TY - JOUR A1 - Liehr, Sascha A1 - Münzenberger, Sven A1 - Krebber, Katerina T1 - Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing N2 - Distributed vibration sensing in optical fibers opened entirely new opportunities and penetrated various sectors from security to seismic monitoring. Here, we demonstrate a most simple and robust approach for dynamic strain measurement using wavelength-scanning coherent optical time domain reflectometry (C-OTDR). Our method is based on laser current modulation and Rayleigh backscatter shift correlation. As opposed to common single-wavelength phase demodulation techniques, also the algebraic sign of the strain change is retrieved. This is crucial for the intended applications in structural health monitoring and modal analysis. A linear strain response down to 47.5 pε and strain noise of 100 pε/√Hz is demonstrated for repetition rates in the kHz range. A field application of a vibrating bridge is presented. Our approach provides a cost-effective high-resolution method for structural vibration analysis and geophysical applications. KW - Fiber optics sensors KW - Optical time domain reflectometry KW - Rayleigh Scattering KW - Distributed acoustic sensing KW - Distributed strain sensing PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448069 DO - https://doi.org/10.1364/OE.26.010573 SN - 1094-4087 VL - 26 IS - 8 SP - 10573 EP - 10588 PB - Optical Society of America AN - OPUS4-44806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, J. A1 - Jiang, T. A1 - Ji, Y. A1 - An-Stepec, Biwen Annie A1 - Koerdt, Andrea A1 - Cai, Z. A1 - Dong, C. A1 - Ge, Y. A1 - Qi, Z. T1 - Water-Fueled Autocatalytic Bactericidal Pathway based on e-Fenton-Like Reactions Triggered by Galvanic Corrosion and Extracellular Electron Transfer N2 - Water is generally considered to be an undesirable substance in fuel system, which may lead to microbial contamination. The antibacterial strategies that can turn water into things of value with high disinfection efficacy have been urgently needed for fuel system. Here, we reveal a water-fueled autocatalytic bactericidal pathway comprised by bi-metal micro-electrode system, which can spontaneously produce reactive oxygen species (mainly H2O2 and O2•–) by the electron Fenton-like reaction in water medium without external energy., The respiratory chain component of bacteria and the galvanic corrosion on the coated metals were two electron sources in the system. The specific model of Ag-Ru water-fueled autocatalytic (WFA) microelectrode particles presents extremely high disinfection efficiency (>99.9999%) in less than one hour for three aerobic bacteria (Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis) in LB media and high disinfection efficiency for the anaerobic bacteria (Desulfovibrio alaskensis) in Postgate E media without natural light irradiation. Overall, the novel WFA Ag-Ru antibacterial material explored in this study has a high potential for sterilizing applications in fuel system and this work provides the potential for the development of non-chemical and water-based antibacterial materials, such as WFA Ag-Ru antibacterial coating on stainless steel. KW - Fenton-like reaction KW - Reactive oxygen species KW - Disinfection Fuel KW - Silver KW - Ruthenium KW - MIC PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555186 DO - https://doi.org/10.1016/j.jhazmat.2022.129730 SN - 0304-3894 VL - 440 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-55518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Kiefer, P. A1 - Deubener, J. A1 - Fechtelkord, M. T1 - Water in Alkali Aluminosilicate Glasses N2 - To understand the influence of water and alkalis on aluminosilicate glasses, three polymerized glasses with varying ratios of Na/K were synthesized [(22. 5-x)Na2O-xK2O-22.5 Al2O3-55 SiO2 with x = 0, 7.5, and 11.25]. Subsequently, these glasses were hydrated (up to 8 wt% H2O) in an internally heated gas pressure vessel. The density of hydrous glasses linearly decreased with water content above 1 wt%, consistent with the partial molar volume of H2O of 12 cm3/mol. Near-infrared spectroscopy revealed that hydroxyl groups are the dominant species at water content of <4 wt%, and molecular water becomes dominating at water content of >5 wt%. The fraction of OH is particularly high in the pure Na-bearing glass compared to the mixed alkali glasses. 27Al magic angle spinning-NMR spectroscopy shows that aluminum is exclusively fourfold coordinated with some variations in the local geometry. It appears that the local structure around Al becomes more ordered with increasing K/Na ratio. The incorporation of H2O reinforces this effect. The differential thermal analysis of hydrous glasses shows a significant mass loss in the range of glass transition already during the first upscan, implying the high mobility of water in the glasses. This observation can be explained by the open structure of the aluminosilicate network and by the low dissociation enthalpy of H2O in the glasses (≈ 8 kJ/mol). The effect of the dissolved H2O on the glass transition temperature is less pronounced than for other aluminosilicate glasses, probably because of the large fraction of Al in the glasses. KW - NMR spectroscopy KW - Alkali aluminosilicate glasses KW - Water speciation KW - Glass transition KW - Infrared spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509497 DO - https://doi.org/10.3389/fmats.2020.00085 VL - 7 SP - 85 AN - OPUS4-50949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silveira, A. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Longo, E. A1 - Greving, I. A1 - Lasch, P. A1 - Shahar, R A1 - Zaslansky, P. T1 - Water flow through bone: Neutron tomography reveals differences in water permeability between osteocytic and anosteocytic bone material N2 - Vertebrate bones are made of a nanocomposite consisting of water, mineral and organics. Water helps bone material withstand mechanical stress and participates in sensation of external loads. Water diffusion across vertebrae of medaka (bone material lacking osteocytes) and zebrafish (bone material containing osteocytes) was compared using neutron tomography. Samples were measured both wet and following immersion in deuterated-water (D2O). By quantifying H+ exchange and mutual alignment with X-ray lCT scans, the amount of water expelled from complete vertebra was determined. The findings revealed that anosteocytic bone material is almost twice as amenable to D2O diffusion and H2O exchange, and that unexpectedly, far more water is retained in osteocytic zebrafish bone. Diffusion in osteocytic bones (only 33 % – 39 % water expelled) is therefore restricted as compared to anosteocytic bone (~ 60 % of water expelled), presumably because water flow is confined to the lacunar-canalicular network (LCN) open-pore system. Histology and Raman spectroscopy showed that anosteocytic bone contains less proteoglycans than osteocytic bone. These findings identify a previously unknown functional difference between the two bone materials. Therefore, this study proposes that osteocytic bone retains water, aided by non-collagenous proteins, which contribute to its poroelastic mechano-transduction of water flow confined inside the LCN porosity. KW - Bone porosity KW - Anosteocytic bone KW - Water permeability KW - Neutron tomography KW - Proteoglycans PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564563 DO - https://doi.org/10.1016/j.matdes.2022.111275 VL - 224 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-56456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilhelm, Stefan A1 - Kaiser, Martin A1 - Würth, Christian A1 - Heiland, J. A1 - Carrillo-Carrion, C. A1 - Muhr, V. A1 - Wolfbeis, Otto S. A1 - Parak, W.J. A1 - Resch-Genger, Ute A1 - Hirsch, T. T1 - Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability N2 - We present a systematic study on the effect of surface ligands on the luminescence properties and colloidal stability of β-NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNPs), comparing nine different surface coatings to render these UCNPs water-dispersible and bioconjugatable. A prerequisite for this study was a large-scale synthetic method that yields ~2 g per batch of monodisperse oleate-capped UCNPs providing identical core particles. These ~23 nm sized UCNPs display an upconversion quantum yield of ~0.35% when dispersed in cyclohexane and excited with a power density of 150 W cm-2, underlining their high quality. A comparison of the colloidal stability and luminescence properties of these UCNPs, subsequently surface modified with ligand exchange or encapsulation protocols, revealed that the ratio of the green (545 nm) and red (658 nm) emission bands determined at a constant excitation power density clearly depends on the surface chemistry. Modifications relying on the deposition of additional (amphiphilic) layer coatings, where the initial oleate coating is retained, show reduced non-radiative quenching by water as compared to UCNPs that are rendered water-dispersible via ligand exchange. Moreover, we could demonstrate that the brightness of the upconversion luminescence of the UCNPs is strongly affected by the type of surface modification, i.e., ligand exchange or encapsulation, yet hardly by the chemical nature of the ligand. KW - upconverting nanoparticles (UCNPs) KW - Luminescence KW - surface modification PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-324071 DO - https://doi.org/10.1039/c4nr05954a SN - 2040-3364 SN - 2040-3372 VL - 7 IS - 4 SP - 1403 EP - 1410 PB - RSC Publ. CY - Cambridge AN - OPUS4-32407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raniro, H.R. A1 - Soares, T.de M. A1 - Adam, Christian A1 - Pavinato, P.S. T1 - Waste-derived fertilizers can increase phosphorus uptake by sugarcane and availability in a tropical soil N2 - The use of highly water-soluble phosphorus (P) fertilizers can lead to P fixation in the soil, reducing fertilization efficiency. Waste-derived, low water-solubility sources can potentially increase sugarcane’s P uptake compared to triple superphosphate by reducing adsorption to the soil. Aims:We aimed to test struvite, hazenite, and AshDec® for their agronomic potential as recycled fertilizers for sugarcane production in a typical tropical soil.We hypothesize that these sources can reduce P fixation in the soil, increasing its availability and sugarcane’s absorption. Methods: In a greenhouse pot experiment, two consecutive sugarcane cycles, 90 days each, were conducted in a Ferralsol. The recovered sources struvite, hazenite, AshDec®, and the conventional triple superphosphate were mixed in the soil in three P doses (30, 60, and 90 mg kg–1), aside a control (nil-P). At both harvests, sugarcane number of sprouts, plant height, stem diameter, dry mass yield, shoot phosphorus, and soil P fractionation were investigated. Results: At 90 days, struvite and hazenite performed better for dry mass yield (70.7 and 68.3 g pot–1, respectively) than AshDec® and triple superphosphate (59.8 and 57.4 g pot–1, respectively) and for shoot P, with 98.1, 91.6, 75.6, and 66.3 mg pot–1, respectively. At 180 days, struvite outperformed all treatments for dry mass yield (95.3 g pot–1) and AshDec® (75.5 mg pot–1) for shoot P. Struvite was 38% and hazenite 21% more efficient than triple superphosphate in P uptake, while AshDec® was 6% less efficient. Soil had higher labile P under struvite, hazenite, and AshDec® than triple superphosphate by the end of the first cycle, while only the later increased nonlabile P by the end of the experiment (180 days). Conclusions:Waste-derived P sources were more efficient in supplying P for sugarcane and delivering labile P in 180 days than triple superphosphate. KW - AshDec KW - Hazenite KW - P-efficiency KW - Recycled sources KW - Struvite PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544216 DO - https://doi.org/10.1002/jpln.202100410 SN - 1436-8730 SP - 1 EP - 12 PB - Wiley-VCH GmbH AN - OPUS4-54421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Sanchez-Olivares, G. A1 - Rockel, Daniel A1 - Maldonado-Santoyo, M. A1 - Schartel, Bernhard T1 - Waste not, want not: The use of leather waste in flame retarded EVA N2 - Leather is among the most ancient, widely used materials worldwide. Industrial-scale leather production produces large quantities of organic waste attained during shaving and buffing steps during processing. In this study, leather wastes (LW) are used as fillers in flame retarded polymer composites. LW is investigated as a multifunctional bio-filler that enhances the fire performance of flame retarded poly(ethylene–vinyl acetate) (EVA) containing phosphorus flame retardants (P-FRs) ammonium polyphosphate (APP) or a melamine-encapsulated APP (eAPP). Using LW from tanneries as adjuvants to enhance P-FRs in EVA reduces industrial wastes that otherwise require costly waste management solutions. Materials are characterized multi-methodically via mechanical tests, electron microscopy, rheology, thermogravimetric analysis, evolved gas analysis, and condensed phase FTIR, also reaction-to-small-flames and cone calorimeter tests. EVA containing 10 wt-% LW and 20 wt-% P-FRs achieve 20% reductions in fire loads versus EVA, and up to 10% reduction in effective heats of combustion versus EVA with equal (30 wt-%) P-FR loadings. Enhanced char stabilization of EVA composites with LW and P-FRs lowered peaks of heat release rates up to 53% compared to EVA, and up to 40% compared to equal P-FRs loadings. Synergisms between LW and P-FRs in EVA are quantified. A chemical decomposition mechanism is proposed. KW - Leather waste KW - Tannery industry KW - EVA KW - Fire protection KW - Flame retardancy KW - Charring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532977 DO - https://doi.org/10.1016/j.matdes.2021.110100 SN - 0264-1275 VL - 210 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam AN - OPUS4-53297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilhelm, Eugen A1 - Mente, Tobias A1 - Rhode, Michael T1 - Waiting time before NDT of welded offshore steel grades under consideration of delayed hydrogen-assisted cracking N2 - Offshore wind turbines (OWT) are a major goal of the energy strategy of Germany encompassing the increase of the installed wind power. OWT components are manufactured from welded steel plates with thicknesses up to 200 mm. The underlying standards and technical recommendations for construction of OWTs encompass specifications of so-called minimum waiting time (MWT) before non-destructive testing of the weld joints is allowed. Reason is the increased risk of time-delayed hydrogen assisted cold cracking as hydrogen diffusion is very slow due to the very thick plates. The strict consideration of those long MWT up to 48 h during the construction of OWTs leads to significant financial burden (like disproportionately high costs for installer ships as well as storage problems (onshore)). In this study, weld joints made of S355 ML were examined in comparison with the offshore steel grade S460 G2+M. The aim was to optimize, i.e., reduce, the MWT before NDT considering varied heat input, hydrogen concentration and using self-restraint weld tests. This would significantly reduce the manufacturing time and costs of OWT construction. To quantify the necessary delay time until hydrogen-assisted cold cracks appear, acoustic emission analysis was applied directly after welding for at least 48 h. KW - Hydrogen KW - Welding KW - Cracking KW - Offshore KW - Steel PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524959 DO - https://doi.org/10.1007/s40194-020-01060-5 SN - 0043-2288 VL - 65 SP - 947 EP - 959 PB - Springer Nature AN - OPUS4-52495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grauel, Bettina A1 - Würth, Christian A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Andresen, Elina A1 - Roik, Janina A1 - Recknagel, Sebastian A1 - Haase, M. A1 - Resch-Genger, Ute T1 - Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals N2 - Despite considerable advances in synthesizing high-quality core/shell upconversion (UC) nanocrystals (NC; UCNC) and UCNC photophysics, the application of near-infrared (NIR)-excitable lanthanide-doped UCNC in the life and material sciences is still hampered by the relatively low upconversion luminescence (UCL) of UCNC of small size or thin protecting shell. To obtain deeper insights into energy transfer and surface quenching processes involving Yb3+ and Er3+ ions, we examined energy loss processes in differently sized solid core NaYF4 nanocrystals doped with either Yb3+ (YbNC; 20% Yb3+) or Er3+ (ErNC; 2% Er3+) and co-doped with Yb3+ and Er3+ (YbErNC; 20% Yb3+ and 2% Er3+) without a surface protection shell and coated with a thin and a thick NaYF4 shell in comparison to single and co-doped bulk materials. Luminescence studies at 375 nm excitation demonstrate backenergy transfer (BET) from the 4G11/2 state of Er3+ to the 2F5/2 state of Yb3+, through which the red Er3+ 4F9/2 state is efficiently populated. Excitation power density (P)-dependent steady state and time-resolved photoluminescence measurements at different excitation and emission wavelengths enable to separate surface-related and volume-related effects for two-photonic and threephotonic processes involved in UCL and indicate a different influence of surface passivation on the green and red Er3+ emission. The intensity and lifetime of the latter respond particularly to an increase in volume of the active UCNC core. We provide a threedimensional random walk model to describe these effects that can be used in the future to predict the UCL behavior of UCNC. KW - Nano KW - Nanomaterial KW - Upconversion KW - Nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Pphotophysics KW - Lifetime KW - Sensor KW - Excitation KW - Power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535317 DO - https://doi.org/10.1007/s12274-021-3727-y SN - 1998-0124 VL - 15 IS - 3 SP - 2362 EP - 2373 PB - Springer AN - OPUS4-53531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Olaf A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Jann, Oliver T1 - Volatile organic compounds from building products - Results from six round robin tests with emission test chambers conducted between 2008 and 2018 N2 - Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories, their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test (round robin test, RRT) every two years using well-characterized test materials (one sealant, one furniture board, and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 36 VOCs were included of which 33 gave test chamber air concentrations between 13 and 83 µg/m3. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Three compounds had higher concentrations between 326 and 1105 µg/m3. In this paper, the relative standard deviations (RSD) of BAM round robin tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 28 % in 2018. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51 %. KW - Construction product KW - Emission test chamber KW - Interlaboratory comparison KW - Proficiency testing KW - Rround robin test KW - VOC emission PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526139 DO - https://doi.org/10.1111/ina.12848 VL - 31 IS - 6 SP - 2049 EP - 2057 PB - Wiley AN - OPUS4-52613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -