TY - JOUR A1 - Fürst, Richard A1 - Fürst, E. A1 - Vlach, T. A1 - Repka, J. A1 - Pokorny, M. A1 - Mozer, V. T1 - Use of Cement Suspension as an Alternative Matrix Material for Textile-Reinforced Concrete N2 - Textile-reinforced concrete (TRC) is a material consisting of high-performance concrete (HPC) and tensile reinforcement comprised of carbon roving with epoxy resin matrix. However, the problem of low epoxy resin resistance at higher temperatures persists. In this work, an alternative to the epoxy resin matrix, a non-combustible cement suspension (cement milk) which has proven stability at elevated temperatures, was evaluated. In the first part of the work, microscopic research was carried out to determine the distribution of particle sizes in the cement suspension. Subsequently, five series of plate samples differing in the type of cement and the method of textile reinforcement saturation were designed and prepared. Mechanical experiments (four-point bending tests) were carried out to verify the properties of each sample type. It was found that the highest efficiency of carbon roving saturation was achieved by using finer ground cement (CEM 52.5) and the pressure saturation method. Moreover, this solution also exhibited the best results in the four-point bending test. Finally, the use of CEM 52.5 in the cement matrix appears to be a feasible variant for TRC constructions that could overcome problems with its low temperature resistance. KW - Textile-reinforced concrete KW - High-performance concrete KW - Carbon fibers KW - Cement matrix PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527100 DO - https://doi.org/10.3390/ma14092127 SN - 1996-1944 VL - 14 IS - 9 SP - 2127 PB - MDPI CY - Basel AN - OPUS4-52710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klinge, A A1 - Mönig, J A1 - Ziegert, C A1 - Richter, Matthias A1 - Kalbe, Ute A1 - Horn, Wolfgang A1 - Röhlen, U A1 - Rauscher, S A1 - Roswag-Klinge, E T1 - upMIN 100 – upcycling of mineral construction and demolition waste to substitute natural aggregates in earthen building materials N2 - The construction sector is one of the most resource-intensive sectors in Germany and is responsible for 40 % of CO2 emissions. Around 517 million tons of mineral raw materials are required annually for the construction of buildings in Germany. At the same time, mineral construction waste was the largest material flow at 229.3 million tons (2020). The rates of construction and demolition waste (CDW) recycling have increased since 2000, especially for mineral waste. Nevertheless, the majority of recycled aggregates are used in technically largely unregulated applications (e.g. road construction). This downcycling leads to a loss of valuable resources for technically and economically valuable applications. The upMIN 100 research project is investigating the question of whether and to what extent recycled CDW is suitable as an additive an binder in earthen building materials. The focus is placed on grain sizes of < 2 mm, which are currently predominantly landfilled, as there are at present no regulations for their use in building products. The soil matrix of earthen building materials however, naturally contains of different grain sizes, whith < 2mm – 0,063 for aggregates and < 0.063 mm as a binder. Therefore, the focused grain sizes (sand, clay and silt) could have a high usage potential. In order to enable the use of CDW, the technical feasibility must be ensured, quality requirements for source materials (e.g. threshold values for pollutants in terms of health and environmental compatibility and hazardous substances) and permissible proportions of recycled aggregates must be defined. Two different building material developments (earth blocks and -plaster)were used to assess both, the technical feasibility as well the pollutant content of the recycled aggregate and its final emissions into the indoor air. For both materials two mixtures could be established, that also meet the mechanical specifications according to the DIN standard, such as the compressive strength. A method was developed to design material mixtures with a high amount of CDW that comply with the defined limit values. The mixtures reached a recycling rate of 28 % with high mechanical properties and 70 % with minimum strength requirements. KW - Mineral waste KW - Upcycling KW - Earthen building product KW - Circular construction PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652831 DO - https://doi.org/10.1088/1755-1315/1554/1/012084 SN - 1755-1307 VL - 1554 IS - 1 SP - 1 EP - 9 PB - IOP Publishing AN - OPUS4-65283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, Henning A1 - Sintschuk, Michael A1 - Britzke, Ralf A1 - Dayani, Shahabeddin A1 - Bruno, Giovanni T1 - Upgraded imaging capabilities at the BAMline (BESSY II) N2 - The BAMline at the BESSY II synchrotron X-ray source has enabled research for more than 20 years in widely spread research fields such as materials science, biology, cultural heritage and medicine. As a nondestructive characterization method, synchrotron X-ray imaging, especially tomography, plays a particularly important role in structural characterization. A recent upgrade of key equipment of the BAMline widens its imaging capabilities: shorter scan acquisition times are now possible, in situ and operando studies can now be routinely performed, and different energy spectra can easily be set up. In fact, the upgraded double-multilayer monochromator brings full flexibility by yielding different energy spectra to optimize flux and energy resolution as desired. The upgraded detector (based on an sCMOS camera) also allows exploiting the higher flux with reduced readout times. Furthermore, an installed slip ring allows the sample stage to continuously rotate. The latter feature enables tomographic observation of processes occurring in the time scale of a few seconds. KW - Synchrotron radiation KW - Computed tomography KW - Double-multilayer monochromators KW - Pink beams KW - X-ray optics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556907 DO - https://doi.org/10.1107/S1600577522007342 SN - 1600-5775 VL - 29 IS - Pt 5 SP - 1292 EP - 1298 PB - International Union of Crystallography CY - Chester AN - OPUS4-55690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kohlbrecher, J. A1 - Breßler, Ingo T1 - Updates in SASfit for fitting analytical expressions and numerical models to small-angle scattering patterns N2 - Small-angle scattering is an increasingly common method for characterizing particle ensembles in a wide variety of sample types and for diverse areas of application. SASfit has been one of the most comprehensive and flexible curve-fitting programs for decades, with many specialized tools for various fields. Here, a selection of enhancements and additions to the SASfit program are presented that may be of great benefit to interested and advanced users alike: (a) further development of the technical basis of the program, such as new numerical algorithms currently in use, a continuous integration practice for automated building and packaging of the software, and upgrades on the plug-in system for easier adoption by third-party developers; (b) a selection of new form factors for anisotropic scattering patterns and updates to existing form factors to account for multiple scattering effects; (c) a new type of a very flexible distribution called metalog [Keelin (2016). Decis. Anal. 13, 243–277], and regularization techniques such as the expectation-maximization method [Dempster et al. (1977). J. R. Stat. Soc. Ser. B (Methodological), 39, 1–22; Richardson (1972) J. Opt. Soc. Am. 62, 55; Lucy (1974). Astron. J. 79, 745; Lucy (1994). Astron. Astrophys. 289, 983–994], which is compared with fits of analytical size distributions via the non-linear least-squares method; and (d) new structure factors, especially for ordered nano- and meso-scaled material systems, as well as the Ornstein–Zernike solver for numerical determination of particle interactions and the resulting structure factor when no analytical solution is available, with the aim of incorporating its effects into the small-angle scattering intensity model used for fitting with SASfit. KW - Small-angle scattering KW - Numerical models KW - Structure factors KW - Regularization KW - SAXS KW - SANS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565069 DO - https://doi.org/10.1107/S1600576722009037 SN - 0021-8898 SN - 1600-5767 VL - 55 IS - 6 SP - 1677 EP - 1688 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-56506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Allix, M. A1 - Davis, M.J. A1 - Duran, A. A1 - Höche, T. A1 - Honma, T. A1 - Komatsu, T. A1 - Krüger, S. A1 - Mitra, I. A1 - Müller, Ralf A1 - Nakane, S. A1 - Pascual, M.J. A1 - Schmelzer, J.W. A1 - Zanotto, E.D. A1 - Zhou, S. T1 - Updated definition of glass-ceramics N2 - Glass-ceramics are noted for their unusual combination of properties and manifold commercialized products for consumer and specialized markets. Evolution of novel glass and ceramic processing routes, a plethora of new compositions, and unique exotic nano- and microstructures over the past 60 years led us to review the Definition of glass-ceramics. Well-established and emerging processing methods, such as co-firing, additive manufacturing, and laser patterning are analyzed concerning the core requirements of processing glass-ceramics and the Performance of the final products. In this communication, we propose a revised, updated definition of glass-ceramics, which reads “Glass-ceramics are inorganic, non-metallic materials prepared by controlled crystallization of glasses via different processing methods. They contain at least one type of functional crystalline phase and a residual glass. The volume fraction crystallized may vary from ppm to almost 100%”. KW - Glass-ceramics definition PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464711 DO - https://doi.org/10.1016/j.jnoncrysol.2018.01.033 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 3 EP - 10 PB - Elsevier B.V. AN - OPUS4-46471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arai, Marylyn Setsuko A1 - Ravaro, Leandro Piaggi A1 - Brambilla, Gabriel A1 - Maia, Lauro June Queiroz A1 - Reza Dousti, Mohammad A1 - de Camargo, Andrea Simone Stucchi T1 - Upconverting Nanoparticles and Cu(I) Complex-Based Platform for Oxygen Sensing, Thermometry, and Emission Color Tuning N2 - Multifunctional nanoplatforms combine different material properties to meet a wide range of applications, allowing highly customizable systems. In this rapidly advancing research field, we introduce a multifunctional nanomaterial based on the synergy between Tm3+-doped upconverting nanoparticles (UCNPs) and a Cu(I) complex (CuCom). This material is designed for oxygen sensing, optical thermometry, and emission color tuning. In various concentrations, the CuCom complex was electrostatically integrated into a mesoporous silica shell surrounding the core UCNPs (UCNP@mSiO2). The optimized system, UCNP@mSiO2@CuCom-10, was evaluated for different applications. Due to the spectral overlap between the CuCom absorption and the nanoparticles emission, excitation at 980 nm allows most of the UV-blue emission output from the UCNPs to be transferred to the CuCom via luminescent resonance energy transfer (LRET), producing red emission from the molecule. The remaining Tm3+ emission enables optical thermometry, while CuCom’s sensitivity to molecular oxygen supports its application in gas sensing. In upconversion mode, the nanoplatform achieved a Stern−Volmer constant for O2 sensing of 1.64 and demonstrated thermometric relative sensitivities of 0.9% and 1% K−1 at room temperature, with a linear response from 193 to 373 K. Additionally, the emission color of UCNP@mSiO2@CuCom-10 can be tuned from blue to white and yellow, by varying the excitation and temperature, adding further functionality to the system. This multifunctional platform suggests promising applications in biology, medicine, and environmental monitoring. KW - M KW - O2 sensing KW - Upconversion KW - Luminescence resonance energy transfer (LRET) KW - Optical thermometry KW - Mesoporous silica shell PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625869 SN - 2574-0970 DO - https://doi.org/10.1021/acsanm.4c06351 VL - 8 SP - 854 EP - 862 PB - American Chemical Society (ACS) AN - OPUS4-62586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oskoei, Párástu A1 - Afonso, Rúben A1 - Bastos, Verónica A1 - Nogueira, João A1 - Keller, Lisa-Marie A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Daniel-da-Silva, Ana L. A1 - Oliveira, Helena T1 - Upconversion Nanoparticles with Mesoporous Silica Coatings for Doxorubicin Targeted Delivery to Melanoma Cells N2 - Melanoma is one of the most aggressive skin cancers and requires innovative therapeutic strategies to overcome the limitations of conventional therapies. In this work, upconversion nanoparticles coated with mesoporous silica and functionalized with folic acid (UCNP@mSiO2-FA) were developed as a targeted nanocarrier system for the delivery of doxorubicin (DOX). The UCNPs were synthesized via thermal decomposition, coated with mesoporous silica shells, and functionalized with folic acid (FA) to enable receptor-mediated targeting. DOX was then loaded into the mesoporous silica coating by adsorption, yielding UCNP@mSiO2-FA-DOX. The different UCNPs were characterized for size, composition, colloidal stability, and loading and release of DOX. This comprehensive physicochemical characterization confirmed a high DOX loading efficiency and a slightly increased drug release under acidic conditions, mimicking the tumour microenvironment. In vitro assays using four melanoma cell lines (A375, B16-F10, MNT-1, and SK-MEL-28) revealed an excellent biocompatibility of UCNP@mSiO2-FA and a significantly higher cytotoxicity of UCNP@mSiO2-FA-DOX compared to unloaded UCNPs, in a dose-dependent manner. Cell cycle analysis demonstrated G2/M phase arrest after treatment with UCNP@mSiO2-FA-DOX, confirming its antiproliferative effect. Overall, UCNP@mSiO2-FA-DOX represents a promising nanoplatform for targeted melanoma therapy, combining active tumour targeting and enhanced anticancer efficacy. KW - Fluorescence KW - Synthesis KW - Nano KW - Particle KW - Silica KW - Cell KW - Uptake KW - Drug KW - Characterization KW - DOX KW - Imaging KW - Toxicity KW - Release KW - pH PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653596 DO - https://doi.org/10.3390/molecules31010074 SN - 1420-3049 VL - 31 IS - 1 SP - 1 EP - 18 PB - MDPI AG AN - OPUS4-65359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nikitin, D. A1 - Biliak, K. A1 - Protsak, M. A1 - Adejube, B. A1 - Ali-Ogly, S. A1 - Škorvanková, K. A1 - Červenková, V. A1 - Katuta, R. A1 - Tosco, M. A1 - Hanuš, J. A1 - Černochová, Z. A1 - Černoch, P. A1 - Štěpánek, P. A1 - Boiko, O. A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Faupel, F. A1 - Biedermann, H. A1 - Vahl, A. A1 - Choukourov, A. T1 - Unveiling the Fundamental Principles of Reconfigurable Resistance States in Silver/Poly(ethylene glycol) Nanofluids N2 - Developing novel memristive systems aims to implement key principles of biological neuron assemblies – plasticity, adaptivity, and self-organization – into artificial devices for parallel, energy-efficient computing. Solid-state memristive devices, such as crossbar arrays and percolated nanoparticle (NP) networks, already demonstrate these properties. However, closer similarity to neural networks is expected from liquid-state systems, including polymer melts, which remain largely unexplored. Here, the resistive switching in silver/poly(ethylene glycol) (Ag/PEG) nanofluids, prepared by depositing gas-aggregated Ag NPs into PEGs of varying molecular mass, is investigated. These systems form long-range conductive NP bridges with reconfigurable resistance states in response to an electric field. The zeta-potential of Ag NPs and molecular mobility of PEG determine the prevalence of low resistance (ohmic) state, high resistance states (poor conductance) or intermediate transition states governed by space-charge-limited conduction or electron tunneling. The occurrence of these states is given by the interparticle gaps, which are determined by the conformation of PEG molecules adsorbed on the NPs. It is presented, for the first time, an equivalent circuit model for the Ag/PEG system. These findings pave the way to adopt polymer melts as matrices for neuromorphic engineering and bio-inspired electronics. KW - Nanofluids PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-635351 DO - https://doi.org/10.1002/advs.202505103 VL - 12 SP - 1 EP - 14 PB - Wiley AN - OPUS4-63535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishmastnehi, Moslem A1 - Stawski, Tomasz M. A1 - Eftekhari, Negar A1 - Schneider, Kathrin P. A1 - Vaccaro, Carmela A1 - Aghajani, Iman A1 - Grbanovic, Ana Marija A1 - Korn, Lorenz T1 - Unveiling the craftsmanship and knowledge behind iranian stuccoes (11th–14th centuries): New insights from an archaeometric perspective N2 - Gypsum-based stucco decorations of 47 monuments in Iran, from the Seljuq to the Ilkhanid period (11th-14th centuries), were studied by multimodal analytical methods, including X-ray diffraction, X-ray fluorescence, scanning electron microscopy and image analysis to evaluate their composition properties. The assessment of results shows that stucco masters in those periods exerted control over the setting process of the gypsum-paste and its microstructure by adjusting water-to-plaster ratio, fine-clay addition, and by means of mechanical processing. Furthermore, the presence of anhydrite in the composition of stucco decorations located in the hot-desert climate of Iran provides evidence for the probability of gypsum-anhydrite transition, which has technical and preservation consequences for this less-investigated type of cultural materials. KW - Gypsum KW - Diffraction KW - Anhydrite KW - Calcium sulfate PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-628406 DO - https://doi.org/10.1016/j.jas.2025.106199 SN - 1095-9238 VL - 177 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-62840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sreekala, L. A1 - Dey, P. A1 - Hickel, Tilmann A1 - Neugebauer, J. T1 - Unveiling nonmonotonic chemical trends in the solubility of H in complex Fe-Cr-Mn carbides by means of ab initio based approaches N2 - The microstructure of advanced high-strength steels often shows a sensitive dependence on alloying. For example, adding Cr to improve the corrosion resistance of medium-Mn steels also enhances the precipitation of carbides. The current study focuses on the behavior of H in such complex multicomponent carbides by employing different methodological strategies. We systematically analyze the impact of Cr, Mn, and Fe using density functional theory (DFT) for two prototype precipitate phases, M3C and M23C6, where M represents the metal sublattice. Our results show that the addition of these alloying elements yields strong nonmonotonic chemical trends for the H solubility. We identify magnetovolume effects as the origin for this behavior, which depend on the considered system, the sites occupied by H, and short- vs long-range interactions between H and the alloying elements. We further show that the H solubility is directly correlated with the occupation of its nearest-neighbor shells by Cr and Mn. Based on these insights, DFT data from H containing binary-metal carbides are used to design a ridge regression based model that predicts the solubility of H in the ternary-metal carbides (Fe-Cr-Mn-C). KW - Hydrogen KW - High-strength steel KW - Carbide KW - Ab initio KW - Complexity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542271 DO - https://doi.org/10.1103/PhysRevMaterials.6.014403 SN - 2475-9953 VL - 6 IS - 1 SP - 1 EP - 14 PB - American Physical Society (APS) CY - College Park, MD AN - OPUS4-54227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -