TY - JOUR A1 - Hampel, Marco A1 - Schenderlein, Matthias A1 - Schary, Christian A1 - Dimper, Matthias A1 - Özcan Sandikcioglu, Özlem T1 - Efficient detection of localized corrosion processes on stainless steel by means of scanning electrochemical microscopy (SECM) using a multi-electrode approach N2 - High resolution analysis of corrosion processes on stainless steels is a challenging task. The application of local electrochemical techniques such as scanning electrochemical microscopy (SECM) has opened new possibilities for the detection of corrosion products and activity on metallic surfaces. However, due to its stochastic nature, the analysis of pitting corrosion requires being at the right place at the right time. Scanning over large areas at a high resolution not only leads to long scan durations but also leaves many short-lived processes undetected. In this paper we present the combined automated operation of SECM and wire multi-electrodes connected to a multi-electrode analyzer (MMA). The inter-electrode currents between 25 wire electrodes connected via zero resistance ammeters (ZRA) are measured by the MMA at open circuit potential (OCP) and the electrodes reporting anodic currents are detected automatically to be analyzed by means of SECM. The results demonstrate the successful application of this methodology for the detection of unstable and stable pitting processes on 304 stainless steel in a corrosive aqueous environment. KW - Scanning electrochemical microscope (SECM) KW - Localised corrosion KW - Corrosion monitoring PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478646 DO - https://doi.org/10.1016/j.elecom.2019.02.019 VL - 101 SP - 52 EP - 55 PB - Elsevier B.V. AN - OPUS4-47864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Ghnatios, C. A1 - Klawoon, Alexander A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Robens-Radermacher, Annika T1 - Efficient bead-on-plate weld model for parameter estimation towards effective wire arc additive manufacturing simulation N2 - Despite the advances in hardware and software techniques, standard numerical methods fail in providing real-time simulations, especially for complex processes such as additive manufacturing applications. A real-time simulation enables process control through the combination of process monitoring and automated feedback, which increases the flexibility and quality of a process. Typically, before producing a whole additive manufacturing structure, a simplified experiment in the form of a beadon-plate experiment is performed to get a first insight into the process and to set parameters suitably. In this work, a reduced order model for the transient thermal problem of the bead-on-plate weld simulation is developed, allowing an efficient model calibration and control of the process. The proposed approach applies the proper generalized decomposition (PGD) method, a popular model order reduction technique, to decrease the computational effort of each model evaluation required multiple times in parameter estimation, control, and optimization. The welding torch is modeled by a moving heat source, which leads to difficulties separating space and time, a key ingredient in PGD simulations. A novel approach for separating space and time is applied and extended to 3D problems allowing the derivation of an efficient separated representation of the temperature. The results are verified against a standard finite element model showing excellent agreement. The reduced order model is also leveraged in a Bayesian model parameter estimation setup, speeding up calibrations and ultimately leading to an optimized real-time simulation approach for welding experiment using synthetic as well as real measurement data. KW - Proper generalized decomposition KW - Model order reduction KW - Hardly separable problem KW - Additive manufacturing KW - Model calibration KW - Wire arc additive manufacturing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596502 DO - https://doi.org/10.1007/s40194-024-01700-0 SN - 0043-2288 SP - 1 EP - 18 PB - Springer AN - OPUS4-59650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dzekan, D. A1 - Waske, Anja A1 - Nielsch, K. A1 - Fähler, S. T1 - Efficient and affordable thermomagnetic materials for harvesting low grade waste heat N2 - Industrial processes release substantial quantities of waste heat, which can be harvested to generate electricity. At present, the conversion of low grade waste heat to electricity relies solely on thermoelectric materials, but such materials are expensive and have low thermodynamic efficiencies. Although thermomagnetic materials may offer a promising alternative, their performance remains to be evaluated, thereby hindering their real-world application. Here, the efficiency and cost effectiveness of thermomagnetic materials are evaluated for the usage in motors, oscillators, and generators for converting waste heat to electricity. The analysis reveals that up to temperature differences of several 10 K, the best thermomagnetic materials have the potential to compete with thermoelectric materials. Importantly, it is found that the price per watt of some thermomagnetic materials is much lower compared to that of present-day thermoelectrics, which can become competitive with conventional power plants. This materials library enables the selection of the best available thermomagnetic materials for harvesting waste heat and gives guidelines for their future development. KW - Waste heat conversion KW - Magnetic materials KW - Thermomagnetic generator PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541493 DO - https://doi.org/10.1063/5.0033970 VL - 9 SP - 1 EP - 9 PB - AIP Publishing CY - Melville, USA AN - OPUS4-54149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Behnke, Thomas A1 - Gienger, J. A1 - Resch-Genger, Ute T1 - Efficiency scale for scatteringluminescent particles linkedto fundamental and measurablespectroscopic properties N2 - Comparing the performance of molecular and nanoscale luminophores and luminescent microand nanoparticles and estimating achievable signal amplitudes and limits of detection requires a standardizable intensity scale. This initiated the development of the relative MESF (number of molecules of equivalent soluble fluorochromes) and ERF (equivalent reference fluorophores) scales for flow cytometry and fluorescence microscopy. Both intensity scales rely on fluorescence intensity values assigned to fluorescent calibration beads by an intensity comparison to spectrally closely matching fluorophore solutions of known concentration using a spectrofluorometer. Alternatively, the luminophore or bead brightness (B) can be determined that equals the product of the absorption cross section (σa) at the excitation wavelength (σa(λex)) and the photoluminescence quantum yield (Φpl). Thereby, an absolute scale based on fundamental and measurable spectroscopic properties can be realized which is independent of particle size, material, and luminophore staining or labeling density and considers the sensitivity of the optical properties of luminophores to their environment. Aiming for establishing such a brightness scale for light-scattering dispersions of luminescent particles with sizes exceeding a few ten nanometers, we demonstrate how the brightness of quasi-monodisperse 25 nm, 100 nm, and 1 μm sized polystyrene particles (PSP), loaded with two different dyes in varying concentrations, can be obtained with a single custom-designed integrating sphere setup that enables the absolute determination of Φpl and transmittance and diffuse reflectance measurements. The resulting Φpl, σa(λex), imaginary parts of the refractive index, and calculated B values of these samples are given in dependence of the number of incorporated dye molecule per particle. Finally, a unitless luminescence efficiency (LE) is defined allowing for the direct comparison of luminescence efficiencies of particles with different sizes. KW - Brightness KW - Quantum yield KW - Cross section KW - Lluminescence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573680 DO - https://doi.org/10.1038/s41598-023-32933-6 VL - 13 IS - 1 SP - 14 PB - Nature AN - OPUS4-57368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Muelow-Stollin, Ulrike A1 - Lehnik-Habrink, Petra A1 - Kluge, Stephanie A1 - Bremser, Wolfram A1 - Piechotta, Christian T1 - Efficiency Evaluation of Extraction Methods for Analysis of OCPs and PCBs in Soils of Varying TOC N2 - Organochlorine pesticides and polychlorinated biphenyls are toxic, carcinogenic, and have a high potential for bioaccumulation. Due to their stability, they are still considered an environmental problem even though the use of most of them has been phased out several decades ago. Soil is a matrix which can retain these contaminants to a great extent. This ability is often associated with the total organic carbon content (TOC). In order to judge the pollution status of soil and to make monitoring data more easily comparable a simple, yet robust extraction method is needed. Agitation solid-liquid-extraction is well suited for this purpose. However, the influence of TOC on the analyte recovery has to be known. For the presented study, 12 organochlorine pesticides and 7 polychlorinated biphenyls were spiked into four model soils with organic carbon contents between 1.6% - 13.3%. The matrices were extracted using solid-liquid extraction between 45 minutes and 16 hours. For comparison, all soils were also extracted using pressurised liquid extraction and Soxhlet extraction. After clean-up the extracts were measured using a gas chromatography-mass spectrometry (GC-MS) system. Statistical analysis of the results implied that the TOC content of the soils did not have significant influence on the extraction efficiency. A longer solid-liquid extraction time did not necessarily increase analyte recovery: Extraction for one hour resulted in 88% recovery while 16 hour extraction led to 89%. Thus, the efficiency of all the methods was comparable for all model soils. Additional investigations regarding GC liner performance highlighted the need for isotopically labelled standards during the analysis of thermolabile pesticides. KW - POP KW - Soil organic matter KW - Solid-liquid-extraction KW - Pressurised liquid extraction PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-430238 DO - https://doi.org/10.4236/jep.2017.86045 SN - 2152-2219 VL - 08 IS - 06 SP - Article ID:77202, 693 EP - 713 PB - Scientific Research Publishing AN - OPUS4-43023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kemmler, Samuel A1 - Rettinger, Christoph A1 - Rüde, Ulrich A1 - Cuéllar, Pablo A1 - Köstler, Harald T1 - Efficiency and scalability of fully-resolved fluid-particle simulations on heterogeneous CPU-GPU architectures N2 - Current supercomputers often have a heterogeneous architecture using both conventional Central Processing Units (CPUs) and Graphics Processing Units (GPUs). At the same time, numerical simulation tasks frequently involve multiphysics scenarios whose components run on different hardware due to multiple reasons, e.g., architectural requirements, pragmatism, etc. This leads naturally to a software design where different simulation modules are mapped to different subsystems of the heterogeneous architecture. We present a detailed performance analysis for such a hybrid four-way coupled simulation of a fully resolved particle-laden flow. The Eulerian representation of the flow utilizes GPUs, while the Lagrangian model for the particles runs on conventional CPUs. Two characteristic model situations involving dense and dilute particle systems are used as benchmark scenarios. First, a roofline model is employed to predict the node level performance and to show that the lattice-Boltzmann-based Eulerian fluid simulation reaches very good performance on a single GPU. Furthermore, the GPU-GPU communication for a large-scale Eulerian flow simulation results in only moderate slowdowns. This is due to the efficiency of the CUDA-aware MPI communication, combined with the use of communication hiding techniques. On 1024 A100 GPUs, an overall parallel efficiency of up to 71% is achieved. While the flow simulation has good performance characteristics, the integration of the stiff Lagrangian particle system requires frequent CPU-CPU communications that can become a bottleneck, especially when simulating the dense particle system. Additionally, special attention is paid to the CPU-GPU communication overhead since this is essential for coupling the particles to the flow simulation. However, thanks to our problem-aware co-partitioning, the CPU-GPU communication overhead is found to be negligible. As a lesson learned from this development, four criteria are postulated that a hybrid implementation must meet for the efficient use of heterogeneous supercomputers. KW - Discrete element method KW - Hybrid implementation KW - High-performance computing KW - Particulate flow KW - Lattice Boltzmann method PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623958 DO - https://doi.org/10.1177/10943420241313385 SN - 1741-2846 SP - 1 EP - 19 PB - SAGE Publications AN - OPUS4-62395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Uhlmann, E. A1 - Düchting, J. A1 - Petrat, T. A1 - Krohmer, E. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Effects on the distortion of Inconel 718 components along a hybrid laser‑based additive manufacturing process chain using laser powder bed fusion and laser metal deposition N2 - The combination of laser powder bed fusion (LPBF), known for its geometrical freedom and accuracy, and the nozzle-based laser metal deposition process (LMD), known for its high build-up rates, has great potential to reduce the additive manufacturing times for large metallic parts. For the industrial application of the LPBF-LMD hybrid process chain, it is necessary to investigate the infuence of the LMD process on the LPBF substrate. In addition, the build plate material also has a signifcant impact on the occurrence of distortion along the additive manufacturing process chain. In the literature, steel build plates are often used in laser-based additive manufacturing processes of Inconel 718, since a good metallurgical Bonding can be assured whilst reducing costs in the production and restoration of the build plates. This paper examines the distortion caused by LMD material deposition and the infuence of the build plate material along the hybrid additive manufacturing process chain. Twin cantilevers are manufactured by LPBF and an additional layer is subsequently deposited with LMD. The distortion is measured in the as-built condition as well as after heat treatment. The efect of diferent LMD hatch strategies on the distortion is determined. The experiments are conducted using the nickel-base alloy Inconel 718. The results show a signifcant infuence of LMD path strategies on distortion, with shorter tool paths leading to less distortion. The remaining distortion after heat treatment is considerably dependent on the material of the build plate. KW - Laser powder bed fusion KW - Directed energy deposition KW - Laser metal deposition KW - Distortion KW - Heat treatment PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521439 DO - https://doi.org/10.1007/s40964-021-00171-9 SP - 1 EP - 10 PB - Springer-Verlag GmbH CY - Heidelberg AN - OPUS4-52143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Chen, Yong-Cin A1 - Smales, Glen Jacob A1 - Topolniak, Ievgeniia A1 - Sturm, Heinz A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Effects of the charge density of nanopapers based on carboxymethylated cellulose nanofibrils investigated by complementary techniques N2 - Cellulose nanofibrils (CNFs) with different charge densities were prepared and investigated by a combination of different complementary techniques sensitive to the structure and molecular dynamics of the system. The morphology of the materials was investigated by scanning electron microscopy (SEM) and X-ray scattering (SAXS/WAXS). The latter measurements were quantitatively analyzed yielding to molecular parameters in dependence of the charge density like the diameter of the fibrils, the distance between the fibrils, and the dimension of bundles of nanofibrils, including pores. The influence of water on the properties and the charge density is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and broadband dielectric spectroscopy. The TGA measurements reveal two mass loss processes. The one at lower temperatures was related to the loss of water, and the second process at higher temperatures was related to the chemical decomposition. The resulting char yield could be correlated to the distance between the microfibrils. The DSC investigation for hydrated CNFs revealed three glass transitions due to the cellulose segments surrounded by water molecules in different states. In the second heating scan, only one broad glass transition is observed. The dielectric spectra reveal two relaxation processes. At low temperatures or higher frequencies, the β-relaxation is observed, which is assigned to localized fluctuation of the glycosidic linkage. At higher temperatures and lower frequencies, the α-relaxation takes places. This relaxation is due to cooperative fluctuations in the cellulose segments. Both processes were quantitatively analyzed. The obtained parameters such as the relaxation rates were related to both the morphological data, the charge density, and the content of water for the first time. KW - Cellulose nanofibrils PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600528 DO - https://doi.org/https://doi.org/10.1021/acsomega.4c00255 SN - 2470-1343 VL - 9 SP - 20152 EP - 20166 PB - ACS AN - OPUS4-60052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Edzards, Joshua A1 - Saßnick, Holger-Dietrich A1 - de Oliveira Guilherme Buzanich, Ana A1 - Valencia, Ana M. A1 - Emmerling, Franziska A1 - Beyer, Sebastian A1 - Cocchi, Caterina T1 - Effects of Ligand Substituents on the Character of Zn-Coordination in Zeolitic Imidazolate Frameworks N2 - Due to their favorable properties and high porosity, zeolitic imidazolate frameworks (ZIFs) have recently received much limelight for key technologies such as energy storage, optoelectronics, sensorics, and catalysis. Despite widespread interest in these materials, fundamental questions regarding the zinc coordination environment remain poorly understood. By focusing on zinc(II)2-methylimidazolate (ZIF-8) and its tetrahedrally coordinated analogues with Br-, Cl-, and H-substitution in the 2-ring position, we aim to clarify how variations in the local environment of Zn impact the charge distribution and the electronic properties of these materials. Our results from densityfunctional theory confirm the presence of a Zn coordinative bond with a large polarization that is quantitatively affected by different substituents on the organic ligand. Moreover, our findings suggest that the variations in the Zn coordination induced by the functionalization have a negligible effect on the electronic structure of the considered compounds. On the other hand, halogen terminations of the ligands lead to distinct electronic contributions in the vicinity of the frontier region which ultimately reduce the band gap size by a few hundred millielectron volts. Experimental results obtained from X-ray absorption spectroscopy (Zn K-edge) confirm the trends predicted by theory and, together with them, contribute to a better understanding of the structure−property relationships that are needed to tailor ZIFs for target applications. KW - Surfaces KW - Physical and Theoretical Chemistry KW - General Energy KW - Electronic KW - Coatings and Films KW - Optical and Magnetic Materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589117 DO - https://doi.org/10.1021/acs.jpcc.3c06054 SN - 1932-7447 VL - 127 IS - 43 SP - 21456 EP - 21464 PB - American Chemical Society (ACS) AN - OPUS4-58911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cubero, A. A1 - Martínez, E. A1 - Angurel, L.A. A1 - de la Fuente, G.F. A1 - Navarro, R. A1 - Legall, Herbert A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Effects of laser-induced periodic surface structures on the superconducting properties of Niobium N2 - It is well known that the use of ultrashort (fs) pulsed lasers can induce the generation of (quasi-) periodic nanostructures (LIPSS, ripples) on the surface of many materials. Such nanostructures have also been observed in sample’s surfaces irradiated with UV lasers with a pulse duration of 300 ps. In this work, we compare the characteristics of these nanostructures on 1-mm and on 25-μm thick niobium sheets induced by 30 fs n-IR and 300 ps UV pulsed lasers. In addition to conventional continuous or burst mode processing configurations, two-dimensional laser beam and line scanning modes have been investigated in this work. The latter allows the processing of large areas with a more uniform distribution of nanostructures at the surface. The influence of the generated nanostructures on the superconducting properties of niobium has also been explored. For this aim, magnetic hysteresis loops have been measured at different cryogenic temperatures to analyse how these laser treatments affect the flux pinning behaviour and, in consequence, the superconductor’s critical current values. It was observed that laser treatments are able to modify the superconducting properties of niobium samples. T2 - E-MRS Spring Meeting 2019 CY - Nice, France DA - 27.05.2019 KW - Superconductivity KW - Laser-induced periodic surface structures (LIPSS) KW - Niobium PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502541 DO - https://doi.org/10.1016/j.apsusc.2019.145140 SN - 0169-4332 SN - 1873-5584 VL - 508 IS - 1 SP - 145140-1 EP - 145140-7 PB - Elsevier CY - Amsterdam AN - OPUS4-50254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -