TY - CONF A1 - Shashev, Yury A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Britzke, Ralf A1 - Bruno, Giovanni A1 - Müller, Bernd R. A1 - Hentschel, M. P. T1 - Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing N2 - Grating interferometric set-ups have been established in the last decade. They are promising candidates to obtain enhanced image contrast from weakly absorbing micro and nano structures. They are based on X-ray refraction and near-field diffraction using the Talbot effect. At the expense of taking multiple images, Talbot-Lau grating interferometry allows separating the absorption, refraction, and scattering contributions by analysing the disturbances of a phase grating interference pattern. Contrary to other refraction enhanced methods, this technique can be applied using conventional X-ray tubes (divergent, polychromatic source). This makes it attractive to solve typical non-destructive testing problems. We investigated the efficiency of phase gratings, i.e. the visibility (the amplitude of oscillations) upon variation of propagation distance and phase grating rotation around an axis parallel to the grid lines. This grating rotation changes the grating shape (i.e. the distributions of phase shifts). This can yield higher visibilities than derived from rectangular shapes. Our study includes experimental results obtained from synchrotron radiation, as well as simulations for monochromatic radiation. The advantages of Talbot-Lau interferometry are demonstrated at the example of glass capillaries. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - Munich, Germany DA - 13.06.2016 KW - Talbot- Lau interferometry KW - Phase grating KW - Non-destructive testing PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-383163 SP - Tu_3_G_2, 1 EP - 9 AN - OPUS4-38316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shashev, Yury A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Britzke, Ralf A1 - Bruno, Giovanni A1 - Mueller, Bernd R. A1 - Hentschel, Manfred P. T1 - Talbot- Lau interferometry with a non- binary phase grating for non-destructive testing N2 - Grating interferometric set-ups have been established in the last decade. They are promising candidates to obtain enhanced image contrast from weakly absorbing micro and nano structures. They are based on X-ray refraction and near-field diffraction using the Talbot effect. At the expense of taking multiple images, Talbot-Lau grating interferometry allows separating the absorption, refraction, and scattering contributions by analysing the disturbances of a phase grating interference pattern. Contrary to other refraction enhanced methods, this technique can be applied using conventional X-ray tubes (divergent, polychromatic source). This makes it attractive to solve typical non-destructive testing problems. We investigated the efficiency of phase gratings, i.e. the visibility (the amplitude of oscillations) upon variation of propagation distance and phase grating rotation around an axis parallel to the grid lines. This grating rotation changes the grating shape (i.e. the distributions of phase shifts). This can yield higher visibilities than derived from rectangular shapes. Our study includes experimental results obtained from synchrotron radiation, as well as simulations for monochromatic radiation. The advantages of Talbot-Lau interferometry are demonstrated at the example of glass capillaries. T2 - WCNDT2016 CY - Munich, Germany DA - 13.06.2016 KW - Phase-contrast X-ray imaging KW - Talbot- Lau interferometry KW - Phase grating KW - Visibility KW - Synchrotron radiation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365987 SN - 978-3-940283-78-8 VL - BB 158 SP - Tu.3.G.2., 1 EP - 9 AN - OPUS4-36598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Ziegler, Mathias A1 - Maierhofer, Christiane ED - Maldague, X. T1 - Systematic errors in the evaluation of uncorrected data from thermographic lock-in measurements N2 - Lock-in thermography (LT) is based on the correct evaluation of phase differences between the temperature oscillations at different surface regions of the object under test during periodic heating. Since the usual heating procedures contain a DC component, the actual heating pattern achieved is not harmonic. This causes systematic deviations when phase differences are determined by means of harmonic analysis, e.g. with FFT analysis. The resulting errors depend clearly on the ratio between DC and AC amplitude, which is demonstrated at simulated and experimentally recorded temperature transients. Further experimental LT data obtained by different oscillating energy inputs showed a variety of possible shapes of transients with different DC components. T2 - 14th QIRT Conference CY - Berlin, Germany DA - 26.06.2018 KW - NDT KW - Lock-in Thermography KW - FFT PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453768 SP - 539 EP - 547 PB - QIRT Council AN - OPUS4-45376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sproesser, G. A1 - Schenker, S. A1 - Pittner, Andreas A1 - Borndörfer, R. A1 - Rethmeier, Michael A1 - Chang, Y.-J. A1 - Finkbeiner, M. T1 - Sustainable welding process selection based on weight space partitions N2 - Selecting a welding process for a given application is crucial with respect to the sustainability of part manufacturing. Unfortunately, since welding processes are evaluated by a number of criteria, preferences for one or the other process can be contradictory. However, the prevalent procedure of weight assignment for each criterion is subjective and does not provide information about the entire solution space. From the perspective of a decision maker it is important to be able to assess the entire set of possible weightings and answer the question which welding process is optimal for which set of weights. This issue is investigated by means of a weight space partitioning approach. Two welding processes are considered with respect to three criteria that reflect their economic and environmental performance. In order to find the most sustainable welding process the underlying weight space partition is evaluated. T2 - 13th Global Conference on Sustainable Manufacturing – Decoupling Growth from Resource Use CY - Bình Dương New City, Vietnam DA - 16.09.2015 KW - Welding costs KW - Multi-criteria decision support KW - LCA KW - Welding process selection KW - GMAW KW - Multi-attribute decision method PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-353740 DO - https://doi.org/10.1016/j.procir.2016.01.077 SN - 2212-8271 VL - 40 SP - 127 EP - 132 PB - Elsevier B.V. AN - OPUS4-35374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Superplasticizer and Shrinkage Reducing Admixture Dosages for Microfine Cement in Grout Systems N2 - Grouts have numerous applications including crack repair as maintenance in construction industries. Microfine cements are intensively used for high strength mortar and grout products. They are ideal for injection grouting in structural repair. Such grouts should have suitable rheological properties to be injectable, especially those used in repair and rehabilitation. The use of superplasticizers (SP) in these products is thus becoming increasingly crucial to achieve favorable workability and viscosity properties. A difficulty in such grouts is the plastic shrinkage due to finer particles used. It is thus necessary to determine optimum SP and shrinkage reducing admixture (SRA) dosages for a microfine cement based grout. In this study, a saturation dosage was decided from two Polycarboxylate ether (PCE) based SPs in relation to neat cement using slump flow and rheological parameters. A range of grout mixtures was formulated containing micro silica (MS) and fly ash (FA), and tested for suitable rheological and mechanical parameters. Based on the results, a grout mixture with MS and FA was selected to determine optimum SRA content. According to the results, a SP dosage of 3% by weight of neat cement is sufficient to achieve saturation. The grout material including MS and FA can produce comparable properties to neat cement grout. MS is found to improve compressive strength within the range considered, whereas a higher FA content provides favourable rheological properties. Finally, a SRA dosage of 4%, which could reduce the shrinkage by about 43% after 28d days, is determined for the grout system. T2 - 2nd International Conference on Building Materials and Materials Engineering (ICBMM 2018) CY - University of Lisbon, Portugal DA - 26.09.2018 KW - Grout KW - Microfine Cement KW - Superplasticizer KW - Supplementary Cementitious Materials KW - Shrinkage Reducing Admixture PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478319 DO - https://doi.org/10.1051/matecconf/201927801001 VL - 278 SP - Article Number 01001 PB - EDP Sciences AN - OPUS4-47831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Zhukovskiy, M. A1 - Markov, M. A1 - Podolyako, S. A1 - Uskov, R. A1 - Jaenisch, Gerd-Rüdiger T1 - Supercomputing the cascade processes of radiation transport N2 - Modeling of the photon-electron cascade progress in multicomponent objects of complex geometrical structure by use of hybrid supercomputers is considered. An approach to computing the cascade processes is developed. The approach has three key properties allowing the effective use of heterogeneous structure of computers for solving the tasks of radiation transport in complex multi-scale geometries. Firstly, two different discreet geometrical description of an object being under radiation is used: triangulated model for photon transport and voxel model for electron transport. Secondly, small parameter of the problem is explicitly taking into account for modeling surface effects (for instance, electron emission). Thirdly, the effective calculation decomposition between CPU and GPU is developed for significant increasing the speed of calculations of processes in question. Modeling of experiment on researching the bremsstrahlung generated by electron beam in Ta target is carried out. Comparison of computing and experimental results shows satisfactory consent. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Super somputing KW - Photon-electron transport KW - Monte Carlo methods KW - Modelling PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365932 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 6 PB - DGZfP CY - Berlin, Germany AN - OPUS4-36593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karapanagiotis, Christos A1 - Schukar, Marcus A1 - Breithaupt, Mathias A1 - Duffner, Eric A1 - Ulbricht, Alexander A1 - Prager, Jens A1 - Krebber, Katerina T1 - Structural health monitoring of hydrogen pressure vessels using distributed fiber optic sensing N2 - We report on distributed fiber optic sensing-based monitoring of hydrogen composite overwrapped pressure vessels (COPV) to simultaneously increase the operational lifespan and mitigate maintenance costs. Our approach represents, to the best of our knowledge, the first application of distributed fiber optic sensing for COPV Type IV monitoring, where the sensing fibers are attached to the surface, rather than integrated into the composite material. Specifically, we attach an optical fiber of 50 m to the pressure vessel's surface, covering both the cylindrical and dome sections. We note that our fiber optic sensing technique relies on swept wavelength interferometry providing strain information along the entire length of the optical fiber with high spatial resolution even at the millimeter scale. When the vessel is pressurized, the sensing optical fiber shows a linear strain response to pressure at every position along the fiber. After thousands of load cycles, the vessel finally fails with the optical fiber detecting and precisely localizing the damage in the vessel’s blind dome area. Furthermore, we discuss the potential of state-of-the-art signal processing methods and machine learning for advancing predictive maintenance. This could reduce the number of regular inspections, mitigate premature maintenance costs, and simultaneously increase the vessel’s remaining safe service life. We believe that the structural health monitoring of hydrogen pressure vessels with fiber optic sensors can enhance trust in hydrogen technology contributing to the energy transition in the future. T2 - 11th European Workshop on Structural Health Monitoring CY - Potsdam, Germany DA - 10.06.2024 KW - Hydrogen KW - Fiber optic sensors KW - Composites KW - Machine learning KW - Structural health monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602731 UR - https://www.ndt.net/search/docs.php3?id=29701 SP - 1 EP - 7 PB - NDT.net AN - OPUS4-60273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Gräßer, Patrick A1 - Wander, Lukas A1 - Zientek, Nicolai A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Kern, Simon T1 - Strangers in the Night—Smart Process Sensors in Our Current Automation Landscape N2 - The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Smart sensors enable concepts like self-diagnostics, self-calibration, and self-configuration/parameterization whenever our current automation landscape allows it. Here we summarize the currently discussed general requirements for process sensors 4.0 and introduce a smart online NMR sensor module as example, which was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (www.consens-spire.eu). T2 - Eurosensors 2017 Conference CY - Paris, France DA - 03.09.2017 KW - Process Monitoring KW - Smart Sensors KW - CONSENS KW - Online NMR Spectroscopy KW - Mini-plant PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-415772 UR - http://www.mdpi.com/2504-3900/1/4/628 DO - https://doi.org/10.3390/proceedings1040628 VL - 1 SP - 628 EP - 631 PB - MDPI CY - Basel AN - OPUS4-41577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Becker, Ben A1 - Duffner, Eric A1 - John, Sebastian T1 - Storage systems for CGH2- systematic improvement of RC&s composite storage systems for compressed hydrogen - systematic improvement of regulations for more attractive storage units N2 - Hydrogen is an attractive energy carrier that requires high effort for safe storage. For ensuring safety they have to undergo a challenging approval process. Relevant standards and regulations for composite cylinders used for the transport of for on-board storage of hydrogen are currently based on deterministic (e.g. ISO 11119-3) or semi-probabilistic (UN GTR No. 13) criteria. This paper analysis the properties of such methods in regards to the evaluation of load cycle strength. Their characteristics are compared with the probabilistic approach of the BAM. Based on Monte-Carlo simulations, the available design range (mean value and scatter of strength criteria) of current concepts were exemplarily estimated. The aspect of small sample sizes is analysed and discussed with respect to the evaluation procedures. T2 - 10th International Conference on Sustainable Energy and Environmental Protection CY - Bled, Slovenia DA - 27.06.2017 KW - Probabilistic KW - Hydrogen KW - Composite KW - Cylinder KW - Regulations KW - Load cycles KW - GTR 13 KW - ISO 11119 PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-416820 SN - 978-961-286-054-7 DO - https://doi.org/10.18690/978-961-286-054-7 SP - 1 EP - 10 PB - University of Maribor Press CY - Maribor, Slovenia AN - OPUS4-41682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander A1 - Jansen, R. A1 - Chen, L. A1 - Toet, P. A1 - Doppenberg, E. A1 - De Jong, W. A1 - Chruscicki, Sebastian T1 - Static load monitoring of a concrete bridge using a high-precision distributed fiber optic sensor system N2 - In the present study, the impact of static traffic loading on the slight deflection effects in the concrete structure of an existing bridge has been investigated using distributed fiber optic sensors. In the face of increasing traffic density and severe traffic loading, the results of the load tests on the Amsterdam bridge 705 make an important contribution to the understanding of its structural behavior. The concept of the static loading was based on the use of two 36-ton trucks stopped on the bridge at multiple pre-determined locations. The load applied in this way led to location-dependent small deflection effects recorded as longitudinal strain of the sensing fiber embedded at the underside of the bridge. The measurements were performed with a commercially-available solution based on Tunable Wavelength Coherent Optical Time Domain Reflectometry with the measurement accuracy in the range of 0.5 µm/m. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Bridge monitoring KW - Distributed fiber optic sensing KW - Static load monitoring KW - TW-COTDR PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-490408 SP - 1 EP - 8 AN - OPUS4-49040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -