TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael ED - Herwig, Christoph T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra N2 - Currently, research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algorithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16-inch polymer tubing working as a flow cell. Single scan 1H NMR spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in non-deuterated solvents while its time-resolved behaviour was characterised with step tracer experiments. Through the application of spectral modeling the signal area for each reactant can be deconvoluted in the online spectra and thus converted to the respective concentrations or molar ratios. The signals which were suitable for direct integration were used herein for comparison purposes of both methods. T2 - 11. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 12.03.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Control KW - Process Analytical Technology KW - CONSENS KW - Click Chemistry PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435531 SP - 33 EP - 35 PB - Gesellschaft Deutscher Chemiker (GDCh) CY - Frankfurt a. M. AN - OPUS4-43553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalik-Onichimowska, Aleksandra A1 - Kern, Simon A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael T1 - ‘‘Click” analytics for ‘‘click” chemistry – A simple method for calibration–free evaluation of online NMR spectra N2 - Driven mostly by the search for chemical syntheses under biocompatible conditions, so called "click" chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques possessing short set-up times. Here, we report on a fast and reliable calibration-free online NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement of 1H spectra with a time interval of 20 s per spectrum, and a robust, fully automated algorithm to interpret the obtained data. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in a variety of non-deuterated solvents while its time-resolved behaviour was characterized with step tracer experiments. Overlapping signals in online spectra during thiol-ene coupling could be deconvoluted with a spectral model using indirect hard modeling and were subsequently converted to either molar ratios (using a calibrationfree approach) or absolute concentrations (using 1-point calibration). For various solvents the kinetic constant k for pseudo-first order reaction was estimated to be 3.9 h-1 at 25 °C. The obtained results were compared with direct integration of non-overlapping signals and showed good agreement with the implemented mass balance. KW - Online NMR Spectroscopy KW - Reaction Monitoring KW - Automated Data Evaluation KW - Thiol-ene click chemistry KW - Click Chemistry KW - Process Analytical Technology PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-393232 UR - http://www.sciencedirect.com/science/article/pii/S1090780717300575 DO - https://doi.org/10.1016/j.jmr.2017.02.018 VL - 277 SP - 154 EP - 161 PB - Elsevier Inc. CY - Oxford AN - OPUS4-39323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vo, P. H.N. A1 - Vogel, Christian A1 - Nguyen, H. T.M. A1 - Hamilton, B. R. A1 - Thai, P. K. A1 - Roesch, Philipp A1 - Simon, Franz-Georg A1 - Mueller, J. F. T1 - µ-X-ray fluorescence (XRF) and fluorine K-edge µ-X-ray absorption near-edge structure (XANES) spectroscopy for detection of PFAS distribution in the impacted concrete N2 - An improved understanding of the distribution of per- and polyfluoroalkyl substances (PFAS) in PFAS-impacted concrete is important for risk management and decontamination of PFAS. This study incorporates µ-X-ray fluorescence (µ-XRF) and fluorine K-edge µ-X-ray absorption near-edge structure (µ-XANES) spectroscopy to gain non-destructive insights into PFAS distribution in the impacted concrete. The μ-XRF and μ-XANES spectroscopy provided additional details on the detection of PFAS, which were not detected by the desorption electrospray ionization (DESI) imaging method conducted previously. The shorter chain PFAS were found on the top part of the concrete core (0.5 cm), and longer chain PFAS were mostly at the bottom part of the concrete core (5 cm). The inorganic fluorine fraction was also detected, and it likely hampered the detection of organic fluorine such as PFAS in the concrete. Thus, this non-destructive technique is an complementary approach to detect PFAS in contaminated concrete. KW - Beton KW - Per- and Polyfluoroalkyl substances (PFAS) KW - XANES spectroscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-616711 DO - https://doi.org/10.1016/j.hazl.2024.100134 SN - 2666-9110 VL - 5 SP - 1 EP - 5 PB - Elsevier B.V. AN - OPUS4-61671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Zwitterionic polymerization of glycolide catalyzed by pyridine N2 - The usefulness of various N- and P-based catalysts for syntheses of cyclic polyglycolide via zwitterionic polymerization of glycolide was examined. Most catalysts produced discolored, largely insoluble polyglycolides consisting of cycles and unidentified byproducts. Soluble, cyclic polyglycolides were obtained using neat pyridine as catalyst at 120 °C, 100 °C, 80 °C, and even at 60 °C. The number-average molecular weights were extremely low and depended slightly on the glycolide-to-pyridine ratio. Three different mass distributions of the cycles were detected by mass spectrometry, depending on the reaction conditions. The cyclic polyglycolides were also characterized by differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) measurements. The SAXS data in combination with the mass spectra indicate that the majority of the cycles form extended-ring crystallites KW - MALDI-TOF MS KW - Polylactide KW - Polymerization KW - Zitterions PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639748 DO - https://doi.org/10.1039/d5py00762c SN - 1759-9954 SP - 1 EP - 9 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Roy, Arkendu A1 - Karafiludis, Stephanos A1 - Kumar, Sourabh A1 - de Oliveira Guilherme Buzanich, Ana A1 - Stawski, Tomasz M. A1 - Miliūtė, Aistė A1 - von der Au, Marcus A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - Zirconium fluoride-supported high-entropy fluoride: a catalyst for enhanced oxygen evolution reaction N2 - Extended hydrogen initiatives promote the urgency of research on water splitting technologies and, therein, oxygen evolution reaction catalysts being developed. A route to access a ZrF4 supported high-entropy fluoride catalyst using a facile sol–gel route is presented. The high-entropy character of the catalyst was confirmed by scanning transmission electron microscopy and energy dispersive X-ray spectroscopy (STEM-EDX) as well as inductively coupled plasma-mass spectrometry (ICP-MS). Additional investigations on the local structure were performed using extended X-ray absorption fine structure spectroscopy (EXAFS) and pair distribution function (PDF) analysis. The catalyst shows significant potential for oxygen evolution reaction (OER) in alkaline media with a current density of 100 mA cm−2 at approximately 1.60 V, thus outperforming benchmark materials such as IrO2, despite a significant reduction in electrochemical mass loading. A potential mechanism is suggested based on free energy calculation using DFT calculations. KW - OER KW - HEA KW - CCMAT PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637116 DO - https://doi.org/10.1039/D4TA08664C SN - 2050-7488 VL - 13 IS - 26 SP - 20383 EP - 20393 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Smales, Glen Jacob A1 - Clark, Adam H. A1 - Thünemann, Andreas T1 - Zinc Phosphate Nanoparticles Produced in Saliva N2 - This paper reports the formation of zinc phosphate nanoparticles from the artificial digestion of zinc chloride. Initially, the formation of amorphous primary particles with a mean radius of 1.1 nm is observed, alongside the formation of larger, protein stabilized aggregates. These aggregates, with a radius of gyration of 37 nm, are observed after 5 minutes of exposure to artificial saliva and are shown to be colloidally stable for a minimum time of two weeks. The initially formed primary particles are thought to consist of amorphous zinc phosphate, which is then transformed into crystalline Zn3(PO4)2·4H2O over the course of two weeks. Our results demonstrate that the interaction of inorganic salts with bodily fluids can induce the formation of de novo nanoparticles, which in turn, provides insights into how zinc‐enriched foods may also facilitate the formation of nanoparticles upon contact with saliva. As such, this may be considered as an undesirable (bio)mineralization. KW - SAXS KW - Digestion KW - Zinc phosphate PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514239 DO - https://doi.org/10.1002/ejic.202000521 IS - 38 SP - 3654 EP - 3661 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-51423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balderas-Xicohtencatl, R. A1 - Villajos Collado, José Antonio A1 - Casabán, J. A1 - Wong, D. A1 - Maiwald, Michael A1 - Hirscher, M. T1 - ZIF‑8 Pellets as a Robust Material for Hydrogen Cryo-Adsorption Tanks N2 - Cryoadsorption on the inner surface of porous materials is a promising solution for safe, fast, and reversible hydrogen storage. Within the class of highly porous metal−organic frameworks, zeolitic imidazolate frameworks (ZIFs) show high thermal, chemical, and mechanical stability. In this study, we selected ZIF-8 synthesized mechanochemically by twin-screw extrusion as powder and pellets. The hydrogen storage capacity at 77 K and up to 100 bar has been analyzed in two laboratories applying three different measurement setups showing a high reproducibility. Pelletizing ZIF-8 increases the packing density close to the corresponding value for a single crystal without loss of porosity, resulting in an improved volumetric hydrogen storage capacity close to the upper limit for a single crystal. The high volumetric uptake combined with a low and constant heat of adsorption provides ca. 31 g of usable hydrogen per liter of pellet assuming a temperature−pressure swing adsorption process between 77 K − 100 bar and 117 K − 5 bar. Cycling experiments do not indicate any degradation in storage capacity. The excellent stability during preparation, handling, and operation of ZIF-8 pellets demonstrates its potential as a robust adsorbent material for technical application in pilot- and full-scale adsorption vessel prototypes. KW - Hydrogen adsorption storage KW - Metal−organic frameworks KW - ZIF-8 KW - Cryoadsorption KW - Hydrogen Storage KW - MefHySto PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569473 DO - https://doi.org/10.1021/acsaem.2c03719 SN - 2574-0962 SP - 1 EP - 8 PB - ACS Publications CY - Washington DC AN - OPUS4-56947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Schwab, Alexander A1 - Carraro, Francesco A1 - Tavernaro, Isabella A1 - Falkenhagen, Jana A1 - Villajos, Jose A1 - Falcaro, Paolo A1 - Emmerling, Franziska T1 - ZIF-8-based biocomposites via reactive extrusion: towards industrial-scale manufacturing N2 - Mechanochemistry, a sustainable synthetic method that minimizes solvent use, has shown great promise in producing metal–organic framework (MOF)-based biocomposites through ball milling. While ball milling offers fast reaction times, biocompatible conditions, and access to previously unattainable biocomposites, it is a batch-type process typically limited to gram-scale production, which is insufficient to meet commercial capacity. We introduce a scalable approach for the continuous solid-state production of MOF-based biocomposites. Our study commences with model batch reactions to examine the encapsulation of various biomolecules into Zeolitic Imidazolate Framework-8 (ZIF-8) via hand mixing, establishing a foundation for upscaling. Subsequently, the process is scaled up using reactive extrusion, enabling continuous and reproducible kilogram-scale production of bovine serum albumin (BSA)@ZIF-8 with tunable protein loading. Furthermore, we achieve the one-step formation of shaped ZIF-8 extrudates encapsulating clinical therapeutic hyaluronic acid (HA). Upon release of HA from the composite, the molecular weight of HA is preserved, highlighting the industrial potential of reactive extrusion for the cost-effective and reliable manufacturing of biocomposites for drug-delivery applications. KW - Mechanochemistry KW - Extrusion KW - Biocompoites KW - MOFs PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654777 DO - https://doi.org/10.1039/D5TA08276E SN - 2050-7496 SP - 1 EP - 14 PB - Royal Society of Chemistry AN - OPUS4-65477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braymer, Joseph J. A1 - Knauer, Lukas A1 - Crack, Jason C. A1 - Oltmanns, Jonathan A1 - Heghmanns, Melanie A1 - Soares, Jéssica C. A1 - Le Brun, Nick E. A1 - Schünemann, Volker A1 - Kasanmascheff, Müge T1 - Yeast [FeFe]-hydrogenase-like protein Nar1 binds a [2Fe–2S] cluster N2 - Nar1 is an essential eukaryotic protein proposed to function as an iron–sulphur (Fe/S) cluster trafficking factor in the cytosolic iron–sulphur protein assembly (CIA) machinery. However, such a role has remained unclear due to difficulties in purifying adequate amounts of cofactor-bound protein. The [FeFe]-hydrogenase-like protein has two conserved binding sites for [4Fe–4S] clusters but does not show hydrogenase activity in vivo due to the lack of an active site [2Fe]H cofactor. Here, we report a new preparation procedure for Nar1 that facilitated studies by UV-vis, EPR, and Mössbauer spectroscopies, along with native mass spectrometry. Nar1 recombinantly produced in E. coli contained a [4Fe–4S] cluster, bound presumably at site 1, along with an unexpected [2Fe–2S] cluster bound at an unknown site. Fe/S reconstitution reactions installed a second [4Fe–4S] cluster at site 2, leading to protein with up to three Fe/S cofactors. It is proposed that the [2Fe–2S] cluster occupies a cavity in Nar1 that is filled by the [2Fe]H cofactor in [FeFe]-hydrogenases. Strikingly, two of the Fe/S clusters were rapidly destroyed by molecular oxygen, linking Nar1 oxygen sensitivity in vitro to phenotypes observed previously in vivo. Our biochemical results, therefore, validate a direct link between cellular oxygen concentrations and the functioning of the CIA pathway. These advances also now allow for the pursuit of in vitro Fe/S cluster transfer assays, which will shed light on Fe/S trafficking and insertion by CIA components. KW - Biocorrosion KW - Hydrogenases KW - Metalloprotein KW - Yeast PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649463 DO - https://doi.org/10.1039/D5SC04860E SN - 2041-6520 VL - 17 IS - 1 SP - 373 EP - 380 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Grauel, Bettina A1 - Pons, Monika A1 - Frenzel, Florian A1 - Rissiek, P. A1 - Rücker, Kerstin A1 - Haase, Markus A1 - Resch-Genger, Ute T1 - Yb- and Er concentration dependence of the upconversion luminescence of highly doped NaYF4:Yb,Er/NaYF4:Lu core/shell nanocrystals prepared by a water-free synthesis N2 - High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion (UC) nanocrystals (UCNC) like NaYF4:Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC. UC luminescence (UCL) is, however, controlled not only by dopant concentration, yet by an interplay of different parameters including size, crystal and shell quality, and excitation power density (P). Thus, identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy. Here, we quantify the dopant concentration dependence of the UCL quantum yield (ΦUC) of solid NaYF4:Yb,Er/NaYF4:Lu upconversion core/shell nanocrystals of varying Yb3+ and Er3+ concentrations (Yb3+ series: 20%‒98% Yb3+; 2% Er3+; Er3+ series: 60% Yb3+; 2%‒40% Er3+). To circumvent other luminescence quenching processes, an elaborate synthesis yielding OH-free UCNC with record ΦUC of ~9% and ~25 nm core particles with a thick surface shell were used. High Yb3+ concentrations barely reduce ΦUC from ~9% (20% Yb3+) to ~7% (98% Yb3+) for an Er3+ concentration of 2%, thereby allowing to strongly increase the particle absorption cross section and UCNC brightness. Although an increased Er3+ concentration reduces ΦUC from ~7% (2% Er3+) to 1% (40%) for 60% Yb3+. Nevertheless, at very high P (> 1 MW/cm2) used for microscopic studies, highly Er3+-doped UCNC display a high brightness because of reduced saturation. These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials. KW - Upconverion KW - Nanoparticle KW - Lanthanides KW - Quantum yield PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551346 DO - https://doi.org/10.1007/s12274-022-4570-5 SP - 1 EP - 8 PB - Springer AN - OPUS4-55134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -