TY - JOUR A1 - Kraft, Sebastian A1 - Schille, J. A1 - Bonse, Jörn A1 - Löschner, U. A1 - Krüger, Jörg T1 - X‑ray emission during the ablative processing of biological materials by ultrashort laser pulses N2 - The ablative laser processing with ultrashort pulsed laser beams may cause secondary emission of hazardous X-rays. While the effect has recently been proven to be considered in working safety regulations when processing technical materials, such as metals, the X-ray emission rates during the ablative processing of biological tissue materials are widely unexplored yet. Therefore, biological materials like water, isotonic saline solution, pig eyes, and human teeth were ablated with ultrashort laser pulses of 1030 nm wavelength, 600 fs pulse duration and 5 kHz pulse repetition rate, aiming to mimic typical surgery situations. Simultaneously, in-situ X-ray dose rate measurements were performed at a short distance from the plasma to display potential X-ray emission. For all four studied biological materials, our measurements prove the secondary emission of laser-induced X-rays. KW - Ultrashort pulsed laser KW - Laser-induced X-ray emission KW - Ophthalmology KW - Dentistry KW - Secondary hazard PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569960 DO - https://doi.org/10.1007/s00339-023-06440-4 SN - 0947-8396 VL - 129 IS - 3 SP - 1 EP - 8 PB - Springer AN - OPUS4-56996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chemello, Giovanni A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - XPS–SEM/EDS Tandem Analysis for the Elemental Composition of Functionalized Graphene Nanoplatelets N2 - Over the past decade, energy-dispersive X-ray spectrometry (EDS) with scanning electron microscopy (SEM) has advanced to enable the accurate analysis of light elements such as C, N, or O. For this reason, EDS is becoming increasingly interesting as an analytical method for the elemental analysis of functionalized graphene and could be an attractive alternative to Xray photoelectron spectroscopy (XPS), which is considered the most important method for elemental analysis. In this study, comparative XPS and EDS investigations under different excitation conditions are carried out on commercially available powders containing graphene particles with different morphologies. The slightly different XPS/HAXPES and EDS results can be explained by the different information depths of the methods and the functionalization of the particle surfaces. For the material with smaller graphene particles and higher O/C ratios, all methods reported a lower O/C ratio in pellets compared with the unpressed powder samples. This clearly shows that sample preparation has a significant influence on the quantification results, especially for such a type of morphology. Overall, the study demonstrates that EDS is a reliable and fast alternative to XPS for the elemental quantification of functionalized graphene particles, provided that differences in the information depth are taken into account. Particle morphology can be examined in parallel with quantitative element analysis, since EDS spectrometers are typically coupled with SEM, which are available in a huge number of analytical laboratories. KW - Graphene oxide KW - SEM/EDS KW - XPS/HAXPES KW - Elemental composition KW - Functionalization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647294 DO - https://doi.org/10.1021/acsomega.5c07830 SN - 2470-1343 SP - 1 EP - 7 PB - American Chemical Society (ACS) AN - OPUS4-64729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dietrich, P. A1 - Thissen, A. A1 - Kulak, N. A1 - Kjaervik, Marit A1 - Unger, Wolfgang T1 - XPS surface chemical analysis of aqueous solutions with EnviroESCA N2 - Water and aqueous reagents are essential in any biological process or system. But apart from a few special low vapor-pressure cases, liquids have not been accessible to any technique requiring UHV conditions. EnviroESCA opens up this exciting field of applications. In this paper first results from water based samples are presented as a proof of concept to demonstrate the special capabilities of EnviroESCA analyzing liquid samples. The following solutions were investigated under near ambient pressure conditions: i.) water, ii.) brine, iii.) an oil in water dispersion, iv.) aqueous iron(II) sulfate heptahydrate, and v.) a suspension of nano silver particles in water. KW - Surface Analysis KW - Near Ambient Pressure XPS KW - Aqueous Solutions PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394603 UR - http://www.enviro.specs.de/cms/upload/bilder/EnviroESCA/Applications/Liquids/Application-Note_EnviroESCA_Aqueous_Solutions.pdf N1 - BAM Mitarbeiter Beitrag im Acknowledgement definiert. IS - #000394 SP - 1 PB - SPECS CY - Berlin AN - OPUS4-39460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beygi Narsabadi, Hossein A1 - Vafaeenezhad, H. A1 - Klotz, U.E. A1 - Tiberto, D. A1 - Hosseinabadi, F. A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Skrotzki, Birgit T1 - XCT-assisted micromechanical modeling of the effect of pores on the plastic deformation and mechanical characteristics of PBF-LB/M-produced copper alloys N2 - Due to the low absorption of fiber laser by copper particles, the laser-based powder bed fusion (PBF-LB/M) processing of copper components is accompanied by the development of different types of porosities within the printed samples. This research aims to assess the consequences of various process-induced pores on the me chanical characteristics and deformation of PBF-LB/M-produced copper alloys. Several copper alloys were processed using metal-coated particles and varied laser intensities, yielding samples with different types and amounts of porosities. For instance, CuCrZr alloys processed at 325 J/mm³ and 257 J/mm³ had 0.009 % and 1.117 % porosities, dominated by keyhole and lack-of-fusion pores, respectively. Moreover, PBF-LB/M pro cessing of Cr- and Nb-coated CuNi3SiCr particles accompanied by the generation of 0.004 % and 1.861 % porosities within the samples, predominantly featuring metallurgical and oxidation pores, respectively. Compression and nanoindentation tests revealed that the CuNi3SiCr alloy exhibited superior mechanical properties compared to the CuCrZr sample (nanoindentation hardness values 2.2 GPa and 1.4 GPa, respectively), while the presence of lack-of-fusion pores notably diminished their mechanical performance. X-ray computed tomography (XCT) reconstruction slices and scanning electron microscopy (SEM) images were then used for developing the representative volume elements (RVEs) based micromechanical models. The micromechanical simulations established a structure-property correlation that can simulate the compressive deformation and mechanical characteristics of PBF-LB/M-produced copper alloys as a function of their incorporated pore characteristics. Due to the closure of the pores at the first stages of deformation, samples with minimal keyhole and metallurgical porosities exhibited homogeneous plastic deformation. On the other side, based on the JohnsonCook model, strain concentration and crack propagation around the lack-of-fusion pores lead to damage initi ation in the printed samples at a strain level of 5 % KW - X-ray Computed tomography KW - Defects KW - Copper alloys KW - PBF-LB/M KW - Micromechanics PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624004 DO - https://doi.org/10.1016/j.msea.2025.147836 SN - 0921-5093 VL - 924 PB - Elsevier B.V. AN - OPUS4-62400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, Sven A1 - Jaenisch, Gerd-Rüdiger A1 - Pavasaryte, Lina A1 - Funk, Alexander T1 - XCT and DLW: Synergies of Two Techniques at Sub-Micrometer Resolution N2 - Direct Laser Writing (DLW) and X-ray computed tomography (XCT) both offer unique possibilities in their respective fields. DLW produces full three-dimensional (3D) polymer structures on the microscale with resolutions below 100 nm. The fabricated structures can be analysed by XCT or X-ray microscopy (XRM), which incorporates additional X-ray lenses, in three dimensions down to a minimal basic spatial resolution of about 500 nm or 50 nm, respectively. In this work, two different DLW structures are analysed via XCT. Internal defects are detected and analysed for the purpose of quality control. Defects and structures with sizes down to 1.5 µm are successfully analysed. A 3D reconstruction and internal, hidden features of the fabricated structures are shown and discussed. In a first-of-its-kind study, we demonstrate the detectability of a single-voxel line inside a fabricated structure that would not be detectable with SEM or light microscopy. Furthermore, the direct fabrication on a PET substrate is shown to overcome the high X-ray absorbance of commonly used glass substrates. Attenuation spectra of SZ2080 and glass substrates are compared to a fabrication route direct on a 170 µm PET foil. The practical aspects of XCT measurements for DLW structures on different substrates will be discussed. KW - Non-destructive testing KW - Two-photon polymerization KW - X-ray microscopy KW - XCT KW - 2PP KW - Direct laser writing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560525 DO - https://doi.org/10.3390/app122010488 VL - 12 IS - 20 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-56052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tammas-Williams, S. A1 - Zhao, H. A1 - Léonard, Fabien A1 - Derguti, F. A1 - Todd, I. A1 - Prangnell, P.B. T1 - XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting N2 - Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (b0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship was found with the differentbeamstrategies used to contour ,and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. KW - Titanium KW - Additive Manufacture KW - Selective Electron Beam Melting KW - Pores KW - X-ray computed tomography PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-416577 UR - http://www.sciencedirect.com/science/article/pii/S104458031500039X?via%3Dihub DO - https://doi.org/10.1016/j.matchar.2015.02.008 VL - 102 SP - 47 EP - 61 CY - Materials Characterization AN - OPUS4-41657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hernández-Nava, E. A1 - Tammas-Williams, S. A1 - Smith, C. A1 - Léonard, Fabien A1 - Withers, P. J. A1 - Todd, I. A1 - Goodall, R. T1 - X-ray tomography characterisation of lattice structures processed by selective electron beam melting N2 - Metallic lattice structures intentionally contain open porosity; however, they can also contain unwanted closed porosity within the structural members. The entrained porosity and defects within three different geometries of Ti-6Al-4V lattices, fabricated by Selective Electron Beam Melting (SEBM), is assessed from X-ray computed tomography (CT) scans. The results suggest that horizontal struts that are built upon loose powder show particularly high (~20 x 10⁻³ vol %) levels of pores, as do nodes at which many (in our case 24) struts meet. On the other hand, for struts more closely aligned (0° to 54°) to the build direction, the fraction of porosity appears to be much lower (~0.17 x 10⁻³%) arising mainly from pores contained within the original atomised powder particles. KW - Cellular solids KW - Aqdditive manufacturing KW - Computed tomography KW - Titanium alloys PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-413689 UR - http://www.mdpi.com/2075-4701/7/8/300 DO - https://doi.org/10.3390/met7080300 SN - 2075-4701 VL - 7 IS - 8 SP - Article 300, 1 EP - 12 PB - MDPI AN - OPUS4-41368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - X-ray refraction distinguishes unprocessed powder from empty pores in selective laser melting Ti-6Al-4V N2 - For the first time, X-ray refraction techniques are proven for the identification of void formation in Ti-6Al-4V parts produced by selective laser melting. The topology and volume fraction of pores are measured in samples produced with different laser energy density. Unique X-ray refraction methods identify different kinds of defects, characteristic to the regions below and above the Optimum laser energy density, namely unprocessed powder (unmolten powder particles, balling effect, and Fusion defects) from empty keyhole pores. Furthermore, it is possible to detect small inhomogeneities (voids or cracks) with sizes below the spatial resolution of optical microscopy and X-ray computed tomography. KW - Additive manufacturing KW - X-ray refraction KW - Microscopy KW - X-ray computed tomography KW - Porosity PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434041 DO - https://doi.org/10.1080/21663831.2017.1409288 SN - 2166-3831 VL - 6 IS - 2 SP - 130 EP - 135 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-43404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray radiation protection aspects during ultrashort laser processing N2 - Ultrashort pulse laser processing of materials allows for precise machining with high accuracy. By increasing the repetition rate to several 100 kHz, laser machining becomes quick and cost-effective. Ultrafast laser processing at high repetition rates and peak intensities above 10^13 W/cm^2 can cause a potential hazard by generation of unwanted x-ray radiation. Therefore, radiation protection must be considered. For 925 fs pulse duration at a center wavelength of 1030 nm, the x-ray emission in air at a repetition rate of 400 kHz was investigated up to a peak intensity of 2.6 × 10^14 W/cm^2. Based on the presented measurements, the properties of potential shielding materials will be discussed. By extending our previous works, a scaling of the x-ray radiation emission to higher peak intensities up to 10^15 W/cm^2 is described, and emitted x-ray doses are predicted. KW - Laser ablation KW - Ultrashort pulse laser processing KW - Laser-induced x-ray emission KW - Radiation protection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505677 DO - https://doi.org/10.2351/1.5134778 VL - 32 IS - 2 SP - 022004 AN - OPUS4-50567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Nielow, D. A1 - Schumacher, David A1 - Lange, A. A1 - Hentschel, M.P. A1 - Redmer, Bernhard A1 - Ewert, U. A1 - Bruno, Giovanni T1 - X-ray laminographic inspection of sandwich shell segments for wind turbine rotor blades N2 - 3D structural investigations are described by X-ray laminography studies of sandwich shell segments, made of a PVC foam core, covered by non-crimp fabric glass fibre composite lay-ups processed by vacuum assisted resin infusion of epoxy. The specific scope of this study is to image transversal flaws within the foam core (joints) and of single ply overlaps. Test flaws were purposely implemented in order to simulate typical failure under cyclic load. In a dedicated test rig for shell structures, the flaw evolution/propagation is monitored by thermography and optical 3D inspection of deformation. Due to the unfavourable preconditions for classical computed tomography as of large aspect ratio, the samples were investigated by coplanar translational laminography. Its limited range of observation angles of ± 45°, results in anisotropic artefacts about the normal to the sample surface, but the typical flaws are well visualized in the as-prepared state, in a state of early damage, and in the repaired state. T2 - 12th European conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - X-ray laminography KW - Wind turbine KW - Rotor blade PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453931 SN - 978-91-639-6217-2 SP - 1 EP - 8 AN - OPUS4-45393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -