TY - CONF A1 - Bertovic, Marija A1 - Given, Joseph A1 - Lehleitner, Johannes T1 - First insights into the human-related risks of tunnel inspection N2 - Whereas human factors (HF) in the non-destructive testing (NDT) of metallic components are a poorly investigated topic (in comparison to other industrial fields such as aviation), HF in the inspection of concrete components are even less known. Studies have shown that there is always some variability between individuals in their inspection results and that HF affect the reliability of NDT inspections. The aim of the ongoing WIPANO project is to draft a standard for a holistic reliability assessment, with concrete inspection as one case study. This includes also the HF. A human-oriented Failure Modes and Effects Analysis (FMEA) was carried out to do the following: a) identify possible human-related risks in tunnel inspection processes using a laser scan method (including data collection,evaluation, and assessment of tunnel damage) and b) evaluate these human-related risks as regards their possible causes, consequences and probability of occurrence – in addition with respect to existing and possible preventive measures. The results show that the causes for possible failures can lie within people, the physical environment, technology, organisation, and extra-organisational environment. Whereas current preventive measures rely mostly on the individual and quality management practices, there is potential for even larger improvement at the organisational and extra-organisational level. The FMEA results were also used to develop a quantification method to further understand the HF in tunnel inspection, which could possibly be included in the information into the overall reliability assessment. The usage of qualitative and quantitative data collected through the human-FMEA within the proposed quantification method shows promise that HF can be quantified and could offer broader understanding of HF influences on inspection in various industries T2 - The International Symposium on Nondestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Human Factors KW - Failure Modes and Effects Analysis KW - FMEA KW - Tunnel Inspection KW - NDT Reliability KW - Quantification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560138 SP - 1 EP - 5 AN - OPUS4-56013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Kainz, C. A1 - Braml, T. T1 - Reliability assessment of existing concrete bridges with geometrical NDT results - Case studies N2 - The results of and the validity in reliability assessment of existing bridges essentially depend on the information available about the considered system. Information about the actual condition as well as structural and material characteristics can be observed on-site to refine the computation models used in assessment. Non-destructive testing (NDT) methods for concrete structures are capable of reconstructing missing, questioned, or inconsistent as-built plans. This contribution summarizes recent developments within the scope of the national pre-standardization project “ZfPStatik”, which aims to prepare a guideline about NDT-supported structural analyses. The focus is on the purposeful and explicit utilization of geometrical tendon and reinforcement bar positions (measured on-site using the ultrasound echo and ground penetrating radar (GPR) techniques) in probabilistic reliability analyses — shown by means of real case studies. The well-established first order reliability method is applied to different concrete bridges, which are typical for the German road bridge stock, to demonstrate the utility of incorporating quality-evaluated NDT-results in terms of changes in structural reliability. T2 - 13th German-Japanese Bridge Symposium CY - Osaka, Japan DA - 28.08.2023 KW - Non-destructive testing KW - Prestressed concrete KW - Data-informed reliability analysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582727 SP - 29 EP - 40 PB - Osaka Metropolitan University CY - Osaka AN - OPUS4-58272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grundmann, Jana A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Klapetek, Petr A1 - Pereira, Silvania F. A1 - Rafighdoost, Jila A1 - Bodermann, Bernd T1 - Optical and Tactile Measurements on SiC Sample Defects N2 - The different defect types on SiC samples are measured with various measurement methods including optical and tactile methods. The defect types investigated include particles, carrots and triangles and they are analyzed with imaging ellipsometry, coherent Fourier scatterometry and atomic force microscopy. Each of these methods measures different properties of the defects and they all together contribute to a complete analysis. T2 - SMSI 2023 - Sensor and Measurement Science International CY - Nuremberg, Germany DA - 08.05.2023 KW - Defects KW - Silicon carbide KW - Imaging ellipsometry KW - Atomic force microscopy KW - Coherent Fourier scatterometry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593397 SN - 978-3-9819376-8-8 DO - https://doi.org/10.5162/SMSI2023/D5.2 VL - 2023/D5 SP - 233 EP - 234 PB - AMA Service CY - Wunstorf AN - OPUS4-59339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghafafian, Carineh A1 - Trappe, Volker ED - Vassilopoulos, A. P. ED - Michaud, V. T1 - Fully-reversed fatigue behavior of scarf joint repairs for wind turbine blade shell applications N2 - To enable a quick and cost-effective return to service for wind turbine blades, localized repairs can be executed by technicians in the field. Scarf repairs, shown to be highly efficient with a smooth load transition across angled joint walls and a restored aerodynamic profile, are the focus of this work. The failure mechanisms of these structures were examined under quasi-static tensile and fully-reversed cyclic loading. While the scarf ratio was held constant at 1:50, the repair layup was varied between large-to-small and small-to-large. The effect of the presence of resin pockets and the fiber orientation mismatch between parent and repair material on the restored strength of BIAX ±45° glass fiber reinforced polymer scarf joint structures was studied. T2 - 20th European Conference on Composite Materials CY - Lausanne, Switzerland DA - 26.06.2022 KW - Fatigue KW - Scarf repairs KW - Glass fiber reinforced polymers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569646 UR - https://infoscience.epfl.ch/record/298799 SN - 978-2-9701614-0-0 VL - Vol. 5 - Applications and structures SP - 195 EP - 201 PB - Composite Construction Laboratory (CCLab) CY - Lausanne AN - OPUS4-56964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cysne Barbosa, Ana Paula A1 - Azevedo do Nascimento, Allana A1 - Pavasarytė, Lina A1 - Trappe, Volker A1 - Melo, D. T1 - Effect of addition of thermoplastic self-healing agent on fracture toughness of epoxy N2 - Self-healing agents have the potential to restore mechanical properties and extend service life of composite materials. Thermoplastic healing agents have been extensively investigated for this purpose in epoxy matrix composites due to their strong adhesion to epoxy and their ability to fill in microcracks. One of the most investigated thermoplastic additives for this purpose is poly(ethylene-co-methacrylic acid) (EMAA). Despite the ability of thermoplastic healing agents to restore mechanical properties, it is important to assess how the addition of thermoplastic healing agents affect properties of the original epoxy material. In this work, EMAA was added to epoxy resin and the effect of the additive on fracture toughness of epoxy was evaluated. Results indicate that although added in low concentrations, EMAA can affect fracture toughness. T2 - 6th Brazilian Conference on Composite Materials CY - Tiradentes, Minas Gerais, Brazil DA - 14.08.2022 KW - Epoxy KW - Self-healing KW - Thermoplastic KW - Fracture PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572707 SN - 978-65-00-49386-3 DO - https://doi.org/10.29327/566492 SN - 2316-1337 SP - 219 EP - 222 AN - OPUS4-57270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Sachs, Patrick ED - Vassilopoulos, A. P. ED - Michaud, V. T1 - Dynamic mechanical analysis of epoxy-matrix cross linking measured in-situ using an elastomer container N2 - A new patented dynamic mechanical analysis (DMA) is presented, where the tensile, bending- or torsional stiffness of a media can be characterized in-situ during the phase transition from liquid to solid. An epoxy system, e.g. Hexion L285/H287, is filled into an elastomer container, such as a silicone tube. This can be mounted into a conventional OMA and, based on a linear viscoelastic approach, the storage modulus (E';G'), the loss modulus (E'';G'') and the loss angle tan(δ) can be measured at constant temperature as a function of time in order to investigate the liquid to sol-gel to solid transition. With this new method, the stiffness increase as a result of the cure process can be directly measured more precisely than with a rheometer in a shear plate set-up, because using an elastomer container gives a defined cross section for calculating the Young's modulus. T2 - 20th European Conference on Composite Materials CY - Lausanne, Switzerland DA - 26.06.2022 KW - Cross linking KW - Dynamic mechanical analysis (DMA) KW - Thermoset polymers KW - Cure process PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569651 UR - https://infoscience.epfl.ch/record/298799 SN - 978-2-9701614-0-0 VL - Vol. 5 - Applications and structures SP - 181 EP - 186 PB - Composite Construction Laboratory (CCLab) CY - Lausanne AN - OPUS4-56965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rüdenauer, I. A1 - Quack, D. A1 - Schlegel, Moritz-Caspar T1 - kWh versus Euro – What is the most effective way to inform about efficient products? N2 - Energy efficient products often have a higher purchase price than less efficient alternatives. However, the life cycle costs are often lower due to the lower operating costs. From a purely economic point of view, efficient appliances are not only more ecological but often also more economical and, accordingly, should be purchased more frequently than less efficient appliances. However, this is not always the case. Information deficits are one of the major reasons of this discrepancy: the purchase price is visible during the purchasing process, but the follow-up costs are not, at least not in their exact amount. The EU Energy Label can be considered as a solution to close this gap. During the past decades, there has been a discussion on whether it would be better to communicate the monetary costs associated with energy consumption, since their calculation by the consumer is difficult or needs a high level of cognitive effort. In this study, experiments and field studies on a total of 19 product groups were evaluated with regard to the question of whether the indication of costs instead of physical units affects the decision-making process of the consumer. It has been assessed under which circumstances it might positively influence the purchase decision of the customer, i.e. helping him or her to arrive at a more “energy efficient” decision. Overall, the results indicate that monetary claims possibly exceed the effect of claims on a physical basis when the costs or the differences between the alternatives available seem “relevant” to the consumer. T2 - EEDAL’21 CY - Toulouse, France DA - 01.06.2021 KW - Energy Labelling KW - Ecodesign PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570454 SN - 978-92-76-99908-9 DO - https://doi.org/10.2760/356891 SP - 358 EP - 367 AN - OPUS4-57045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El Moutaouakil, H. A1 - Fuchs, C. A1 - Savli, E. A1 - Heimann, Jan A1 - Prager, Jens A1 - Moll, J. A1 - Tschöke, K. A1 - Márquez Reyes, O. A1 - Schackmann, O. A1 - Memmolo, V. A1 - Schneider, T. T1 - Acquiring a Machine Learning Data Set for Structural Health Monitoring of Hydrogen Pressure Vessels at Operating Conditions using Guided Ultrasonic Waves N2 - Hydrogen is an energy source of increasing importance. As hydrogen is very reactive to air and needs to be stored under high pressure, it is crucial to provide safe transportation and storage. Therefore, structural health monitoring, based on guided ultrasonic waves and machine learning methods, is used for Composite Overwrapped Pressure Vessels (COPVs) containing hydrogen. To acquire data that allows robust detection of COPV defects, there are two main process parameters to consider. These are the pressurization of the vessel and the temperature conditions at the vessel. This paper will focus on the derivation of a design of experiment (DoE) from the needs of various validation scenarios (e.g. concerning pressure, temperature or excitation frequency). Practical limitations must be considered as well. We designed experiments with multiple reversible damages at different positions. A network of 25 transducers, structured as five rings with five sensors in one line, is installed on a vessel. Guided ultrasonic waves are used via the pitch-catch procedure, which means that the transducers act pairwise as transmitter and receiver in order to measure all transmitterreceiver combinations. This leads to 600 signal paths, recorded by a Verasonics Vantage 64 LF data acquisition system. Finally, the influences of temperature and pressure within the acquired data set are going to be visualized. T2 - 11th European Workshop on Structural Health Monitoring CY - Potsdam, Germany DA - 10.06.2024 KW - Composite Overwrapped Pressure Vessel KW - Hydrogen KW - Guided Ultrasonic Waves KW - Data Acquisition KW - Pressurization KW - Machine Learning PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607472 DO - https://doi.org/10.58286/29754 SN - 1435-4934 SP - 1 EP - 8 AN - OPUS4-60747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Weise, Matthias A1 - Hertwig, Andreas T1 - Hybrid optical measurement technique for detection of defects in epitaxially grown 4H-SiC layers N2 - Recent developments in power electronics require the use of new wide bandgap compound semiconductor. We demonstrate the use of the ellipsometry and white light interference microscopy to detect defects in epitaxially grown SiC layers on SiC substrates. Such hybrid optical metrology methods can be used to better understand the mechanism of the development of the defects as well as their effects on the material´s optoelectronic properties. T2 - EOS Annual Meeting (EOSAM 2022) CY - Porto, Portugal DA - 12.09.2022 KW - Imaging ellipsometry KW - White light interference microscopy KW - Wide bandgap compound semiconductor KW - Epitaxially grown 4H-SiC layers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561113 DO - https://doi.org/10.1051/epjconf/202226610001 VL - 266 SP - 1 EP - 2 AN - OPUS4-56111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaheen, Sabahat A1 - Hicke, Konstantin T1 - Measurement of Geometric Phase using a φ-OTDR setup N2 - Geometric phase showing sensitivity to changes in polarisation state and intensity of backscattered light is measured using a novel φ-OTDR setup based on coherent heterodyne detection. Principle is demonstrated using a polarisation scrambler inline a fiber-under-test. T2 - Optical Fiber Sensors 2022 CY - Alexandria, Virginia, United States DA - 29.08.2022 KW - Coherent Heterodyne KW - Geometric Phase KW - Distributed Fiber Optic Sensor PY - 2022 SN - 978-1-957171-14-2 SP - W4.72 AN - OPUS4-56116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -