ultimately this information can be complementary to the development of the envisioned digital twin of the monitored COPVs. Guided waves (GWs) are preferred to be used in continuous SHM given their ability to travel in complex structures for long distances. However, obtained GW signals are complex and require advanced processing techniques. Machine learning (ML) is increasingly utilized as the main part of the processing pipeline to automatically detect anomalies in the system's integrity. Hence, in this study, we are scrutinizing the potential of using ML to provide continuous monitoring of COPVs based on ultrasonic GW data. Data is collected from a network of sensors consisting of fifteen Piezoelectric (PZT) wafers that were surface mounted on the COPV. Two ML algorithms are used in the automated evaluation procedure (i) a long short-term memory (LSTM) autoencoder for anomaly detection (defects/impact), and (ii) a convolutional neural network (CNN) model for feature extraction and classification of the artificial damage sizes and locations. Additional data augmentation steps are introduced such as modification and addition of random noise to original signals to enhance the model's robustness to uncertainties. Overall, it was shown that the ML algorithms used were able to detect and classify the simulated damage with high accuracy. T2 - 13th European Conference on Non-Destructive Testing (ECNDT) 2023 CY - Lisbon, Portugal DA - 03.07.2023 KW - Machine learning KW - Structural health monitoring KW - COPV KW - Guided waves KW - Damage localization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590789 DO - https://doi.org/10.58286/28079 SN - 2941-4989 VL - 1 IS - 1 SP - 1 EP - 6 PB - NDT.net CY - Mayen AN - OPUS4-59078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Alexander T1 - Simulation of Eddy Current Rail Testing Data for Neural Networks N2 - The present work is part of the AIFRI project (Artificial Intelligence For Rail Inspection), where we and our project partners train a neural network for defect detection and classification. Our goal at BAM is to generate artificial ultrasound and eddy current training data for the A.I. This paper has an exploratory nature, where we focus on the simulation of eddy current signals for head check cracks, one of the most important rail surface defects. The goal of this paper is twofold. On the one hand, we present our general simulation setup. This includes geometric models for head check cracks with features like branching and direction change, a model for the HC10 rail testing probe, and the configuration of the Faraday simulation software. On the other hand, we use the Faraday software to simulate eddy current testing signals with a strong focus on the influence of the damage depth on the signal, while differentiating between different crack geometries. Here, we observe an early saturation effect of the test signal at a damage depth of 2 mm (at a crack angle of 25◦ to the surface). That is about 2 mm earlier than we would expect from measurements at a crack angle of 90◦. This behavior will be investigated further in a future paper. Finally, we interpolate the simulated signals in a two-step curve fitting process. With these interpolations we may generate eddy current test signals for any damage depth within the simulated range. T2 - 13th European Conference on Non-Destructive Testing 2023 CY - Lisbon, Portugal KW - Artificial Intelligence KW - Simulation KW - Eddy Current PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581918 DO - https://doi.org/10.58286/28179 SN - 1435-4934 VL - 28 IS - 8 SP - 1 EP - 6 PB - NDT.net CY - Kirchwald AN - OPUS4-58191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yilmaz, Bengisu A1 - Heimann, Jan A1 - Mustapha, S. A1 - Charmi, Amir A1 - Prager, Jens T1 - Guided wave ultrasonic feature determination in Type IV composite overwrapped pressure vessels towards the digital twin N2 - The digitalization of quality control processes and the underlying data infrastructures for safety relevant components, such as hydrogen pressure vessels, plays a significant role in the transition towards Industry 4.0. In the current safety regulations for hydrogen pressure vessels, there is no established concept for structural health monitoring. The development of a reliable structural health monitoring methodology for monitoring the structural integrity of pressure vessels enables a fast-forward transition from personnel- and costintensive recurring inspections, a.k.a. periodic maintenance, to predictive maintenance. In the work presented; we investigated the application of ultrasonic guided wave propagation to monitor and assess the condition of Type IV composite overwrapped pressure vessel (COPV). A sensor network of fifteen piezo-electric wafers is placed on the carbon fibre reinforced composite cylinder. Five different artificial damage configurations are created by gluing two different weight blocks on three different locations. The database containing measured guided wave data sets is enriched by two different boundary conditions. We utilized an open-source software, openBIS labnotebook, to store and analyse experimental datasets. The guided wave ultrasonic signals were investigated and analysed by using commonly used ultrasonic features (e.g., amplitude, frequency, time of flight) as well as non-traditional time-series features (kurtosis, skewness, variance). The features were used to calculate damage index and the detection performance for the results has been evaluated. The results suggest that both traditional and non-traditional features assume significant importance in artificial damage detection. The future works will additionally involve the impacts of operational conditions, such as periodic pressure variations temperature loadings as well as material degradations. T2 - 13th European Conference on Non-Destructive Testing (ECNDT) CY - Lisbon, Portugal DA - 03.07.2023 KW - Industry 4.0 KW - Composite overwrapped pressure vessels KW - Structural health monitoring KW - Ultrasonic guided waves KW - Predictive maintenance PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591094 DO - https://doi.org/10.58286/28072 SN - 2941-4989 VL - 1 IS - 1 SP - 1 EP - 6 PB - NDT.net CY - Mayen AN - OPUS4-59109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Holm, Olaf T1 - Reduction of natural resource use by improving resource efficiency N2 - In 2011, the German Association of Engineers (VDI) started working on a set of guidelines dealing with the improvement of resource efficiency. These guidelines represent a framework that defines resource efficiency and outlines proposals for the producing industry. A special guideline for small and medium-sized enterprises (SMEs) is included as well as guidelines on methodologies for evaluating resource use indicators, such as the cumulative raw material demand of products and production systems. The work on resource use indicators is still in progress. The evaluation of raw materials expenditure will include water, soil and land use. The model will include the availability of raw materials (criticality). Improving resource efficiency at the end-of-life stage is illustrated in this paper by the example of materials recovery from waste, here from residues out of municipal solid waste incineration (MSWI). With mechanical treatment valuable materials like ferrous and non-ferrous metals and secondary construction material can be extracted from MSWI bottom ash. The potential contribution on the resource efficiency is discussed. KW - Resource efficiency KW - Raw material equivalent KW - Mechanical treatment KW - Bottom ash KW - Waste incineration KW - Secondary raw materials KW - Product life cycle PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-356490 UR - http://www.hrpub.org/journals/jour_archive.php?id=62&iid=877 DO - https://doi.org/10.13189/ ujms.2016.040302 SN - 2331-6691 SN - 2331-6705 VL - 4 IS - 3 SP - 54 EP - 59 PB - Horizon Research Publishing CY - Alhambra, CA, USA AN - OPUS4-35649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -